
Chapter 1 Solutions

Solution 1.1-1

(a) E =
∫ 2

0 (1)
2dt+

∫ 3

2 (−1)2dt = 3

(b) E =
∫ 2

0
(−1)2dt+

∫ 3

2
(1)2dt = 3

(c) E =
∫ 2

0 (2)
2dt+

∫ 3

2 (−2)2dt = 12

(d) E =
∫ 5

3 (1)
2dt+

∫ 6

5 (−1)2dt = 3

Comments: Changing the sign of a signal does not change its energy. Doubling a signal quadruples
its energy. Shifting a signal does not change its energy. Multiplying a signal by a constant K
increases its energy by a factor K2.

Solution 1.1-2

Ex =

∫ 1

0

t2dt =
1

3
t3
∣
∣
1

0
=

1

3
, Ex1 =

∫ 0

−1

(−t)2dt =
1

3
t3
∣
∣
0

−1
=

1

3
,

Ex2 =

∫ 1

0

(−t)2dt =
1

3
t3
∣
∣
1

0
=

1

3
, Ex3 =

∫ 2

1

(t− 1)2dt =

∫ 1

0

x2dx =
1

3
,

Ex4 =

∫ 1

0

(2t)2dt =
4

3
t3
∣
∣
0

−1
=

4

3

Solution 1.1-3

(a)

Ex =

∫ 2

0

(1)2dt = 2, Ey =

∫ 1

0

(1)2dt+

∫ 2

1

(−1)2dt = 2,

Ex+y =

∫ 1

0

(2)2dt = 4, Ex−y =

∫ 2

1

(2)2dt = 4

Therefore Ex±y = Ex + Ey.

(b)

Ex =

∫ 2π

0

sin2 t dt =
1

2

∫ 2π

0

(1)dt− 1

2

∫ 2π

0

cos(2t)dt = π + 0 = π

Ey =

∫ 2π

0

(1)2 dt = 2π

44
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Ex+y =

∫ 2π

0

(sin t+ 1)2 dt =

∫ 2π

0

sin2(t)dt+ 2

∫ 2π

0

sin(t)dt+

∫ 2π

0

(1)2dt = π + 0 + 2π = 3π

In both cases (a) and (b), Ex+y = Ex + Ey. Similarly we can show that for both cases
Ex−y = Ex + Ey.

(c) As seen in part (a),

Ex =

∫ π

0

sin2 t dt = π/2

Furthermore,

Ey =

∫ π

0

(1)2 dt = π

Thus,

Ex+y =

∫ π

0

(sin t+1)2 dt =

∫ π

0

sin2(t)dt+2

∫ π

0

sin(t)dt+

∫ π

0

(1)2dt =
π

2
+ 2(2)+ π =

3π

2
+ 4

Additionally,

Ex−y =

∫ π

0

(sin t− 1)2 dt = π/2− 4 + π =
3π

2
− 4

In this case, Ex+y 6= Ex−y 6= Ex + Ey. Hence, we cannot generalize the conclusions observed
in parts (a) and (b).

Solution 1.1-4

Px = 1
4

∫ 2

−2(t
3)2dt = 64/7

(a) P−x = 1
4

∫ 2

−2
(−t3)2dt = 64/7

(b) P2x = 1
4

∫ 2

−2
(2t3)2dt = 4(64/7) = 256/7

(c) Pcx = 1
4

∫ 2

−2(ct
3)2dt = 64c2/7

Comments: Changing the sign of a signal does not affect its power. Multiplying a signal by a
constant c increases the power by a factor c2.

Solution 1.1-5

In the original design, the 3-second duration 10-volt square pulse has energy

Eorig =

∫ 3

0

(10)2 dt = 300.

In the soft-start design, as shown in Fig. S1.1-5, the waveform follows a stair-step shape at the
start, where each step increases by 1 volt from the previous and has a duration of 20 ms.

Let us call the initial 9 steps in this waveform x1(t), with duration 9(20) = 180 ms, and the final
step x2(t), with duration T − 0.18 s. The complete waveform x(t) = x1(t)+x2(t) has total duration
T seconds and, since x1(t) does not overlap with x2(t), energy Ex = Ex1 + Ex2 .

The nine steps before reaching the final 10 volt level have a combined energy of

Ex1 =

9∑

i=1

i2(0.02) = 0.02

[
9(9 + 1)(2(9) + 1)

6

]

= 5.7

The final step has energy
Ex2 = (T − 0.18)(10)2 = 100T − 18
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x(t)x(t)x(t)

ttt0.180.180.18 TTT
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Figure S1.1-5

Combining, we see that

Ex = Ex1 + Ex2 = 5.7 + 100T − 18 = 300 = Eorig.

Solving for T , the duration of the soft-start signal is

T =
300− 5.7 + 18

100
= 3.123 seconds.

Solution 1.1-6

We can solve much of this problem by referring to Ex. 1.2 in the text.

(a) The power of a sinusoid of amplitude C is C2/2 regardless of its frequency (ω 6= 0) and phase.
Therefore, in this case P = 52 + (10)2/2 = 75.

(b) Power of a sum of sinusoids is equal to the sum of the powers of the sinusoids. Therefore, in

this case P = (10)2

2 + (16)2

2 = 178.

(c) (10 + 2 sin 3t) cos 10t = 10 cos 10t+ sin 13t− sin 3t. Hence P = (10)2

2 + 1
2 + 1

2 = 51.

(d) 10 cos 5t cos 10t = 5(cos 5t+ cos 15t. Hence P = (5)2

2 + (5)2

2 = 25.

(e) 10 sin 5t cos 10t = 5(sin 15t− sin 5t. Hence P = (5)2

2 + (−5)2

2 = 25.

(f) The power of complex signal ejαt cosω0t is given as

P = lim
T→∞

1

T

∫ T/2

T/2

|ejαt cosω0t|2 dt

= lim
T→∞

1

T

∫ T/2

T/2

ejαt cosω0te
−jαt cosω0t dt

= lim
T→∞

1

T

∫ T/2

T/2

cos2 ω0t dt

Clearly, the power of ejαt cosω0t of is the same as the power of cosω0t. Thus, P = 1/2.

Solution 1.1-7

First, x(t) =







2A
T t 0 ≤ t < T

2

0 T
2 ≤ t < T

x(t+ T ) ∀t
. Next, Px = 1

T

∫ T/2

0

(
2A
T t
)2

dt = 4A2

T 2

∫ T/2

0 t2dt =

4A2

T 2
t3

3

∣
∣
∣

T/2

0
= 4A2

T 2
T 3

3(8) =
A2

6 . Since power is finite, energy must be infinite. Thus,

Px =
A2

6
and Ex = ∞.
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Solution 1.1-8

(a) Signal x(t), shown in Fig. S1.1-8, is 1-periodic. Thus, Ex = ∞ and

Px =

∫ 1

0

x2(t) dt =

∫ 1

0

1 dt = 1.

(b) Signal y(t), shown in Fig. S1.1-8, is 1-periodic. Thus, Ey = ∞ and

Py =

∫ 1

0

y2(t) dt =

∫ 1

0

1 dt = 1.

(c) Signal f(t) = x(t) + jy(t) is also 1-periodic. Thus, Ef = ∞ and

Pf =

∫ 1

0

|f(t)|2 dt =
∫ 1

0

(x(t) + jy(t))(x(t) − jy(t)) dt =

∫ 1

0

x2(t) dt+

∫ 1

0

y2(t) dt = 2.

(d) The energy of complex signal f(t) requires integrating |f(t)|2. If f(t) = x(t) + jy(t), where
x(t) and y(t) are real signals, then |f(t)|2 = (x(t) + jy(t))(x(t) − jy(t)) = x2(t) + y2(t), and
the energy of f(t) is just the sum the individual energies. That is,

Ef =

∫ ∞

−∞
|f(t)|2 dt =

∫ ∞

−∞
(x(t) + jy(t))(x(t) − jy(t)) dt

=

∫ ∞

−∞
(x2(t) + y2(t)) dt =

∫ ∞

−∞
|x(t)|2 dt+

∫ ∞

−∞
|y(t)|2 dt

= Ex + Ey

Following a similar proof, the conclusion for the power of f(t) is the same. Thus,

for real x(t), real y(t), and f(t) = x(t) + jy(t), Ef = Ex + Ey and Pf = Px + Py.
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Figure S1.1-8

Solution 1.1-9

(a) By definition, E [Tx1(t)] =
∫∞
t=−∞ (Tx1(t))

2
dt =

∫∞
t=−∞ T 2x2

1(t)dt = T 2
∫∞
t=−∞ x2

1(t)dt =

T 2E [x1(t)].
E [Tx1(t)] = T 2E [x1(t)] .

(b) By definition, E [x1(t− T )] =
∫∞
t=−∞ (x1(t− T ))2 dt. Substituting t′ = t − T and dt′ = dt

yields
∫∞
t′=∞ x2

1(t
′)dt′ = E [x1(t)].

E [x1(t− T )] = E [x1(t)] .
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(c) By definition, E [x1(t) + x2(t)] =
∫∞
t=−∞ (x1(t) + x2(t))

2
dt =

∫∞
t=−∞

(
x2
1(t) + 2x1(t)x2(t) + x2

2(t)
)
dt. However, x1(t) and x2(t) are non-overlapping so

their product x1(t)x2(t) must be zero. Thus, E [x1(t) + x2(t)] =
∫∞
t=−∞

(
x2
1(t) + x2

2(t)
)
dt =

∫∞
t=−∞ x2

1(t)dt+
∫∞
t=−∞ x2

2(t)dt = E [x1(t)] + E [x2(t)].

If (x1(t) 6= 0) ⇒ (x2(t) = 0) and (x2(t) 6= 0) ⇒ (x1(t) = 0),

Then, E [x1(t) + x2(t)] = E [x1(t)] + E [x2(t)] .

(d) By definition, E [x1(T t)] =
∫∞
t=−∞ x2

1(T t)dt.

First, consider the case T > 0. Substituting t′ = T t and dt′ = Tdt yields E [x1(T t)] =
∫∞
t′=−∞ x2

1(t
′)dt

′

T = 1
T

∫∞
t′=−∞ x2

1(t
′)dt′ = E[x1(t)]

T = E[x1(t)]
|T | .

Next, consider the case T < 0. Substituting t′ = T t and dt′ = Tdt yields E [x1(T t)] =
∫ −∞
t′=∞ x2

1(t
′)dt

′

T = −1
T

∫∞
t′=−∞ x2

1(t
′)dt′ = E[x1(t)]

−T . For T < 0, we know T = −|T |. Making this

substitution yields E [x1(T t)] =
E[x1(t)]

|T | .

Since energy is the same whether T < 0 or T > 0, we know

E [x1(T t)] =
E [x1(t)]

|T | .

Solution 1.1-10

To solve this problem, we use the results of Prob. 1.1-9. Also, consider signal y(t) = t(u(t)−u(t−1))

which has energy equal to E [y(t)] =
∫ 1

0
t2dt = 1/3.

To determine E [x(t)], consider dividing x(t) into three non-overlapping pieces: a first piece xa(t)
from (−2 ≤ t < −1), a second piece xb(t) from (−1 ≤ t < 0), and a third piece xc(t) from (0 ≤ t < 3).
Since the pieces are non-overlapping, the total energy E [x(t)] = E [xa(t)] + E [xb(t)] + E [xc(t)].

Using the properties of energy, we know that shifting or reflecting a signal does not affect its
energy. Notice that y(t/3) is the same as a flipped and shifted version of xc(t). Thus, E [xc(t)] =
E [y(t/3)] = 3(1/3) = 1. Also, it is possible to combine xa(t) with a flipped and shifted version
of xb(t) to equal a flipped and shifted version of 2y(t/2). Thus, E [xa(t) + xb(t)] = E [2y(t/2)] =
4(2)(1/3) = 8/3.

Thus,
E [x(t)] = 11/3.

Solution 1.1-11

(a)

Px = lim
T→∞

1

T

∫ T/2

−T/2

x(t)x∗(t) dt = lim
T→∞

1

T

∫ T/2

−T/2

n∑

k=m

n∑

r=m

DkD
∗
re

j(ωk−ωr)t dt

The integrals of the cross-product terms (when k 6= r) are finite because the integrands are
periodic signals (made up of sinusoids). These terms, when divided by T → ∞, yield zero.
The remaining terms (k = r) yield

Px = lim
T→∞

1

T

∫ T/2

−T/2

n∑

k=m

|Dk|2 dt =
n∑

k=m

|Dk|2

(b) Prob. 1.1-6(a)

x(t) = 5 + 10 cos(100t+ π/3)

= 5 + 5ej(100t+
π
3 ) + 5e−j(100t+π

3 )

= 5 + 5ejπ/3ej100t + 5e−jπ/3e−j100t
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Hence,
Px = 52 + |5ejπ/3|2 + |5e−jπ/3|2 = 25 + 25 + 25 = 75.

Thought of another way, note that D0 = 5, D±1 = 5 and thus Px = 52 + 52 + 52 = 75.

Prob. 1.1-6(b)

x(t) = 10 cos(100t+ π/3) + 16 sin(150t+ π/5)

= 5ejπ/3ej100t + 5e−jπ/3e−j100t − j8ejπ/5ej150t + j8e−jπ/5e−j150t

Hence,

Px = |5ejπ/3|2 + |5e−jπ/3|2 + | − j8ejπ/5|2 + |j8e−jπ/5|2 = 25 + 25 + 64 + 64 = 178.

Thought of another way, note that D±1 = 5 and D±2 = 8. Hence, Px = 52+52+82+82 = 178.

Prob. 1.1-6(c)
To begin, we note that (10 + 2 sin 3t) cos 10t = 10 cos 10t + sin 13t − sin 3t. In this case,
D±1 = 5 , D±2 = 0.5 andD±3 = 0.5. Hence, P = 52+52+(0.5)2+(0.5)2+(0.5)2+(0.5)2 = 51.

Prob. 1.1-6(d)
To begin, we note that 10 cos 5t cos 10t = 5(cos 5t + cos 15t). In this case, D±1 = 2.5 and
D±2 = 2.5. Hence, P = (2.5)2 + (2.5)2 + (2.5)2 + (2.5)2 = 25.

Prob. 1.1-6(e)
10 sin 5t cos 10t = 5(sin 15t − sin 5t). In this case, D±1 = 2.5 and D±2 = 2.5. Hence,
P = (2.5)2 + (2.5)2 + (2.5)2 + (2.5)2 = 25.

Prob. 1.1-6(f)
In this case, ejαt cosω0t = 1

2

[
ej(α+ω0)t + ej(α−ω0)t

]
. Thus, D±1 = 0.5 and P = (1/2)2 +

(1/2)2 = 1/2.

Solution 1.1-12

First, notice that x(t) = x2(t) and that the area of each pulse is one. Since x(t) has an infinite
number of pulses, the corresponding energy must also be infinite. To compute the power, notice
that N pulses requires an interval of width

∑N
i=0 2(i + 1) = N2 + 3N . As N → ∞, power is

computed by the ratio of area to width, or P = limN→∞
N

N2+3N = 0. Thus,

P = 0 and E = ∞.
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Solution 1.2-1

Figure S1.2-1 shows (a) x(−t), (b) x(t+ 6), (c) x(3t), and (d) x(t/2).
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Figure S1.2-1

Solution 1.2-2

Figure S1.2-2 shows (a) x(t− 4), (b) x(t/1.5), (c) x(−t), (d) x(2t− 4), and (e) x(2 − t).
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Figure S1.2-2

Solution 1.2-3

(a) x1(t) can be formed by shifting x(t) to the left by 1 plus a time-inverted version of x(t) shifted
to left by 1. Thus,

x1(t) = x(t+ 1) + x(−t+ 1) = x(t+ 1) + x(1 − t).

(b) x2(t) can be formed by time-expanding x(t) by factor 2 to obtain x(t/2) Now, left-shift x(t/2)
by unity to obtain x( t+1

2 ). We now add to this a time-inverted version of x(1−t
2 ) to obtain

x2(t). Thus,
x2(t) = x( t+1

2 ) + x(1−t
2 ).

(c) Observe that x3(t) is composed of two parts:
First, a rectangular pulse to form the base is constructed by time-expanding x2(t) by a factor of
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2. This is obtained by replacing t with t/2 in x2(t). Thus, we obtain x2(t/2) = x( t+2
4 )+x(2−t

4 ).
Second, the two triangles on top of the rectangular base are constructed by time-expanded
(factor of 2) and shifted versions of x(t) according to x(t/2) + x(−t/2). Thus,

x3(t) = x( t+2
4 ) + x(2−t

4 ) + x(t/2) + x(−t/2).

(d) x4(t) can be obtained by time-expanding x1(t) by a factor 2 and then multiplying it by 4/3
to obtain 4

3x1(t/2) = 4
3

[
x( t+2

2 ) + x(2−t
2 )
]
. From this, we subtract a rectangular pedestal of

height 1/3 and width 4. This is obtained by time-expanding x2(t) by 2 and multiplying it by
1/3 to yield 1

3x2(t/2) =
1
3

[
x( t+2

4 ) + x(2−t
4 )
]
. Hence,

x4(t) =
4
3

[
x( t+2

2 ) + x(2−t
2 )
]
− 1

3

[
x( t+2

4 ) + x(2−t
4 )
]
.

(e) x5(t) is a sum of three components: (i) x2(t) time-compressed by a factor 2, (ii) x(t)
left-shifted by 1.5, and (iii) x(t) time-inverted and then right shifted by 1.5. Hence,

x5(t) = x(t+ 0.5) + x(0.5− t) + x(t+ 1.5) + x(1.5− t).

Solution 1.2-4

E−x =

∫ ∞

−∞
[−x(t)]2 dt =

∫ ∞

−∞
x2(t) dt = Ex

Ex(−t) =

∫ ∞

−∞
[x(−t)]2 dt =

∫ ∞

−∞
x2(x) dx = Ex

Ex(t−T ) =

∫ ∞

−∞
[x(t− T )]2 dt =

∫ ∞

−∞
x2(x) dx = Ex,

Ex(at) =

∫ ∞

−∞
[x(at)]2 dt =

1

a

∫ ∞

−∞
x2(x) dx = Ex/a

Ex(at−b) =

∫ ∞

−∞
[x(at − b)]2 dt =

1

a

∫ ∞

−∞
x2(x) dx = Ex/a,

Ex(t/a) =

∫ ∞

−∞
[x(t/a)]2 dt = a

∫ ∞

−∞
x2(x) dt = aEx

Eax(t) =

∫ ∞

−∞
[ax(t)]2 dt = a2

∫ ∞

−∞
x2(t) dt = a2Ex

Comment: Multiplying a signal by constant a increases the signal energy by a factor a2.

Solution 1.2-5

(a) Calling y(t) = 2x(−3t+ 1) = t(u(−t− 1)− u(−t+ 1)), MATLAB is used to sketch y(t).

>> u = @(t) 1.0*(t>=0); t = -1.5:.001:1.5; y = @(t) t.*(u(-t-1)-u(-t+1));

>> subplot(121); plot(t,y(t)); axis([-1.5 1.5 -1.1 1.1]);

>> xlabel(’t’); ylabel(’2x(-3t+1)’); grid on

(b) Since y(t) = 2x(−3t+1), 0.5∗y(−t/3+1/3) = 0.5(2)x(−3(−t/3+1/3)+1) = x(t). MATLAB
is used to sketch x(t).

>> t = -3:.001:5; x = @(t) 0.5*y(-t/3+1/3);

>> subplot(122); plot(t,x(t)); axis([-3 5 -1.1 1.1]);

>> xlabel(’t’); ylabel(’x(t)’); grid on
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Solution 1.2-6

MATLAB is used to compute each sketch. Notice that the unit step is in the exponent of the
function x(t).

(a) >> u = @(t) 1.0*(t>=0); t = [-1:.001:1]; x = @(t) 2.^(-t.*u(t));

>> subplot(121); plot(t,x(t),’k’); grid on;

>> axis([-1 1 0 1.1]); xlabel(’t’); ylabel(’x(t)’);

(b) >> subplot(122); plot(t,0.5*x(1-2*t),’k’); grid on;

>> axis([-1 1 0 1.1]); xlabel(’t’); ylabel(’y(t)’);
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Figure S1.2-6

Solution 1.2-7

(a) Here, we are looking for constants a, b, and c to produce z(t) = ax(bt+ c). Signal z(t) is three
times taller than y(t), which is x(t) scaled by − 1

2 . Thus, 3(− 1
2 ) = a or a = − 3

2 . Next, we pick
two corresponding points of y(t) and z(t) to determine b and c.

−3t+ 2|t=−1 = bt+ c|t=8 ⇒ 8b+ c = 5

and
−3t+ 2|t=0 = bt+ c|t=2 ⇒ 2b+ c = 2

This system of equations is easily solved with MATLAB.

>> inv([8 1;2 1])*[5;2]

ans = 0.5

1.0
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Thus,

a = −3

2
, b =

1

2
, c = 1.

(b) Differentiating the plot of z(t), we obtain a signal v(t) such that z(t) =
∫ t

−∞ v(τ) dτ . The
result, shown in Fig. S1.2-7, is expressed mathematically as

v(t) =
1

2
u(t+ 4)− 1

2
u(t− 2)− 3δ(t− 8).
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t

-3

0

0.5

v(
t)

Figure S1.2-7

Solution 1.3-1

There are an infinite number of possible answers to this problem. Let us consider a simple example
to demonstrate the overall logic of the problem.

Consider a simple circuit where a series of three AA batteries connect to an LED through a
push-button switch. A simple real-world signal is the voltage v(t) measured at the LED when a
person presses the button for 1 second. Assuming the button is pressed at time t = 0, signal v(t) is
reasonably modeled as

v(t) = 4.5 [u(t)− u(t− 1)] .

By inspection, we see that

v(t) is (a) continuous-time, (b) analog, (c) aperiodic, (d) energy, (e) causal, and (f) deterministic.

It is not possible to devise a real-world signal that is opposite in all six of the characteristics of
v(t). To understand why, we note that any practical real-world signal must be finite in duration
(nothing lasts for ever in the physical world) and of finite energy (it is impractical to generate the
infinite energy needed for a power signal). Since practical signals are finite duration, no real-world
signal is truly periodic. Thus, we cannot devise a real-world signal that has the needed (opposite
to v(t)) characteristics of being periodic and a power signal. It is possible, for a real-world signal
to have the other four opposite characteristics of discrete, digital, noncausal, and random. For
example, recording the average yearly temperature, rounded to the nearest degree Celsius, from
1000 BC to 2000 AD would result in a discrete-time, digital, aperiodic, energy, noncausal, and
random signal.

Solution 1.3-2

(a) The leftmost edge of the right-sided signal x(t) occurs when the argument t is equal to 1,
t = 1. The same edge occurs for signal x(−2t+ a) when its argument −2t+ a also equals 1,
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or a = 1 + 2t. To be borderline anticausal, the edge of the left-sided signal x(−2t + a) must
occur at t = 0, which requires a = 1 + 2t|t=0 = 1. Thus,

a = 1 causes x(−2t+ a) to be borderline anticausal.

(b) To test for periodicity, we look to see if y(t+Ty) = y(t) for some value Ty. To begin, we notice
that

y(t+ Ty) =

∞∑

k=−∞
x(0.5t+ 0.5Ty − 10k).

For Ty = 20l and any integer l, we see that

y(t+ Ty) =

∞∑

k=−∞
x(0.5t+ 10l− 10k) =

∞∑

k=−∞
x(0.5t− 10(k − l)).

Letting k′ = k − l, we obtain

y(t+ Ty) =

∞∑

k′=−∞
x(0.5t− 10k′) = y(t).

Thus, y(t) is periodic. Setting l = 1 yields the fundamental period of Ty = 20. In summary,

y(t) is periodic with fundamental period Ty = 20.

Solution 1.3-3

(a) False. Figure 1.11b is an example of a signal that is continuous-time but digital.

(b) False. Figure 1.11c is discrete-time but analog.

(c) False. e−t is neither an energy nor a power signal.

(d) False. e−tu(t) has infinite duration but is an energy signal.

(e) False. u(t) is a power signal that is causal.

(f) True. A periodic signal, which repeats for all t, cannot be 0 for t > 0 like an anticausal signal.

Solution 1.3-4

(a) True. Every bounded periodic signal is a power signal.

(b) False. Signals with bounded power are not necessarily periodic. For example, x(t) = cos(t)u(t)
is non-periodic but has a bounded power of Px = 0.25.

(c) True. If an energy signal x(t) has energy E, then the energy of x(at) is E
a (a real and positive).

(d) False. If a power signal x(t) has power P , then the power of x(at) is generally not P
a . A

counter-example provides a simple proof. Consider the case of x(t) = u(t), which has P = 0.5.
Letting a = 2, x(at) = x(2t) = u(2t) = u(t), which still has power P = 0.5 and not P/a = P/2.

Solution 1.3-5

(a) For periodicity, x1(t) = cos(t) = cos(t+T1) = x1(t+T1). Since cosine is a 2π-periodic function,
T1 = 2π. Similarly, x2(t) = sin(πt) = sin(πt + πT2) = sin(π(t + T2)) = x2(t + T2). Thus,
πT2 = 2πk. The smallest possible value is T2 = 2. Thus,

T1 = 2π and T2 = 2.
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(b) Periodicity requires x3(t) = x3(t+ T3) or cos(t) + sin(πt) = cos(t+ T3) + sin(πt+ πT3). This
requires T3 = 2πk1 and πT3 = 2πk2 for some integers k1 and k2. Combining, periodicity thus
requires T3 = 2πk1 = 2k2 or π = k1/k2. However, π is irrational. Thus, no suitable k1 and k2
exist, and x3(t) cannot be periodic.

(c)

Px1 =
1

2π

∫ 2π

0

cos2(t)dt =
1

2π

(

0.5(t+ sin(t) cos(t))|2πt=0

)

=
1

2π

(
1

2

)

2π =
1

2

Px2 =
1

2

∫ 2

0

sin2(πt)dt =
1

2

(

1

2π
(πt− sin(πt) cos(πt))

∣
∣
∣
∣

2

t=0

)

=
1

2

(
1

2π

)

2π =
1

2

Px3 = lim
t→∞

1

2T

∫ T

−T

(cos(t) + sin(πt))
2
dt

= lim
t→∞

1

2T

∫ T

−T

(
cos2(t) + sin2(t) + cos(t) sin(πt)

)
dt

= Px1 + Px2 + lim
t→∞

1

2T

∫ T

−T

0.5 (sin(πt− t) + sin(πt+ t)) dt

= Px1 + Px2 + 0 = 1

Thus,

Px1 =
1

2
, Px2 =

1

2
, and Px3 = 1.

Solution 1.3-6

No, f(t) = sin(ωt) is not guaranteed to be a periodic function for an arbitrary constant ω. Specif-
ically, if ω is purely imaginary then f(t) is in the form of hyperbolic sine, which is not a periodic
function. For example, if ω = j then f(t) = j sinh(t). Only when ω is constrained to be real will
f(t) be periodic.

Solution 1.3-7

(a) Ey1 =
∫∞
−∞ y21(t)dt =

∫∞
−∞

1
9x

2(2t)dt. Performing the change of variable t′ = 2t yields
∫∞
−∞

1
9x

2(t′)dt
′

2 = Ex

18 . Thus,

Ey1 =
Ex

18
≈ 1.0417

18
= 0.0579.

(b) Since y2(t) is just a (Ty2 = 4)-periodic replication of x(t), the power is easily obtained as

Py2 =
Ex

Ty2

=
Ex

4
≈= 0.2604.

(c) Notice, Ty3 = Ty2/2 = 2. Thus, Py3 = 1
2

∫

Ty3
y23(t)dt = 1

2

∫

Ty3

1
9y

2
2(2t)dt. Performing the

change of variable t′ = 2t yields Py3 = 1
2

∫

Ty2

1
9y

2
2(t

′)dt
′

2 = 1
36

∫ 4

0 x2(t′)dt′ = Ex

36 . Thus,

Py3 =
Ex

36
≈ 0.0289.
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Solution 1.3-8

For all parts, y1(t) = y2(t) = t2 over 0 ≤ t ≤ 1.

(a) To ensure y1(t) is even, y1(t) = t2 over −1 ≤ t ≤ 0. Since y1(t) is (T1 = 2)-periodic,

y1(t) = y1(t + 2) for all t. Thus, y1(t) =

{
t2 −1 ≤ t ≤ 1

y1(t+ 2) ∀t . Py1 = 1
T1

∫ 1

−1(t
2)2dt =

0.5 t5

5

∣
∣
∣

1

t=−1
= 1/5. Thus,

Py1 = 1/5.

A sketch of y1(t) over −3 ≤ t ≤ 3 is created using MATLAB and shown in Fig. S1.3-8.

>> t = [-3:.001:3]; y_1 = @(mt) (mt<=1).*(mt.^2) + (mt>1).*((mt-2).^2);

>> subplot(121); plot(t,y_1(mod(t,2)),’k’); grid on

>> xlabel(’t’); ylabel(’y_1(t)’); axis([-3 3 -.1 1.1]);

(b) Let

y2(t) =







k 1 ≤ t < 1.5
t2 0 ≤ t < 1

−y2(−t) ∀t
y2(t+ 3) ∀t

.

With this form, y2(t) is odd and (T2 = 3)-periodic. The constant k is determined by constrain-

ing the power to be unity, Py2 = 1 = 1
3

(

k2 + 2
5 t

5
∣
∣
1

t=0

)

. Solving for k yields k2 = 3−2/5 = 13/5

or k =
√

13/5. Thus,

y2(t) =







√

13/5 1 ≤ t < 1.5
t2 0 ≤ t < 1

−y2(−t) ∀t
y2(t+ 3) ∀t

.

A sketch of y2(t) over −3 ≤ t ≤ 3 is created using MATLAB and shown in Fig. S1.3-8.

>> y_2 = @(mt) (mt<1).*(mt.^2)-(mt>=2).*((mt-3).^2)+...

>> ((mt>=1)&(mt<1.5))*sqrt(13/5)-...

>> ((mt>=1.5)&(mt<2))*sqrt(13/5);

>> subplot(122); plot(t,y_2(mod(t,3)),’k’); grid on

>> xlabel(’t’); ylabel(’y_2(t)’); axis([-3 3 -2 2]);

(c) Define y3(t) = y1(t) + jy2(t). To be periodic, y3(t) must equal y3(t + T3) for some value T3.
This implies that y1(t) = y1(t + T3) and y2 = y2(t + T3). Since y1(t) is (T1 = 2)-periodic,
T3 must be an integer multiple of T1. Similarly, since y2(t) is (T2 = 3)-periodic, T3 must be
an integer multiple of T2. Thus, periodicity of y3(t) requires T3 = T1k1 = 2k1 = T2k2 = 3k2,
which is satisfied letting k1 = 3 and k2 = 2. Thus,

y3(t) is periodic with T3 = 6.

(d) Noting y3(t)y
∗
3(t) = y21(t) + y22(t), Py3 = 1

T3

∫

T3

(
y21(t) + y22(t)

)
dt = Py1 + Py2 . Thus,

Py3 = 1 +
1

5
=

6

5
.
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Figure S1.3-8

Solution 1.4-1

Figure S1.4-1 shows (a) u(t− 5)− u(t− 7), (b) u(t− 5) + u(t− 7), (c) t2[u(t− 1)− u(t− 2)], and
(d) (t− 4)[u(t− 2)− u(t− 4)].

0 5 7

t

0

1

u(
t-

5)
-u

(t
-7

)

0 5 7

t

0

1

2

u(
t-

5)
+

u(
t-

7)

0 1 2

t

0

1

4

t2
[u

(t
-1

)+
u(

t-
2)

]

0 2 4

t

-2

0

(t
-4

)[
u(

t-
2)

-u
(t

-4
)]

Figure S1.4-1

Solution 1.4-2

(a)

x1(t) = (4t+ 1)[u(t+ 1)− u(t)] + (−2t+ 4)[u(t)− u(t− 2)]

= (4t+ 1)u(t+ 1)− 6tu(t) + 3u(t) + (2t− 4)u(t− 2)

(b)

x2(t) = t2[u(t)− u(t− 2)] + (2t− 8)[u(t− 2)− u(t− 4)]

= t2u(t)− (t2 − 2t+ 8)u(t− 2)− (2t− 8)u(t− 4)
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Solution 1.4-3

(a) Signal w(t) is a unit-duration ramp. Signal x(t) is a periodic replication of a compressed-by-2
version of w(t) interlaced with a periodic replication of a compressed-by-2, negated, and shifted
version of w(t). Both w(t) and x(t) are shown in Fig. S1.4-3. By inspection, it is clear that
the fundamental period of x(t) is T0 = 1.

(b) To sketch y(t) = d
dtx(1 − 0.5t), we first plot x(1 − 0.5t) and then graphically differentiate the

waveform to obtain y(t). Both x(1 − 0.5t) and y(t) are shown in Fig. S1.4-3.

(c) To assist in finding the energy Ez and power Pz of the signal z(t) = x(0.5 −
1.5t) [u(t)− u(t− 1)], we first sketch z(t). As shown in Fig. S1.4-3, z(t) is a finite-duration
signal, which means it is an energy signal and Pz = 0. Further, z(t) is comprised of three
triangular pieces. The energy of the first triangular piece is

Etri =

∫ 1
3

0

(1− 3t)2 dt =
(1− 3t)3

−9

∣
∣
∣
∣

1
3

t=0

=
1

9
.

Since shifting and reflecting a signal do not impact energy, the energy of the third triangle
equals the energy of the first. The second triangle, which is like the first scaled by − 1

2 , has
energy (− 1

2 )
2 = 1

4 as large as the first triangle. Since the triangles are non-overlapping, Ez is
just the sum of the energies of the three pieces. That is, Ez = 1

9 + 1
36 + 1

9 = 1
4 . Thus,

signal z(t) has energy Ez = 1
4 and power Pz = 0.
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Solution 1.4-4

(a) To sketch y(t) =
∫ t

−∞ x(τ) dτ , we first sketch x(t) (see Fig. S1.4-4). Now, y(t) can be obtained
graphically as an accumulation of area of x(t) as we move from left to right. Alternatively, we
can analytically compute and then plot y(t).

y(t) =







0 t < 1
∫ t

1 dτ = t− 1 1 ≤ t < 2.5
1.5 2.5 ≤ t < 4

1.5−
∫ 4

−∞ 2δ(τ − 4) dτ = 1.5− 2 = −0.5 4 ≤ t < 6

−0.5 +
∫ 6

−∞ 2δ(τ − 6) dτ = −0.5 + 1 = 0.5 t ≥ 6

(b) If we adjust the weight of the right-most delta function from 1 to 1
2 , then y(t) will be end at

t = 6 and have finite duration and finite energy. That is,

if δ(t− 6) in x(t) is changed to 1
2δ(t− 6), then y(t) will have finite energy.

(c) Signal z(t) =
∫∞
t x(τ) dτ , which is the accumulation of area of x(t) as we move from right to

left, can be sketched by inspection of x(t) (see Fig. S1.4-4). Alternatively, we can analytically
compute and then plot z(t).

z(t) =







0 t > 6
∫∞
6 δ(τ − 6)dτ = 1 4 < t ≤ 6

1−
∫ −∞
4

2δ(τ − 4) dτ = 1− 2 = −1 2.5 < t ≤ 4

−1 +
∫ 2.5

t dτ = −1 + (2.5− t) = 1.5− t 1 < t ≤ 2.5
0.5 t ≤ 1

(d) There are two ways to determine real constants A and B so that w(t) = x
(
t−A
B

)
has a region

of support [−2, 2]. In the first way, we map the leftmost edge of x(t) to the leftmost edge of
w(t), and map the rightmost edge of x(t) to the rightmost edge of w(t). This requires that

z(−2) = x(−2−A
B ) = x(1) ⇒ A+B = −2

and
z(2) = x(2−A

B ) = x(6) ⇒ A+ 6B = 2.

Solving this pair of equations yields

A = −14

5
and B =

4

5
.

The resulting signal w(t) is shown in Fig. S1.4-4.

The second way to solve this problem is to map the leftmost edge of x(t) to the rightmost edge
of w(t), and map the rightmost edge of x(t) to the leftmost edge of w(t). This requires that

z(2) = x(2−A
B ) = x(1) ⇒ A+B = 2

and
z(−2) = x(−2−A

B ) = x(6) ⇒ A+ 6B = −2.

Solving this pair of equations yields

A =
14

5
and B = −4

5
.

The resulting w(t) is just a reflection of the first solution.
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Solution 1.4-5

Using the fact that f(x)δ(x) = f(0)δ(x), we have

(a) 0

(b) 2
9δ(ω)

(c) 1
2δ(t)

(d) − 1
5δ(t− 1)

(e) 1
2−j3δ(ω + 3)

(f) kδ(ω) (use L’ Hôpital’s rule)

Solution 1.4-6

In these problems remember that impulse δ(x) is located at x = 0. Thus, an impulse δ(t − τ) is
located at τ = t, and so on.

(a) The impulse is located at τ = t and x(τ) at τ = t is x(t). Therefore

∫ ∞

−∞
x(τ)δ(t − τ) dτ = x(t).

(b) The impulse δ(τ) is at τ = 0 and x(t− τ) at τ = 0 is x(t). Therefore

∫ ∞

−∞
δ(τ)x(t − τ) dτ = x(t).

Using similar arguments, we obtain
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(c) 1

(d) 0

(e) e3

(f) 5

(g) x(−1)

(h) −e2

Solution 1.4-7

In this problem we assume that the constant a is real and positive constant a. Letting t′ = at and
dt′ = adt, we see that

∫ ∞

−∞
δ(at) dt =

∫ ∞

−∞
δ(t′)

dt′

a
=

1

a

In this way, we see that time-scaling a delta function by (positive) factor a reciprocally changes the
strength of the delta function as 1

a .

Solution 1.4-8

(a) Recall that the derivative of a function at the jump discontinuity is equal to an impulse of
strength equal to the amount of discontinuity. Hence, dx/dt contains impulses 4δ(t + 4) and
2δ(t− 2). In addition, the derivative is −1 over the interval (−4, 0), and is 1 over the interval
(0, 2). The derivative is zero for t < −4 and t > 2. The result dx/dt is shown in Fig. S1.4-8.

(b) Graphically differentiating Fig. P1.4-2a we obtain

dx1(t)

dt
= 4[u(t+ 1)− u(t)]− 2[u(t)− u(t− 2)] = 4u(t+ 1)− 6u(t) + 2u(t− 2).

Differentiating again, we obtain,

d2x1(t)

dt2
= 4δ(t+ 1)− 6δ(t) + 2δ(t− 2).

This result is also shown in Fig. S1.4-8.
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Solution 1.4-9

For convenience, define y(t) =
∫ t

−∞ x(t) dt. For sketches, refer to Fig. S1.4-9.

(a) Recall that the area under an impulse of strength k is k. Over the interval 0 ≤ t < 1, we have

ya(t) =

∫ t

0

1 dx = t 0 ≤ t < 1.

Over the interval 0 ≤ t < 3, we have

ya(t) =

∫ 1

0

1 dx+

∫ t

1

(−1) dx = 2− t 1 ≤ t < 3.

At t = 3, the impulse (of strength unity) yields an additional term of unity. Thus (assuming
ǫ → 0),

ya(t) =

∫ 1

0

1 dx+

∫ 3−ǫ

1

(−1) dx+

∫ t

3−ǫ

δ(x− 3) dx = 1 + (−2) + 1 = 0 t > 3

Putting the pieces together, we have

ya(t) =







t 0 ≤ t < 1
2− t 1 ≤ t < 3
0 t ≥ 3

(b) By inspection,

yb(t) =

∫ t

0

[1−δ(x−1)−δ(x−2)−δ(x−3)−· · · ] dx = tu(t)−u(t−1)−u(t−2)−u(t−3)− . . .
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Figure S1.4-9

Solution 1.4-10

Changing the variable t to −x, we obtain

∫ ∞

−∞
φ(t)δ(−t) dt = −

∫ −∞

∞
φ(−x)δ(x) dx =

∫ ∞

−∞
φ(−x)δ(x) dx = φ(0).

This shows that ∫ ∞

−∞
φ(t)δ(t) dt =

∫ ∞

−∞
φ(t)δ(−t) dt = φ(0).



Student use and/or distribution of solutions is prohibited 63

Therefore
δ(t) = δ(−t).

Solution 1.4-11

Letting at = x, we obtain (for a > 0)

∫ ∞

−∞
φ(t)δ(at) dt =

1

a

∫ ∞

−∞
φ(

x

a
)δ(x) dx =

1

a
φ(0)

Similarly for a < 0, we show that this integral is − 1
aφ(0). Therefore

∫ ∞

−∞
φ(t)δ(at) dt =

1

|a|φ(0) =
1

|a|

∫ ∞

−∞
φ(t)δ(t) dt

Therefore

δ(at) =
1

|a|δ(t)

Solution 1.4-12

∫ ∞

−∞
δ̇(t)φ(t) dt = φ(t)δ(t)|∞−∞ −

∫ ∞

−∞
φ̇(t)δ(t) dt

= 0−
∫

φ̇(t)δ(t) dt = −φ̇(0)

Solution 1.4-13

For sketches, refer to Fig. S1.4-13.
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(a) s1,2 = ±j3

(b) e−3t cos 3t = 0.5[e−(3+j3)t + e−(3−j3)t]. Therefore the frequencies are s1,2 = −3± j3 .

(c) Using the argument in (b), we find the frequencies s1,2 = 2± j3

(d) s = −2
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(e) s = 2

(f) 5 = 5e0t so that s = 0.

Solution 1.5-1

(a)

xe(t) = 0.5[u(t) + u(−t)] =

{
0.5 t 6= 0
1 t = 0

xo(t) = 0.5[u(t)− u(−t)] =







0.5 t > 0
0 t = 0

−0.5 t < 0

These component signals are shown in Fig. S1.5-1a.
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Figure S1.5-1a

(b)

xe(t) = 0.5[tu(t)− tu(−t)] = 0.5|t|
xo(t) = 0.5[tu(t) + tu(−t)] = 0.5t

These component signals are shown in Fig. S1.5-1b.
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Figure S1.5-1b

(c)

xe(t) = 0.5[sinω0t+ sin(−ω0t)] = 0

xo(t) = 0.5[sinω0t− sin(−ω0t)] = sinω0t

These component signals are shown in Fig. S1.5-1c for an example frequency ω0 = 2π2.



Student use and/or distribution of solutions is prohibited 65

-1 0 1

t

-1

-0.5

0

0.5

1

x e
(t

)

-1 0 1

t

-1

-0.5

0

0.5

1

x o
(t

)

Figure S1.5-1c

(d)

xe(t) = 0.5[cosω0t+ cos(−ω0t)] = cosω0t

xo(t) = 0.5[cosω0t− cos(−ω0t)] = 0

These component signals are shown in Fig. S1.5-1d for an example frequency ω0 = 2π2.
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Figure S1.5-1d

(e) Using the results of parts (c) and (d) as well as the fact that cos(ω0t + θ) = cosω0t cos θ −
sinω0t sin θ, we see that

xe(t) = cos θ cosω0t

xo(t) = − sin θ sinω0t

These component signals are shown in Fig. S1.5-1e for ω0 = 2π2 and θ = 1.
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Figure S1.5-1e

(f)

xe(t) = 0.5[sinω0t u(t) + sin(−ω0t)u(−t)] = 0.5[sinω0t u(t)− sinω0t u(−t)]

xo(t) = 0.5[sinω0t u(t)− sin(−ω0t)u(−t)] = 0.5[sinω0t u(t) + sinω0t u(−t)] = 0.5 sinω0t

These component signals are shown in Fig. S1.5-1f for an example frequency ω0 = 2π2.
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Figure S1.5-1f

(g)

xe(t) = 0.5[cosω0t u(t) + cos(−ω0t)u(−t)] =

{
0.5 cosω0t t 6= 0

1 t = 0

xo(t) = 0.5[cosω0t u(t)− cos(−ω0t)u(−t)] = 0.5[cosω0t u(t)− cosω0t u(−t)]

These component signals are shown in Fig. S1.5-1g for an example frequency ω0 = 2π2.
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Figure S1.5-1g

Solution 1.5-2

MATLAB makes it easy to compute and plot the desired signals. To determine suitable ranges of t
for the plots, however, we need to compute the edges of the desired waveforms.

(a) Since x(t) has edges at t = −1 and t = 3, the signal xo(t) has edges at ±3. Thus, the signal
xo(1 − 2t) has edges at 1 − 2t = ±3 or at t = −1 and t = 2. We chose the slightly wider
interval of −2 ≤ t ≤ 3 for our plot.

>> u = @(t) 1.0*(t>=0); x = @(t) 2*u(t+1)-u(t-2)-u(t-3);

>> t = -2:.001:3; xo = @(t) (x(t)-x(-t))/2;

>> subplot(121); plot(t,xo(1-2*t)); xlabel(’t’); ylabel(’x_o(1-2t)’);

>> axis([-2 3 -1.25 1.25]); set(gca,’xtick’,-1:.5:2,’ytick’,-1:.5:1); grid on

(b) Since x(t) has edges at t = −1 and t = 3, the signal xe(t) has edges at ±3. Thus, the signal
xe(2 + t/3) has edges at 2 + t/3 = ±3 or at t = −15 and t = 3. We chose the slightly wider
interval of −17 ≤ t ≤ 5 for our plot.

>> t = -17:.001:5; xe = @(t) (x(t)+x(-t))/2;

>> subplot(122); plot(t,xe(2+t/3)); xlabel(’t’); ylabel(’x_e(2+t/3)’);

>> axis([-17 5 -.25 2.25]); set(gca,’xtick’,-15:3:3,’ytick’,0:.5:2); grid on
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Solution 1.5-3

(a)

xe(t) =
1

2
[e−2tu(t) + e2tu(−t)]

xo(t) =
1

2
[e−2tu(t)− e2tu(−t)]

(b) Exe =
∫∞
−∞ x2

e(t)dt. Because e
−2tu(t) and e2tu(−t) are disjoint in time, the cross-product term

in x2
e(t) is zero. Hence,

Exe =

∫ ∞

−∞
x2
e(t)dt =

1

4

[∫ ∞

0

e−4tdt+

∫ 0

−∞
e4tdt

]

=
1

8
.

Using a similar argument, we have

Exo =
1

8
.

Also,

Ex =

∫ ∞

0

e−4tdt =
1

4
.

Hence,
Ex = Exe + Exo .

(c) To generalize this result, we first consider causal x(t). In this case, x(t) and x(−t) are disjoint.
Moreover, energy or x(t) is identical to that of x(−t). Hence,

Exe =
1

4

[∫ ∞

0

|x(t)|2dt+
∫ 0

−∞
|x(−t)|2dt

]

=
1

2
Ex.

Using a similar argument, it follows that Exo = 1
2Ex. Hence, for causal signals,

Ex = Exe + Exo

Identical arguments hold for anti-causal signals. Thus, for anti-causal signal x(t)

Ex = Exe + Exo

Now, every signal can be expressed as a sum of a causal and an anti-causal signal. Also, the
signal energy is equal to the sum of energies of the causal and the anti-causal components.
Hence, it follows that for a general case

Ex = Exe + Exo
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Solution 1.5-4

(a)

xe(t)xo(t) =
1

4
[x(t) + x(−t)][x(t) − x(−t)]

=
1

4
[|x(t)|2 − |x(−t)|2]

Since the areas under |x(t)|2 and |x(−t)|2 are identical, it follows that

∫ ∞

−∞
xe(t)xo(t)dt = 0

(b)
∫ ∞

−∞
xe(t)dt =

1

2

∫ ∞

−∞
x(t)dt +

1

2

∫ ∞

−∞
x(−t)dt

Because the areas under x(t) and x(−t) are identical, it follows that

∫ ∞

−∞
xe(t)dt =

∫ ∞

−∞
x(t)dt.

Solution 1.5-5

xo(t) = 0.5(x(t) − x(−t)) = 0.5(sin(πt)u(t) − sin(−πt)u(−t)) = 0.5 sin(πt)(u(t) + u(−t)). Since
sin(0) = 0, this reduces to xo(t) = 0.5 sin(πt), which is a (T = 2)-periodic signal. Therefore,

xo(t) = 0.5 sin(πt) is a periodic signal.

Solution 1.5-6

xe(t) = 0.5(x(t) + x(−t)) = 0.5(cos(πt)u(t) + cos(−πt)u(−t)) = 0.5 cos(πt)(u(t) + u(−t)). Written

another way, xe(t) =

{
0.5 cos(πt) t 6= 0

1 t = 0
. Since there exists no T 6= 0 such that xe(t+T ) = xe(t),

xe(t) is not a periodic function.

It is worth pointing out that sometimes the unit step is defined as u(t) =







1 t > 0
0.5 t = 0
0 t < 0

. Using

this alternate definition, xe(t) is periodic.

Solution 1.5-7

(a) Using the figure, x(t) = (t+ 1)(u(t+ 1)− u(t)) + (−t+ 1)(u(t)− u(t− 1)). MATLAB is used
to plot v(t) = 3x

(
− 1

2 (t+ 1)
)
.

>> u = @(t) 1.0*(t>=0);

>> x = @(t) (t+1).*(u(t+1)-u(t))+(-t+1).*(u(t)-u(t-1));

>> v = @(t) 3*x(-0.5*(t+1)); t = -4:.001:4;

>> plot(t,v(t),’k-’); xlabel(’t’); ylabel(’v(t)’);

>> axis([-4 4 -.25 3.25]); set(gca,’xtick’,[-3 -1 1],’ytick’,[0 3]); grid on
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Figure S1.5-7a

(b) Since v(t) is finite duration, Pv = 0. Signal is unaffected by shifting, so v(t) is shifted to start
at t = 0. By symmetry, the energy of the first half is equal to the energy of the second half.

Thus, Ev = 2
∫ 2

0

(
3
2 t
)2

dt = 2 9
4
t3

3

∣
∣
∣

t=2

t=0
= 24

2 = 12. Thus,

Ev = 12 and Pv = 0.

(c) Using the definition ve(t) = (v(t) + v(−t))/2, MATLAB is used to determine and plot ve(t).

>> ve = @(t) (v(t)+v(-t))/2; t = -4:.001:4;

>> plot(t,ve(t),’k-’); xlabel(’t’); ylabel(’v_e(t)’);

>> axis([-4 4 -.25 3.25]); set(gca,’xtick’,[-3 -1 1 3],’ytick’,[0 1.5]); grid on
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Figure S1.5-7c

Thus,

ve(t) =







3t
4 + 9

4 −3 ≤ t < −1
3
2 −1 ≤ t < 1

− 3t
4 + 9

4 1 ≤ t < 3
0 otherwise

.

(d) Using v(t) computed earlier, MATLAB is used to create the four desired plots.

>> t = [-7:.001:2]; a = 2; b = 3; ax = [-7 2 -.5 9.5];

>> subplot(221); plot(t,v(a*t+b),’k-’); xlabel(’t’); ylabel(’v(at+b)’);

>> axis(ax); grid on; set(gca,’xtick’,[-3 -2 -1],’ytick’,[0 3]);

>> subplot(222); plot(t,v(a*t)+b,’k-’); xlabel(’t’); ylabel(’v(at)+b’);

>> axis(ax); grid on; set(gca,’xtick’,[-1.5 -.5 .5],’ytick’,[0 3 6]);

>> subplot(223); plot(t,a*v(t+b),’k-’); xlabel(’t’); ylabel(’av(t+b)’);

>> axis(ax); grid on; set(gca,’xtick’,[-6 -4 -2],’ytick’,[0 6]);

>> subplot(224); plot(t,a*v(t)+b,’k-’); xlabel(’t’); ylabel(’av(t)+b’);

>> axis(ax); grid on; set(gca,’xtick’,[-3 -1 1],’ytick’,[0 3 9]);

(e) Following the same procedure as in part (d), MATLAB is used to create the four desired plots.



70 Student use and/or distribution of solutions is prohibited

-3 -2 -1

t

0

3v(
at

+
b)

-1.5 -0.5 0.5

t

0

3

6

v(
at

)+
b

-6 -4 -2

t

0

6

av
(t

+
b)

-3 -1 1

t

0

3

9

av
(t

)+
b

Figure S1.5-7d

>> t = [-3.5:.001:3.5]; a = -3; b = -2; ax = [-3.5 3.5 -11.5 3.5];

>> subplot(221); plot(t,v(a*t+b),’k-’); xlabel(’t’); ylabel(’v(at+b)’);

>> axis(ax) ;grid on; set(gca,’xtick’,[-1 -1/3 1/3],’ytick’,[0 3]);

>> set(gca,’xticklabel’,{’-1’,’-1/3’,’1/3’});

>> subplot(222); plot(t,v(a*t)+b,’k-’); xlabel(’t’); ylabel(’v(at)+b’);

>> axis(ax); grid on; set(gca,’xtick’,[-1/3 1/3 1],’ytick’,[-2 1]);

>> set(gca,’xticklabel’,{’-1/3’,’1/3’,’1’});

>> subplot(223); plot(t,a*v(t+b),’k-’); xlabel(’t’); ylabel(’av(t+b)’);

>> axis(ax); grid on; set(gca,’xtick’,[-1 1 3],’ytick’,[-9 0]);

>> subplot(224); plot(t,a*v(t)+b,’k-’); xlabel(’t’); ylabel(’av(t)+b’);

>> axis(ax); grid on; set(gca,’xtick’,[-3 -1 1],’ytick’,[-11 -2]);
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Solution 1.5-8

(a) Using the figure, y(t) = t(u(t) − u(t − 1)) + (u(t − 1) − u(t − 2)). MATLAB is used to plot

yo(t) =
y(t)−y(−t)

2 .

>> u = @(t) 1.0*(t>=0); y = @(t) t.*(u(t)-u(t-1))+1.0*(u(t-1)-u(t-2));

>> t = [-3:.001:3]; yo = (y(t)-y(-t))/2;

>> plot(t,yo,’k-’); xlabel(’t’); ylabel(’y_o(t)’); axis([-3 3 -.6 .6]);

>> set(gca,’xtick’,[-2 -1 0 1 2],’ytick’,[-.5 0 .5]); grid on
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Figure S1.5-8a

Thus,

yo(t) =







−1/2 −2 ≤ t < −1
t/2 −1 ≤ t < 1
1/2 1 ≤ t < 2
0 otherwise

.

(b) Since y(t) = 0.2x(−2t− 3), 5y(−0.5t− 1.5) = 5(0.2)x(−2(−0.5t− 1.5)− 3) = x(t). MATLAB
is used to sketch x(t).

>> u = @(t) 1.0*(t>=0); y = @(t) t.*(u(t)-u(t-1))+1.0*(u(t-1)-u(t-2));

>> t = [-8:.001:0]; x = @(t) 5*y(-0.5*t-1.5);

>> plot(t,x(t),’k-’); xlabel(’t’); ylabel(’x(t)’); axis([-8 0 -.5 5.5]);

>> set(gca,’xtick’,[-7 -5 -3],’ytick’,[0 5]); grid on
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Figure S1.5-8b

Thus,

x(t) =







5 −7 ≤ t < −5
−5(t+ 3)/2 −5 ≤ t < −3

0 otherwise
.
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Solution 1.5-9

For convenience, let us define the problem’s graphed signal as y(t) = −0.5x(−3t+ 2).

(a) Since y(t) = −0.5x(−3t + 2), −2y(−t/3 + 2/3) = −2(−0.5)x(−3(−t/3 + 2/3) + 2) = x(t).
MATLAB is used to sketch x(t).

>> u = @(t) 1.0*(t>=0); y = @(t) 1.0*(u(t+1)-u(t))+(-t+1).*(u(t)-u(t-1));

>> t = [-2:.001:6]; x = @(t) -2*y(-t/3+2/3);

>> plot(t,x(t),’k-’); xlabel(’t’); ylabel(’x(t)’); axis([-2 6 -2.5 0.5]);

>> set(gca,’xtick’,[-1 2 5],’ytick’,[-2 0]); grid on
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Figure S1.5-9a

Thus,

x(t) =







−2(t+ 1)/3 −1 ≤ t < 2
−2 2 ≤ t < 5
0 otherwise

.

(b) The even portion of x(t) is xe(t) = 0.5(x(t) + x(−t)).

>> t = [-6:.001:6]; xe = @(t) (x(t)+x(-t))/2;

>> plot(t,xe(t),’k-’); xlabel(’t’); ylabel(’x_e(t)’); axis([-6 6 -1.25 1.25]);

>> set(gca,’xtick’,[-5 -2 -1 1 2 5],’ytick’,[-1 -2/3 0]); grid on

>> set(gca,’yticklabel’,{’-1’,’-2/3’,’0’});
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Figure S1.5-9b

Thus,

xe(t) =







−1 2 ≤ |t| < 5
(−|t| − 1)/3 1 ≤ |t| < 2

−2/3 |t| < 1
0 otherwise

.

(c) The odd portion of x(t) is xo(t) = 0.5(x(t)− x(−t)).
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>> t = [-6:.001:6]; xo = @(t) (x(t)-x(-t))/2;

>> plot(t,xo(t),’k-’); xlabel(’t’); ylabel(’x_o(t)’); axis([-6 6 -1.25 1.25]);

>> set(gca,’xtick’,[-5 -2 -1 1 2 5],’ytick’,[-1 -2/3 0 2/3 1]); grid on

>> set(gca,’yticklabel’,{’-1’,’-2/3’,’0’,’2/3’,’1’});
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Figure S1.5-9c

Thus,

xo(t) =







1 −5 ≤ t < −2
(−t+ 1)/3 −2 ≤ t < −1
−2t/3 −1 ≤ t < 1

−(t+ 1)/3 1 ≤ t < 2
−1 2 ≤ t < 5
0 otherwise

.

Solution 1.5-10

Notice, w∗
cs(−t) = 0.5(w(−t) + w∗(t))∗ = 0.5(w∗(−t) + w(t)) = wcs(t). In Cartesian form, this

becomes w∗
cs(−t) = x(−t) − jy(−t) = x(t) + jy(t) = wcs(t). Equating the real portions yields

x(−t) = x(t), and equating the imaginary portions yields −y(−t) = y(t). Thus, by definition, the
real portion of wcs(t) is even and the imaginary portion of wcs(t) is odd.

Solution 1.5-11

Notice, −w∗
ca(−t) = −0.5(w(−t)−w∗(t))∗ = 0.5(−w∗(−t) +w(t)) = wca(t). In Cartesian form, this

becomes −w∗
ca(−t) = −x(−t) + jy(−t) = x(t) + jy(t) = wca(t). Equating the real portions yields

−x(−t) = x(t), and equating the imaginary portions yields y(−t) = y(t). Thus, by definition, the
real portion of wca(t) is odd and the imaginary portion of wca(t) is even.

Solution 1.5-12

In this problem, w(t) = ej(t+π/4).

(a) Using the definition in Prob. 1.5-10,

wcs(t) =
w(t) + w∗(−t)

2
=

ej(t+
π
4 ) + e−j(−t+π

4 )

2
= ejt

ej
π
4 + e−j π

4

2
= ejt cos(π/4).

Expressed in standard rectangular form,

wcs(t) = cos(π/4) cos(t) + j cos(π/4) sin(t) =
1√
2
cos(t) + j

1√
2
sin(t).

(b) Using the definition in Prob. 1.5-11,

wca(t) =
w(t) − w∗(−t)

2
=

ej(t+
π
4 ) − e−j(−t+π

4 )

2
= ejt

ej
π
4 − e−j π

4

2
= jejt sin(π/4).
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Expressed in standard polar form,

wca(t) = sin(π/4)ej(t+
π
2 ) =

1√
2
ej(t+

π
2 ).

As expected, w(t) = wcs(t) + wca(t).

Solution 1.5-13

Complex signal w(t) is defined in the text over (0 ≤ t ≤ 1). Assigning certain properties to w(t)
allows us to plot w(t) over (−1 ≤ t ≤ 1).

(a) If w(t) is even, w(t) = w(−t), it is even in both the real and imaginary components. Thus, the
graph folds back on itself and appears unchanged. Consider, for example, point (2,1), which
now corresponds to both t = 1 and t = −1. Figure S1.5-13a illustrates the case when w(t) is
even.
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Figure S1.5-13a

(b) If w(t) is odd, w(t) = −w(−t), it is odd in both the real and imaginary components. Thus,
the graph reflects about both the real and imaginary axes. Figure S1.5-13b illustrates the case
when w(t) is odd.
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Figure S1.5-13b

(c) If w(t) is conjugate symmetric, w(t) = w∗(−t), it is even in the real component and odd in the
imaginary component. Thus, the graph reflects about the real axis. Figure S1.5-13c illustrates
the case when w(t) is conjugate-symmetric.
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Figure S1.5-13c

(d) If w(t) is conjugate antisymmetric, w(t) = −w∗(−t), it is odd in the real component and even in
the imaginary component. Thus, the graph reflects about the imaginary axis. Figure S1.5-13d
illustrates the case when w(t) is conjugate-antisymmetric.
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Figure S1.5-13d

(e) Since w(t) is only given over (0 ≤ t ≤ 1), w(3t) can be determined only for (0 ≤ t ≤ 1/3).
Since the function does not change, only the time at which it occurs, the complex-plane graph
of w(3t) looks identical to the original complex-plane graph of w(t) with the exception that
the points are assigned different times. For example, point (2,1) occurs now at t = 1/3 (see
Fig. S1.5-13e).
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Figure S1.5-13e
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Solution 1.5-14

(a) We know x(t) = t2(1 + j) over (1 ≤ t ≤ 2). Since x(t) is skew-Hermitian, x(t) = −x∗(−t) and
thus x(t) = −t2(1− j) over (−2 ≤ t ≤ −1). To minimize energy, x(t) is set to zero everywhere
else. Thus,

x(t) =







t2(1 + j) 1 ≤ t ≤ 2
−t2(1− j) −2 ≤ t ≤ −1

0 otherwise
.

(b) MATLAB is used to sketch y(t) = Re {x(t)}. See Fig. S1.5-14b.

>> t = [-2.5:.001:2.5]; u = @(t) 1.0*(t>=0);

>> x = @(t) (t.^2*(1+j)).*(u(t-1)-u(t-2))+(-t.^2*(1-j)).*(u(t+2)-u(t+1));

>> plot(t,real(x(t)),’k’); xlabel(’t’); ylabel(’y(t)’); grid on

>> axis([-2.5 2.5 -4.5 4.5]); set(gca,’xtick’,[-2 -1 1 2],’ytick’,[-4 -1 0 1 4]);

-2 -1 1 2

t

-4

-1

0

1

4

y(
t)

Figure S1.5-14b

(c) MATLAB is used to sketch z(t) = Real {jx(−2t+ 1)}. See Fig. S1.5-14c.

>> t = [-2.5:.001:2.5]; u = @(t) 1.0*(t>=0);

>> x = @(t) (t.^2*(1+j)).*(u(t-1)-u(t-2))+(-t.^2*(1-j)).*(u(t+2)-u(t+1));

>> plot(t,real(j*x(-2*t+1)),’k’); xlabel(’t’); ylabel(’y(t)’); grid on

>> axis([-2.5 2.5 -4.5 4.5]); set(gca,’xtick’,[-.5 0 1 1.5],’ytick’,[-4 -1 0]);

-0.5 0 1 1.5

t

-4

-1

0z(
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Figure S1.5-14c
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(d) Since x(t) is finite duration, Px = 0. Using symmetry, Ex = 2
∫ 2

1 (t
2(1 + j))(t2(1 − j))dt =

2
∫ 2

1
2t4dt = 4t5

5

∣
∣
∣

2

t=1
= 4

5 (32− 1) = 124
5 . Thus,

Ex =
124

5
= 24.8 and Px = 0.

Solution 1.6-1

If x(t) and y(t) are the input and output, respectively, of an ideal integrator, then

ẏ(t) = x(t)

and

y(t) =

∫ t

−∞
x(τ) dτ =

∫ 0

−∞
x(τ) dτ +

∫ t

0

x(τ) dτ = y(0)
︸︷︷︸

zero-input

+

∫ t

0

x(τ) dτ

︸ ︷︷ ︸

zero-state

Solution 1.6-2

From Newton’s law

x(t) = M
dv

dt

and

v(t) =
1

M

∫ t

−∞
x(τ) dτ =

1

M

∫ 0

−∞
x(τ) dτ +

1

M

∫ t

0

x(τ) dτ = v(0) +
1

M

∫ t

0

x(τ) dτ

Solution 1.6-3

There are an infinite number of solutions to this problem. We consider a representative solution for
each part.

(a) Single-input, single-output (SISO) system: a mono audio signal (single input) is amplified and
played on a single speaker speaker (single output).

(b) Multiple-input, single-output (MISO) system: the left and right channels of a stereo audio
source (multiple inputs) are averaged together and played on a single speaker (single output).

(c) Single-input, multiple-output (SIMO) system: a mono audio signal (single input) is split,
filtered, and sent to separate bass and tweeter speakers (multiple outputs).

(d) Multiple-input, multiple-output (MIMO) system: the left and right channels of a stereo audio
source (multiple inputs) are combined and filtered to produce a symphony hall effect when
played on a pair of carefully positioned speakers (multiple outputs).

Solution 1.7-1

(a) In this case, d
dty(t)+2y(t) = x2(t). If we let x1(t) = kx(t), we see that d

dty1(t)+2y1(t) = x2
1(t)

or d
dty1(t) + 2y1(t) = k2x2(t) = k2

(
d
dty(t) + 2y(t)

)
. This requires that y1(t) = k2y(t) while

linearity requires that y1(t) = ky(t). Thus,

the system is not linear.

(b) For inputs x1(t) and x2(t) and respective outputs y1(t) and y2(t), we know that d
dty1(t) +

3ty1(t) = t2x1(t) and d
dty2(t) + 3ty2(t) = t2x2(t). Multiplying the first equation by k1, the

second by k2, and adding yields

d

dt
(k1y1(t) + k2y2(t)) + 3t(k1y1(t) + k2y2(t)) = t2(k1x1(t) + k2x2(t)).
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This, however, is just the system with input k1x1(t) + k2x2(t) and output k1y1(t) + k2y2(t).
Since superposition holds,

the system is linear.

(c) In this case, 3y(t) + 2 = x(t). The output in response to x1(t) = 0 is y1(t) = − 2
3 . However,

the output in response to x2(t) = 2x1(t) = 0 is y2(t) =
2
3 6= 2y1(t). Since superposition does

not hold,
the system is not linear.

(d) In this case, d
dty(t) + y2(t) = x(t). If we let x1(t) = kx(t), linearity requires that the output is

y1(t) = ky(t). However, the system acts on x1(t) = kx(t) according to d
dty1(t)+y21(t) = x1(t) or

d
dty1(t)+y21(t) = kx(t) = k

(
d
dty(t) + y2(t)

)
. Since this equality does not hold for y1(t) = ky(t),

the system is not linear.

(e) In this case,
(

d
dty(t)

)2
+ 2y(t) = x(t). If we let x1(t) = kx(t), linearity requires that the

output is y1(t) = ky(t). However, the system acts on x1(t) = kx(t) according to
(

d
dty1(t)

)2
+

2y1(t) = x1(t) or
(

d
dty1(t)

)2
+ 2y1(t) = kx(t) = k

((
d
dty(t)

)2
+ 2y(t)

)

=
(

d
dt

√
ky(t)

)2

+

2ky(t) 6=
(

d
dty1(t)

)2
+ 2y1(t). Thus,

the system is not linear.

(f) For inputs x1(t) and x2(t) and respective outputs y1(t) and y2(t), we know that d
dty1(t) +

sin(t)y1(t) = d
dtx1(t) + 2x1(t) and d

dty2(t) + sin(t)y2(t) = d
dtx2(t) + 2x2(t). Multiplying the

first equation by k1, the second by k2, and adding yields

d

dt
(k1y1(t) + k2y2(t))+sin(t) (k1y1(t) + k2y2(t)) =

d

dt
(k1x1(t) + k2x2(t))+2 (k1x1(t) + k2x2(t)) .

This, however, is just the system with input k1x1(t) + k2x2(t) and output k1y1(t) + k2y2(t).
Since superposition holds,

the system is linear.

(g) In this case, d
dty(t)+ 2y(t) = x(t) d

dtx(t). If we let x1(t) = kx(t), we see that d
dty1(t)+ 2y1(t) =

x1(t)
d
dtx1(t) or d

dty1(t) + 2y1(t) = kx(t) d
dtkx(t) = k2

(
d
dty(t) + 2y(t)

)
. This requires that

y1(t) = k2y(t) while linearity requires that y1(t) = ky(t). Thus,

the system is not linear.

(h) For inputs x1(t) and x2(t) and respective outputs y1(t) and y2(t), we know that y1(t) =
∫ t

−∞ x1(τ) dτ and y2(t) =
∫ t

−∞ x2(τ) dτ . Multiplying the first equation by k1, the second by
k2, and adding yields

k1y1(t) + k2y2(t) =

∫ t

−∞
(k1x1(τ) + k2x2(τ)) dτ.

This, however, is just the system with input k1x1(t) + k2x2(t) and output k1y1(t) + k2y2(t).
Since superposition holds,

the system is linear.
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Solution 1.7-2

(a) In this case, y(t) = x(t − 2). Letting x1(t) = x(t − T ), we know that y1(t) = x1(t − 2) or
y1(t) = x(t−T − 2) = y(t−T ). Since delayed input x1(t) = x(t−T ) produces delayed output
y1(t) = y(t− T ),

the system is time invariant.

(b) The input x(t) yields the output y(t) = x(−t). For T > 0, delayed input x1(t) = x(t − T )
produces y1(t) = x1(−t) or y1(t) = x(−t − T ) = x(−(t+ T )) = y(t+ T ). Since delayed input
x1(t) = x(t − T ) produces an advanced (not delayed!) output y1(t) = y(t+ T ),

the system is time variant.

(c) The input x(t) yields the output y(t) = x(at). For T > 0, delayed input x1(t) = x(t − T )
produces y1(t) = x1(at) or y1(t) = x(at− T ) = x(a(t− T

a )) = y(t− T
a ). Since T -delayed input

x1(t) = x(t − T ) produces T
a -delayed output y1(t) = y(t− T

a ),

the system is time variant.

(d) In this case, y(t) = tx(t − 2). Letting x1(t) = x(t − T ), we know that y1(t) = tx1(t − 2) or
y1(t) = tx(t − T − 2) 6= y(t− T ) = (t− T )x(t− T − 2). Since delayed input x1(t) = x(t− T )
produces output y1(t) 6= y(t− T ),

the system is time variant.

(e) In this case, y(t) =
∫ 5

−5
x(τ) dτ . Notice that y(t) is a constant for all t and equals the area

of x(t) over −5 ≤ t ≤ 5. Letting x1(t) = x(t − T ), we know that y1(t) =
∫ 5

−5 x1(τ) dτ or

y1(t) =
∫ 5

−5 x(τ − T ) dτ =
∫ 5−T

−5−T x(τ) dτ 6= y(t− T ). Notice that y1(t) a constant for all t and
equals the area of x(t) over −5−T ≤ t ≤ 5−T , which is generally different than the constant
that is y(t). Since delayed input x1(t) = x(t− T ) does not produce delayed output y(t− T ),

the system is time variant.

(f) In this case, y(t) =
(

d
dtx(t)

)2
. Letting x1(t) = x(t − T ), we know that y1(t) =

(
d
dtx1(t)

)2

or y1(t) =
(

d
dtx(t− T )

)2
= y(t − T ). Since delayed input x1(t) = x(t − T ) produces delayed

output y1(t) = y(t− T ),
the system is time invariant.

Solution 1.7-3

(a) If |T (t)| ≤ MT < ∞ and |V (t)| ≤ MV < ∞ (that is, inputs are bounded), then |W (t)| ≤
35.74 + 0.6215MT + 35.75M0.16

V + 0.4275MTM
0.16
V < ∞ (output is bounded). Thus, bounded

inputs guarantee a bounded output.

Yes. The system is BIBO stable.

(b) Current output W (t) depends only on current inputs T (t) and V (t); no memory is required.

Yes. The system is memoryless.

(c) From part (b), we know the system is memoryless. All memoryless systems are necessarily
causal (no prediction of the future).

Yes. The system is causal.
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(d) If we apply T1(t) = 1, then the system output is W1(t) = k1 + k2. If we apply T2(t) =
2T1(t) = 2, then the system output is W2(t) = k1 + 2k2 6= 2W1(t). Clearly, the system fails
the homogeneity (scaling) property of linearity.

No. The simplified system W (t) = k1 + k2T (t) is not linear.

(e) If we apply V1(t) = 1, then the system output is W1(t) = k3+k4. If we apply V2(t) = 2V1(t) =
2, then the system output is W2(t) = k3 + k42

0.16 6= 2W1(t). Clearly, the system fails the
homogeneity (scaling) property of linearity.

No. The simplified system W (t) = k3 + k4 {V (t)}0.16 is not linear.

Solution 1.7-4

(a) By inspection, we see that |y(t)| ≤ Vref < ∞ for all possible x(t).

Yes. The system is BIBO stable.

(b) Output y at time t depends on input x at time t− tp, which is tp seconds in the past; no future
values of the input are needed to determine the output.

Yes. The system is causal.

(c) We will use a counterexample to prove that the system is not invertible. Since x1(t) = 2Vref and
x2(t) = 3Vref both yield the same output y(t) = −Vref , the output cannot uniquely determine
the input.

No. The system is not invertible.

(d) We will use a counterexample to prove that the system is not linear. Although the input
x1(t) = Vref yields the output y1(t) = −Vref , the input x2(t) = 2Vref = 2x1(t) yields the
output y2(t) = −Vref 6= 2y1(t). Clearly, the system fails the homogeneity (scaling) property of
linearity.

No. The system is not linear.

(e) From part (b), we see that the current output y(t) requires a past input value x(t− tp).

No. The system is not memoryless.

(f) System parameters do not change with time, and delaying the input causes a corresponding
delay in the output. That is, if x(t) → y(t), then x(t− T ) → y(t− T ).

Yes. The system is time-invariant.

Solution 1.7-5

(a) If |x(t)| ≤ Mx < ∞, then |y(t)| ≤ |− 2x(t)| ≤ 2Mx < ∞. Thus, any bounded input guarantees
a bounded output.

Yes. The system is BIBO stable.

(b) The output y at time t depends solely on the input x one second in the past at time t− 1; no
future values of the input are needed to determine the output.

Yes. The system is causal.
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(c) We will use a counterexample to prove that the system is not invertible. Since x1(t) = −1 and
x2(t) = −2 both yield the same output y(t) = 0, the output cannot uniquely determine the
input.

No. The system is not invertible.

(d) We will use a counterexample to prove that the system is not linear. Although input x1(t) = 1
produces output y1(t) = −2, input x2(t) = −2x1(t) = −2 produces output y2(t) = 0 6= 2y1(t).
Clearly, the system fails the homogeneity (scaling) property of linearity.

No. The system is not linear.

(e) From part (b), we see that the current output y(t) requires a past input value x(t− 1).

No. The system is not memoryless.

(f) A shift in the input causes a corresponding shift in the output. That is, if x(t) → y(t), then
x(t− T ) → y(t− T ).

Yes. The system is time-invariant.

Solution 1.7-6

(a) The output y(t) either equals the input x(t) or a delay of the input x(t − 1). Thus, if the
input is bounded, then the output must also be bounded. That is, if |x(t)| ≤ Mx < ∞, then
|y(t)| ≤ Mx < ∞. All bounded inputs produce bounded outputs.

Yes. The system is BIBO stable.

(b) To determine the current output y(t), the slope of the input 1 second in the future needs to
be known. That is, current output requires knowledge of future input.

No. The system is not causal.

(c) In this system, when the slope of the input changes from positive to negative, up to 1 second
of data can be lost. When data is lost, the system cannot be invertible. Let us use a coun-
terexample to show this fact and prove that the system is not invertible. Figure S1.7-6c shows
two inputs, x1(t) and x2(t), which both have the same output y(t), which is also shown. Since
two distinct inputs can yields the same output, it is clearly impossible to always recover input
from output, and the system cannot be invertible.

No. The system is not invertible.
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(d) We will use a counterexample to prove that the system is not linear. Figure S1.7-6d shows
input x1(t) and its output y1(t). Figure S1.7-6d also shows input x2(t) and its output y2(t).
Although x2(t) = −x1(t), we see that y2(t) 6= −y1(t), and the system fails the homogeneity
(scaling) property of linearity.

No. The system is not linear.
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Figure S1.7-6d

(e) If d
dtx(t) < 0, the output y at time t− 1 depends on a the input x one second earlier at time

t− 2. Clearly, memory is required.

No. The system is not memoryless.

(f) A shift in the input causes a corresponding shift in the output. That is, if x(t) → y(t), then
x(t− T ) → y(t− T ).

Yes. The system is time-invariant.

Solution 1.7-7

(a) We will use a counterexample to prove that the system is not BIBO stable. The bounded
input x(t) = u(t) produces the unbounded output y(t) = tu(t). Since the system output is not
bounded for all possible inputs, the system is not BIBO stable.

No. The system is not BIBO stable.

(b) By inspection, it is clear that the system only depends on the current input. No future values
of the input are involved.

Yes. The system is causal.

(c) Since the system essentially “kills” any input for t < 0, such input values are lost and cannot
be recovered. Thus, the system is not invertible. To provide a specific example, consider the
inputs x1(t) = δ(t+ 1) and x2(t) = δ(t+ 2), both of which produce output y(t) = 0. Clearly,
it is impossible to recover the input from the output in this case.

No. The system is not invertible.
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(d) Begin assuming y1(t) = r(t)x1(t) and y2(t) = r(t)x2(t). Applying ax1(t)+bx2(t) to the system
yields y(t) = r(t) (ax1(t) + bx2(t)) = ar(t)x1(t) + br(t)x2(t) = ay1(t) + by2(t).

Yes. The system is linear.

(e) By inspection, it is clear that the system only depends on the current input.

Yes. The system is memoryless.

(f) Since the system function depends on the independent variable t, it is unlikely that the system
is time-invariant. To explicitly verify, let y(t) = r(t)x(t). Next, delay x(t) by τ to obtain a
new input x2 = x(t−τ). Applying x2(t) to the system yields y2(t) = r(t)x2(t) = r(t)x(t−τ) 6=
r(t − τ)x(t − τ) = y(t − τ). Since, the system operator and the time-shift operator do not
commute, the system is not time-invariant.

No. The system is not time-invariant.

Solution 1.7-8

(a) The system returns the time-delayed derivative, or slope, of the input signal. A square-wave
is a bounded signal which, due to point discontinuities, has infinite slope at the corresponding
instants in time. Thus, a bounded input may not result in a bounded output, and the system
cannot be BIBO stable.

No. The system is not BIBO stable.

(b) By inspection, it is clear that the system output does not depend on future input values.

Yes. The system is causal.

(c) Differentiation eliminates any dc component, which is lost forever and cannot be recovered.

No. The system is not invertible.

(d) Begin assuming y1(t) =
d
dtx1(t − 1) and y2(t) =

d
dtx2(t − 1). Applying ax1(t) + bx2(t) to the

system yields y(t) = d
dt (ax1(t− 1) + bx2(t− 1)) = a d

dtx1(t−1)+b d
dtx2(t−1) = ay1(t)+by2(t).

Yes. The system is linear.

(e) By inspection, it is clear that the system depends on a past value of the input. For example,
at t = 0, the output y(0) depends on the time-derivative of x(−1), a past value.

No. The system is not memoryless.

(f) To explicitly verify, let y(t) = d
dtx(t − 1). Next, delay x(t) by τ to obtain a new input

x2 = x(t− τ). Applying x2(t) to the system yields y2(t) =
d
dtx2(t) =

d
dtx(t− 1− τ) = y(t− τ).

Since, the system operator and the time-shift operator commute, the system is time-invariant.
In more loose terms, the derivative operator returns the delayed slope of a signal independent
of when that signal is applied.

Yes. The system is time-invariant.
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Solution 1.7-9

(a) From the definition of the system, we know that y(t) is either x(t) or 0. Correspondingly, if
|x(t)| < ∞ then |y(t)| < ∞, and the system must be BIBO stable.

Yes. The system is BIBO stable.

(b) By inspection, it is clear that the system output only depends on the current input. No future
(or past) values are involved.

Yes. The system is causal.

(c) Any negative values of the input are lost and cannot be recovered. Thus, the system is not
invertible. For example, x1(t) = −1 and x2(t) = −2 both produce output y(t) = 0; it is clearly
impossible to always recover an input from its output.

No. The system is not invertible.

(d) Consider two signals: x1(t) = 1 and x2(t) = cos(t). The corresponding outputs of these

individual signals is y1(t) = 1 and y2(t) =

{
cos(t) if cos(t) > 0
0 if cos(t) ≤ 0

. However, if we create a

third input x3(t) = x1(t)+x2(t), the system output is y3(t) = 1+cos(t) 6= y1(t)+ y2(t). Since
superposition does not apply, the system cannot be linear.

No. The system is not linear.

(e) By inspection, it is clear that the system output only depends on the current input. No
memory is involved.

Yes. The system is memoryless.

(f) Consider delaying x(t) by τ to obtain a new input x2 = x(t− τ). Applying x2(t) to the system

yields y2(t) =

{
x(t − τ) if x(t− τ) > 0

0 if x(t− τ) ≤ 0
= y(t − τ). Since the system operator and the

time-shift operator commute, the system is time-invariant.

Yes. The system is time-invariant.

Solution 1.7-10

(a) Using the sifting property, this system operation is rewritten as y(t) = 0.5 (x(t)− x(−t)).

Thus, this system extracts the odd portion of the input.

(b) If |x(t)| ≤ Mx < ∞, then |y(t)| = |0.5 (x(t) − x(−t)) | ≤ 0.5 (|x(t)| + | − x(−t)|) ≤ Mx < ∞.
That is, bounded inputs always produce bounded outputs.

Yes. The system is BIBO stable.

(c) By inspection, it is clear that the system output for t < 0 depends on future inputs. For
example, at time t = −1 the output y(−1) = 0.5(x(−1) − x(1)) depends on a future value of
the input, x(1).

No. The system is not causal.
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(d) More than one signal can have the same odd portion. Thus, this system cannot be invertible.
For example, x1(t) = u(t) and x2(t) = −u(−t) both produce output y(t) = 0.5u(t)− 0.5u(−t);
it is clearly impossible to always uniquely recover an input from its output.

No. The system is not invertible.

(e) Let y1(t) = 0.5(x1(t) − x1(−t)) and y2(t) = 0.5(x2(t) − x2(−t)). Applying ax1(t) + bx2(t) to
the system yields y(t) = 0.5 (ax1(t) + bx2(t)− (ax1(−t) + bx2(−t))) = 0.5a(x1(t)− x1(−t)) +
0.5b(x2(t)− x2(−t)) = ay1(t) + by2(t).

Yes. The system is linear.

(f) By inspection, it is clear that the system output can depend on past or future inputs. For
example, at time t = 1 the output y(1) = 0.5(x(1) − x(−1)) depends on a past value of the
input, x(−1).

No. The system is not memoryless.

(g) We will use a counterexample to prove that the system is not time-invariant. Let the input
be x(t) = t(u(t + 1) − u(t − 1)). Since this input is already odd, the output is just the
input, y(t) = x(t). Shifting by a non-zero τ , x(t − τ) is not odd, and the output is not
y(t− τ) = x(t− τ). That is, shifting the input does not produce a simple shift in the original
output.

No. The system is not time-invariant.

Solution 1.7-11

We construct the table below from the first three rows of data. Let rj denote the jth row.

Row x(t) q1(0) q2(0) y(t)
r1 0 1 −1 e−tu(t)
r2 0 2 1 e−t(3t+ 2)u(t)
r3 u(t) −1 −1 2u(t)
r4 = 1

3 (r1 + r2) 0 1 0 (t+ 1)e−tu(t)
r5 = 1

2 (r1 + r3)
1
2u(t) 0 −1 (12e

−t + 1)u(t)
r6 = (r4 + r5)

1
2u(t) 1 −1 (1.5e−t + te−t + 1)u(t)

r7 = 2(r6 + r1) u(t) 0 0 (e−t + 2te−t + 2)u(t)

In our case, the input x(t) = u(t+5)−u(t− 5). From r7 and the superposition and time-invariance
properties, we have

y(t) = r7(t+ 5)− r7(t− 5)

=
[

e−(t+5) + 2(t+ 5)e−(t+5) + 2
]

u(t+ 5)−
[

e−(t−5) + 2(t− 5)e−(t−5) + 2
]

u(t− 5)

Solution 1.7-12

If the input is kx(t), the new output y(t) is

y(t) = k2x2(t)/

(

k
dx

dt

)

= k[x2(t)/

(
dx

dt

)

]

Hence the homogeneity is satisfied. If the input-output pair is denoted by xi → yi, then

x1 → y1 = (x1)
2/(ẋ1) and x2 → y2 = (x2)

2/(ẋ2)
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But x1 + x2 → (x1 + x2)
2/(ẋ1 + ẋ2) 6= y1 + y2

Solution 1.7-13

From the hint it is clear that when vc(0) = 0, the capacitor may be removed, and the circuit behaves
as shown in Fig. S1.7-13. It is clearly zero-state linear. To show that it is zero-input nonlinear,
consider the circuit with x(t) = 0 (zero-input). The current y(t) has the same direction (shown by
arrow) regardless of the polarity of vc (because the input branch is a short). Thus the system is
zero-input nonlinear.

−

x(t)

+

R2R2R
−

= x(t)

+

RR
−

= x(t)

+

R

Figure S1.7-13

Solution 1.7-14

The solution is trivial. The input is a current source, which has infinite impedance. Hence, as far as
the output y(t) is concerned, the circuit behaves as shown in Fig. S1.7-14. The nonlinear elements
are irrelevant in computing the output y(t), and the output y(t) satisfies the linearity conditions.
Yet, the circuit is nonlinear because it contains nonlinear elements.

−

x(t)

+ 0.1 H

2 Ω

+

y(t)

−

1 F

Figure S1.7-14

Solution 1.7-15

(a) y(t) = x(t− 2). Thus, the output y(t) always starts after the input by 2 seconds. Clearly, the
system is causal.

(b) y(t) = x(−t). The output y(t) is obtained by time inversion of the input. If the input starts
at t = 0, the output starts before t = 0. Hence, the system is not causal.

(c) y(t) = x(at), a > 1. The output y(t) is obtained by time compression of the input by factor
a. If the input starts at some time t > 0, the output will start before the input. Hence, the
system is not causal.

(d) y(t) = x(at), a < 1. The output y(t) is obtained by time expansion of the input by factor
1/a. If the input starts at some time t < 0, the output will start before the input. Hence, the
system is not causal.

Figure S1.7-15 illustrates each case with an example; the input is shown as a dashed line while the
output is shown as a solid line.
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Figure S1.7-15

Solution 1.7-16

(a) Invertible because the input can be obtained by taking the derivative of the output. Hence,
the inverse system equation is y(t) = dx/dt.

(b) Not invertible for even values of n, because the sign information is lost. However, the system
is invertible for odd values of n. The inverse system equation is y(t) = [x(t)]1/n.

(c) Not invertible because differentiation operation irretrievable loses the constant part of x(t).

(d) The system y(t) = x(3t − 6) = x(3[t − 2]) represents an operation of signal compression by
factor 3, and then time delay by 2 seconds. Hence, the input can be obtained from the output
by first advancing the output by 2 seconds, and then time-expanding by factor 3. Hence,
the inverse system equation is y(t) = x( t

3 + 2). Although the system is invertible, it is not
realizable because it involves the operation of signal compression and signal advancing (which
makes it noncausal). However, if we can accept time delay, we can realize a noncausal system.

(e) Not invertible because cosine is a multiple valued function, and cos−1[x(t)] is not unique.

(f) Invertible. x(t) = ln y(t).

Solution 1.7-17

(a) No, Bill is not correct. The x1(3t) term represents a compression rather than the necessary
dilation. One way to construct x2(t) is x2(t) = 2x1(t/3)− x1(t− 1). However, this form is not
unique; x2(t) = 2x1(t) + x1(t− 1) + 2x1(t− 2) also works and may be more useful.

(b) The output y1(t) is given for the input signal x1(t). The expression x2(t) = 2x1(t) + x1(t −
1)+2x1(t− 2) forms x2(t) from a superposition of scaled and shifted copies of x1(t). Since the
system is linear and time invariant, the operations of scaling, summing, and shifting commute
with the system operator. Thus,

y2(t) = 2y1(t) + y1(t− 1) + 2y1(t− 2).

Notice, it is not true that y2(t) = 2y1(t/3) − y1(t − 1); linearity and time-invariance do not
apply with the time-scaling operation. MATLAB is used to plot y2(t).
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>> u = @(t) 1.0*(t>=0); y1 = @(t) t.*(u(t)-u(t-1))+u(t-1);

>> t = [-1:.001: 4]; y2 = @(t) 2*y1(t)+y1(t-1)+2*y1(t-2);

>> plot(t,y2(t),’k-’); xlabel(’t’); ylabel(’y_2(t)’); grid on;

>> set(gca,’xtick’,[0 1 2 3],’ytick’,[0 2 3 5]); axis([-1 4 -.5 5.5]);

0 1 2 3

t

0

2

3

5
y 2

(t
)

Figure S1.7-17

Solution 1.7-18

(a) Figure S1.7-18 plots input x(t) = u(t− 0.5)− u(t− 1.5) and the corresponding output y(t) =
H {x(t)} = 0.5u(t)+0.5u(t− 1)−u(t−2), Since the output starts 0.5 second before the input,

the system cannot be causal.

By delaying the output by T ≥ 0.5, the system can be made causal (at least for this input).

(b) Referring to x(t) and y(t) shown in Fig. S1.7-18, since the output duration exceeds the input
duration,

the system is not memoryless.

(c) To begin, we notice that

y(t) = H {x(t)} = 1
2x(t+

1
2 ) + x(t− 1

2 ).

Now, applying y(t) to the system results in output z(t) as

z(t) = H {y(t)} = H
{
1
2x(t +

1
2 ) + x(t− 1

2 )
}

= 1
2 [

1
2x(t+ 1) + x(t)] + 1

2x(t) + x(t− 1)

= 1
4x(t+ 1) + x(t) + x(t− 1)

Output z(t) is also shown in Fig. S1.7-18
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Figure S1.7-18
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Solution 1.8-1

The loop equation for the circuit is

3y1(t) +Dy1(t) = x(t) or (D + 3)y1(t) = x(t) (1.8-1a)

Also

Dy1(t) = y2(t) =⇒ y1(t) =
1

D
y2(t) (1.8-1b)

Substitution of Eq. (1.8-1b) in Eq. (1.8-1a) yields

(D + 3)

D
y2(t) = x(t) or (D + 3)y2(t) = Dx(t)

Solution 1.8-2

The currents in the resistor, capacitor and inductor are 2y2(t), Dy2(t) and (2/D)y2(t), respectively.
Therefore

(D + 2 +
2

D
)y2(t) = x(t)

or

(D2 + 2D + 2)y2(t) = Dx(t) (1.8-2a)

Also

y1(t) = Dy2(t) or y2(t) =
1

D
y1(t) (1.8-2b)

Substituting of Eq. (1.8-2b) in Eq. (1.8-2a) yields

D2 + 2D + 2

D
y1(t) = Dx(t)

or

(D2 + 2D + 2)y1(t) = D2x(t)

Solution 1.8-3

The freebody diagram for the mass M is shown in Fig. S1.8-3. From this diagram it follows that

Mÿ = B(ẋ − ẏ) +K(x− y)

or

(MD2 +BD +K)y(t) = (BD +K)x(t)

M

B(ẋ− ẏ) K(x− y)

Figure S1.8-3

Solution 1.8-4

The loop equation for the field coil is

(DLf +Rf )if (t) = x(t) (1.8-4a)
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If T (t) is the torque generated, then

T (t) = Kf if(t) = (JD2 +BD)θ(t) (1.8-4b)

Substituting of Eq. (1.8-4a) in Eq. (1.8-4b) yields

Kf

DLf +Rf
x(t) = (JD2 +BD)θ(t)

or
(JD2 +BD)(DLf +Rf )θ(t) = Kfx(t)

Solution 1.8-5

[qi(t)− q0(t)]△t = A△h

or

ḣ(t) =
1

A
[qi(t)− q0(t)] (1.8-5a)

But
q0(t) = Rh(t) (1.8-5b)

Differentiation of Eq. (1.8-5b) yields

q̇0(t) = Rḣ(t) =
R

A
[qi(t)− q0(t)]

and (

D +
R

A

)

q0(t) =
R

A
qi(t)

or

(D + a)q0(t) = aqi(t) a =
R

A

and
q0(t) =

a

D + a
qi(t)

Substituting this in Eq. (1.8-5a) yields

ḣ(t) =
1

A

(

1− a

D + a

)

qi(t) =
D

A(D + a)
qi(t)

or (

D +
R

A

)

h(t) =
1

A
qi(t)

Solution 1.8-6

(a) The order of the system is zero; there are no energy storage components such as capacitors or
inductors.

(b) Using KVL on the left loop yields x(t) = R1y1(t) + R2(y1(t) − y2(t)) = 3y1(t)− 2y2(t). KVL
on the middle loop yields 0 = R2(y2(t) − y1(t)) + R3y2(t) + R4(y2(t) − y3(t)) = −2y1(t) +
9y2(t) − 4y3(t). Finally, KVL on the right loop yields R4(y3(t) − y2(t)) + (R5 + R6)y3(t) =
−4y2(t) + 15y3(t). Combining together yields





3 −2 0
−2 9 −4
0 −4 15









y1(t)
y2(t)
y3(t)



 =





x(t)
0
0



 .
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(c) Cramer’s rule suggests

y3(t) =

∣
∣
∣
∣
∣
∣

3 −2 x(t)
−2 9 0
0 −4 0

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

3 −2 0
−2 9 −4
0 −4 15

∣
∣
∣
∣
∣
∣

.

MATLAB computes the denominator determinant.

>> det([3 -2 0;-2 9 -4;0 -4 15])

ans = 297

The numerator determinant is easy computed by hand as 0 + 0 + 8x(t) = 8x(t). Thus,

y3(t) =
8

297
x(t) =

8

297
(2− | cos(t)|) u(t− 1).

Solution 1.10-1

From Fig. P1.8-2 we obtain
x(t) = q1/2 + q̇1 + q2

Moreover, the capacitor voltage q1(t) equals the voltage across the inductor, which is 1
2 q̇2. Hence,

the state equations are
q̇1 = −q1/2− q2 − x and q̇2 = 2q1

Solution 1.10-2

The capacitor current Cq̇3 = 1
2 q̇3 is q1 − q2. Therefore,

q̇3 = 2q1 − 2q2 (1.10-2a)

The two loop equations are

2q1 + q̇1 + q3 = x =⇒ q̇1 = −2q1 − q3 + x (1.10-2b)

and

−q3 +
1

3
q̇2 + q2 = 0 =⇒ q̇2 = −3q2 + 3q3 (1.10-2c)

Equations Eq. (1.10-2a), Eq. (1.10-2b) and Eq. (1.10-2c) are the state equations.
Next, we express the current and voltage of every element in terms of the state variables:

Element Current [amps] Voltage [volts]
1 H inductor q1 q̇1 = x(t) − 2q1 − q3
1
3 H inductor q2

1
3 q̇2 = −q2 + q3

1
2 F capacitor q1 − q2 q3
1 Ω resistor q2 q2

At the instant t, q1 = 5, q2 = 1, q3 = 2 and x = 10. Substituting these values in the above
results yields

Element Current [amps] Voltage [volts]
1 H inductor 5 −2
1
3 H inductor 1 1
1
2 F capacitor 4 2
1 Ω resistor 1 1
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Solution 1.11-1

We need to use MATLAB to plot the odd portion xo(t) of the function x(t) = 2−t cos(2πt)u(t− π).
To begin, we note that x(t) starts at t = π. Since 2−t decays to less than 1/100 its original strength
in 7 seconds, plotting x(t) to t = 10 is sufficient. Since xo(t) includes x(t) and its reflection, a
suitable time range for our plot is −10 ≤ t ≤ 10. Since cos(2πt) oscillates one cycle per second, a
plot density of 20 points per second is sufficient for a reasonable-quality plot.

>> u = @(t) 1.0*(t>=0); t = -10:1/20:10;

>> x = @(t) 2.^(-t).*cos(2*pi*t).*u(t-pi); xo = @(t) (x(t)-x(-t))/2;

>> plot(t,xo(t),’k-’); xlabel(’t’); ylabel(’x_o(t)’); grid on;

>> axis([-10 10 -1/20 1/20]); set(gca,’xtick’,[-10 -pi 0 pi 10]);

-10 -3.1416 0 3.1416 10

t

-0.05

0

0.05

x o
(t

)

Figure S1.11-1

Solution 1.11-2

We need to use MATLAB to plot the even portion xe(t) of the function x(t) = 2−t/2 cos(4πt)u(t−0.5)
over a suitable t using ∆t = 0.002 seconds between points. To begin, we note that x(t) starts at
t = 0.5. Since 2−t/2 decays to less than 1/100 its original strength in about 14 seconds, plotting
x(t) to t = 14 is sufficient. Since xe(t) includes x(t) and its reflection, a suitable time range for our
plot is −14 ≤ t ≤ 14.

>> u = @(t) 1.0*(t>=0); t = -14:0.002:14;

>> x = @(t) 2.^(-t/2).*cos(4*pi*t).*u(t-0.5); xe = @(t) (x(t)+x(-t))/2;

>> plot(t,xe(t),’k-’); xlabel(’t’); ylabel(’x_e(t)’); grid on;

>> axis([-14 14 -0.5 0.5]); set(gca,’xtick’,[-14 -7 -0.5 0.5 7 14]);

-14 -7 -0.50.5 7 14

t

-0.5

0

0.5

x e
(t

)

Figure S1.11-2

Solution 1.11-3

In this problem, we define x(t) = et(1+j2π)u(−t) and y(t) = Re
{
2x
(−5−t

2

)}
.

(a) Here, we use MATLAB to plot Re {x(t)} versus Im {x(at)} for a = 0.5, 1, and 2 and −10 ≤
t ≤ 10.
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>> u = @(t) 1.0*(t>=0); t = -10:.001:10;

>> x = @(t) exp(t*(1+2j*pi)).*u(-t);

>> subplot(131); plot(real(x(t)),imag(x(0.5*t)),’k-’); grid on

>> xlabel(’Re(x(t))’); ylabel(’Im(x(0.5t))’); axis([-1 1 -1 1]);

>> subplot(132); plot(real(x(t)),imag(x(t)),’k-’); grid on

>> xlabel(’Re(x(t))’); ylabel(’Im(x(t))’); axis([-1 1 -1 1]);

>> subplot(133); plot(real(x(t)),imag(x(2*t)),’k-’); grid on

>> xlabel(’Re(x(t))’); ylabel(’Im(x(2t))’); axis([-1 1 -1 1]);

As shown by the results in Fig. S1.11-3a, the parameter a greatly impacts the overall waveform
shapes.
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Figure S1.11-3a

(b) Because of the u(−t) term, we know that x(t) has a jump discontinuity at t = 0. Since y(t)
depends on x

(−5−t
2

)
, y(t) has a jump discontinuity at −5−t0

2 = 0 or t0 = −5. We readily
verify this calculation when we plot y(t) using MATLAB, the result of which is shown in
Fig. S1.11-3b.

>> u = @(t) 1.0*(t>=0); t = -10:.001:10;

>> x = @(t) exp(t*(1+2j*pi)).*u(-t); y = @(t) real(2*x((-5-t)/2));

>> plot(t,y(t),’k-’); axis([-10 10 -2.1 2.1]);

>> grid on; xlabel(’t’); ylabel(’y(t)’);

>> set(gca,’xtick’,-10:5:10,’ytick’,[-2:.5:2]);

As shown by the results in Fig. S1.11-3a, the parameter a greatly impacts the overall waveform
shapes.
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Figure S1.11-3b

(c) To determine the energy of x(t), we use the quad function over a suitable range of time.
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>> u = @(t) 1.0*(t>=0); x = @(t) exp(t*(1+2j*pi)).*u(-t);

>> x2 = @(t) x(t).*conj(x(t)); Ex = quad(x2,-100,0)

Ex = 0.5000

Thus, we see that

Ex =
1

2

(d) To determine the energy of y(t), we use the quad function over a suitable range of time.

>> u = @(t) 1.0*(t>=0); x = @(t) exp(t*(1+2j*pi)).*u(-t);

>> y = @(t) real(2*x((-5-t)/2)); y2 = @(t) y(t).*conj(y(t));

>> Ey = quad(y2,-5,100)

Ey = 2.0494

Thus, we see that
Ey = 2.0494

Solution 1.11-4

Noting that u( t2 + 1) = u(t+ 2) and that δ(t/2) = 2δ(t), we rewrite x(t) as

x(t) = u(t+ 2)− u(t− 1)− 2δ(t).

Signal x(t) is shown in Fig. S1.11-4.

(a) Due to the piecewise nature of x(t), y(t) =
∫ t−3

−∞ x(τ) dτ is also a piecewise function.

y(t) =







0 t− 3 < −2 or t < 1
∫ t−3

−2 1 dτ = t− 1 1 ≤ t < 3

0 t = 3
∫ t−3

0
1 dτ = t− 3 3 ≤ t < 4

1 t ≥ 4

More compactly, we see that

y(t) = (t− 1)(u(t− 1)− u(t− 4))− 2u(t− 3) + 3u(t− 4)

This same result, shown in Fig. S1.11-4, can be obtained by graphically integrating (left to
right) and then shifting x(t).

(b) Due to the piecewise nature of x(t), z(t) =
∫∞
t

x(τ) dτ is also a piecewise function.

z(t) =







0 t > 1
∫ 1

t
1 dτ = 1− t 0 < t ≤ 1

−1 t = 0

−1 +
∫ 0

t 1 dτ = −1− t −2 < t < 0
1 t ≤ −2

More compactly, we see that

z(t) = (1− t)(u(−t+ 1)− u(−t− 2))− 2u(−t) + 3u(−t− 2)

This result, shown in Fig. S1.11-4, can also be obtained by graphically integrating (right to
left) x(t).

(c) To obtain w(t) = d
dt (y(t) + z(t)), we differentiate and then add the results from parts (a) and

(b). Signal w(t), shown in Fig. S1.11-4, is thus

w(t) = −u(t+ 2) + 2u(t− 1)− u(t− 4) + 2δ(t)− 2δ(t− 3)
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Chapter 2 Solutions

Solution 2.2-1

(a) Here, the characteristic equation is λ2 + 2λ+ 5 = 0. Solving, we obtain

λ =
−2±

√
4− 20

2
= −1± 2j.

Let us designate λ1 = −1− 2j and λ2 = λ∗
1 = −1 + 2j.

From the initial conditions, we see that

yzir(0) = 2 = c1 + c2 and ẏzir(0) = 0 = c1λ1 + c2λ2.

Using the second equation, we see that c1 = −c2λ2/λ1. Substituting this result into the first
equation yields

c2

(
λ1 − λ2

λ1

)

= c2
−4j

−1− 2j
= 2 ⇒ c2 =

−2− 4j

−4j
= 1− j

2
.

Since the system is real, we know c1 = c∗2. Putting everything together, we obtain

c1 = 1 + j
2 , c2 = 1− j

2 , λ1 = −1− 2j, and λ2 = −1 + 2j.

(b) The characteristic equation is again λ2 + 2λ + 5 = 0. From part (a), we thus know that
λ1 = −1− 2j and λ2 = λ∗

1 = −1 + 2j.

From the initial conditions, we see that

yzir(0) = 4 = c1 + c2 and ẏzir(0) = −1 = c1λ1 + c2λ2.

The unknown coefficients are solved with MATLAB

>> c = inv([1 1;-1-2j -1+2j])*[4;-1]

c = 2.0000 + 0.7500i

2.0000 - 0.7500i

Putting everything together, we obtain

c1 = 2 + 3j
4 , c2 = 2− 3j

4 , λ1 = −1− 2j, and λ2 = −1 + 2j.

(c) Here, the characteristic equation is λ(λ + 2) = 0. Thus,

λ1 = 0 and λ2 = −2.

From the initial conditions, we see that

yzir(0) = 1 = c1 + c2 and ẏzir(0) = 2 = −2c2.

96
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Using the second equation, we see that c2 = −1. Substituting this result into the first equation
yields c1 = 2. Putting everything together, we obtain

c1 = 2, c2 = −1, λ1 = 0, and λ2 = −2.

(d) In this case, the characteristic equation is λ2 + 2λ+ 10 = 0. Solving, we obtain

λ =
−2±

√
4− 40

2
= −1± 3j

Let us designate λ1 = −1 + 3j and λ2 = λ∗
1 = −1− 3j.

From the initial conditions, we see that

yzir(0) = 1 = c1 + c2 and ẏzir(0) = 1 = c1λ1 + c2λ2

The unknown coefficients are solved with MATLAB

>> c = inv([1 1;-1+3j -1-3j])*[1;1]

c = 0.5000 - 0.3333i

0.5000 + 0.3333i

Putting everything together, we obtain

c1 = 1
2 − j

3 , c2 = 1
2 + j

3 , λ1 = −1 + 3j, and λ2 = −1− 3j.

(e) By inspection, the characteristic equation is (λ+3)(λ+ 1
2 ) = 0. Thus, λ1 = − 1

2 and λ2 = −3.

From the initial conditions, we see that

yzir(0) = 3 = c1 + c2 and ÿzir(0) = −8 = c1λ
2
1 + c2λ

2
2.

The unknown coefficients are solved with MATLAB

>> c = inv([1 1;1/4 9])*[3;-8]

c = 4.0000

-1.0000

Putting everything together, we obtain

c1 = 4, c2 = −1, λ1 = − 1
2 , and λ2 = −3.

(f) In this case, the characteristic equation is λ2 + 4λ+ 13 = 0. Solving, we obtain

λ =
−4±

√

16− 4(13)

2
= −2± 3j.

Let us designate λ1 = −2 + 3j and λ2 = λ∗
1 = −2− 3j.

From the initial conditions, we see that

yzir(0) = 3 = c1 + c2 and ÿzir(0) = −15 = c1λ
2
1 + c2λ

2
2.

The unknown coefficients are solved with MATLAB

>> c = inv([1 1;(-2+3j)^2 (-2-3j)^2])*[3;-15]

c = 1.5000 - 0.0000i

1.5000 - 0.0000i
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Putting everything together, we obtain

c1 = c2 = 3
2 , λ1 = −2 + 3j, and λ2 = −2− 3j.

In this case, notice that the zero-input response simplifies to yzir(t) = 3e−2t cos(3t).

Solution 2.2-2

(a) Since the highest-order derivative acting on the output is three,

the system order is 3.

(b) The characteristic equation is (λ+1)(λ2−1) = (λ+1)(λ+1)(λ−1) = 0. Thus, the characteristic
roots are

λ1 = −1, λ2 = −1, and λ3 = 1.

(c) The zero-input response and its first two derivatives are:

yzir(t) = c1e
−t + c2te

−t + c3e
t

y′zir(t) = −c1e
−t + c2[−te−t + e−t] + c3e

t

y′′zir(t) = c1e
−t + c2[te

−t − 2e−t] + c3e
t

From the initial conditions, we see that:

yzir(0) = 1 = c1 + c3

y′zir(0) = 1 = −c1 + c2 + c3

y′′zir(0) = 1 = c1 − 2c2 + c3

The unknown coefficients are solved with MATLAB.

>> c = inv([1 0 1;-1 1 1;1 -2 1])*[1;1;1]

c = 0

0

1

Somewhat surprisingly for a third-order system, the zero-input response is comprised of a
single mode:

yzir(t) = et

Solution 2.2-3

(a) From the differential equation, the characteristic equation is

λ3 + 9λ = λ(λ2 + 9) = 0.

Clearly, the characteristic roots are λ1 = 0, λ2 = 3j, and λ3 = −3j.

(b) By inspection,

the three characterstic modes are e0t = 1, ej3t, and e−j3t.
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(c) The form of the zero-input response is

yzir(t) = c1 + c2e
j3t + c3e

−j3t.

From the initial conditions, we see that:

yzir(0) = 4 = c1 + c2 + c3

y′zir(0) = −18 = 3jc2 − 3jc3

y′′zir(0) = 0 = −9c2 − 9c3

The unknown coefficients are solved with MATLAB.

>> c = inv([1 1 1;0 3j -3j;0 -9 -9])*[4;-18;0]

c = 4.0000 + 0.0000i

0.0000 + 3.0000i

0.0000 - 3.0000i

Thus,
yzir(t) = 4 + 3jej3t − 3je−j3t = 4− 6 sin(3t).

Solution 2.2-4

The characteristic polynomial is λ2 + 5λ+ 6. The characteristic equation is λ2 + 5λ+ 6 = 0. Also
λ2 + 5λ + 6 = (λ + 2)(λ + 3). Therefore the characteristic roots are λ1 = −2 and λ2 = −3. The
characteristic modes are e−2t and e−3t. Therefore,

y0(t) = c1e
−2t + c2e

−3t

and
ẏ0(t) = −2c1e

−2t − 3c2e
−3t.

Setting t = 0, and substituting initial conditions y0(0) = 2, ẏ0(0) = −1 in this equation yields

c1 + c2 = 2
−2c1 − 3c2 = −1

}

=⇒ c1 = 5
c2 = −3

.

Therefore,
y0(t) = 5e−2t − 3e−3t.

Solution 2.2-5

The characteristic polynomial is λ2 + 4λ+ 4. The characteristic equation is λ2 + 4λ+ 4 = 0. Also
λ2 + 4λ + 4 = (λ + 2)2, so that the characteristic roots are −2 and −2 (repeated twice). The
characteristic modes are e−2t and te−2t. Therefore

y0(t) = c1e
−2t + c2te

−2t

and
ẏ0(t) = −2c1e

−2t − 2c2te
−2t + c2e

−2t.

Setting t = 0 and substituting initial conditions yields

3 = c1
−4 = −2c1 + c2

}

=⇒ c1 = 3
c2 = 2

.

Therefore,
y0(t) = (3 + 2t)e−2t.
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Solution 2.2-6

The characteristic polynomial is λ(λ + 1) = λ2 + λ. The characteristic equation is λ(λ + 1) = 0.
The characteristic roots are 0 and −1. The characteristic modes are 1 and e−t. Therefore,

y0(t) = c1 + c2e
−t

and
ẏ0(t) = −c2e

−t.

Setting t = 0, and substituting initial conditions yields

1 = c1 + c2
1 = −c2

}

=⇒ c1 = 2
c2 = −1

.

Therefore,
y0(t) = 2− e−t.

Solution 2.2-7

The characteristic polynomial is λ2 + 9. The characteristic equation is λ2 + 9 = 0 or
(λ + j3)(λ − j3) = 0. The characteristic roots are ±j3. The characteristic modes are ej3t

and e−j3t. Therefore,
y0(t) = c cos(3t+ θ)

and
ẏ0(t) = −3c sin(3t+ θ).

Setting t = 0, and substituting initial conditions yields

0 = c cos θ
6 = −3c sin θ

}

=⇒ c cos θ = 0
c sin θ = −2

}

=⇒ c = 2
θ = −π/2

.

Therefore,

y0(t) = 2 cos(3t− π

2
) = 2 sin 3t.

Solution 2.2-8

The characteristic polynomial is λ2 + 4λ + 13. The characteristic equation is λ2 + 4λ + 13 = 0 or
(λ + 2 − j3)(λ + 2 + j3) = 0. The characteristic roots are −2 ± j3. The characteristic modes are
c1e

(−2+j3)t and c2e
(−2−j3)t. Therefore,

y0(t) = ce−2t cos(3t+ θ)

and
ẏ0(t) = −2ce−2t cos(3t+ θ)− 3ce−2t sin(3t+ θ).

Setting t = 0, and substituting initial conditions yields

5 = c cos θ
15.98 = −2c cos θ − 3c sin θ

}

=⇒ c cos θ = 5
c sin θ = −8.66

}

=⇒ c = 10
θ = −π/3

.

Therefore,

y0(t) = 10e−2t cos(3t− π

3
).

Solution 2.2-9

The characteristic polynomial is λ2(λ+ 1) or λ3 + λ2. The characteristic equation is λ2(λ+ 1) = 0.
The characteristic roots are 0, 0 and −1 (0 is repeated twice). Therefore,

y0(t) = c1 + c2t+ c3e
−t.
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Further,
ẏ0(t) = c2 − c3e

−t

and
ÿ0(t) = c3e

−t.

Setting t = 0, and substituting initial conditions yields

4 = c1 + c3
3 = c2 − c3
−1 = c3






=⇒

c1 = 5
c2 = 2
c3 = −1

.

Therefore,
y0(t) = 5 + 2t− e−t.

Solution 2.2-10

The characteristic polynomial is (λ + 1)(λ2 + 5λ + 6). The characteristic equation is
(λ + 1)(λ2 + 5λ + 6) = 0 or (λ + 1)(λ + 2)(λ + 3) = 0. The characteristic roots are −1, −2
and −3. The characteristic modes are e−t, e−2t and e−3t. Therefore,

y0(t) = c1e
−t + c2e

−2t + c3e
−3t.

Further,
ẏ0(t) = −c1e

−t − 2c2e
−2t − 3c3e

−3t

and
ÿ0(t) = c1e

−t + 4c2e
−2t + 9c3e

−3t.

Setting t = 0, and substituting initial conditions yields

2 = c1 + c2 + c3
−1 = −c1 − 2c2 − 3c3
5 = c1 + 4c2 + 9c3






=⇒

c1 = 6
c2 = −7
c3 = 3

.

Therefore,
y0(t) = 6e−t − 7e−2t + 3e−3t.

Solution 2.2-11

The zero-input response for a LTIC system is given as y0(t) = 2e−t+3. Since two modes are visible,
the system must have, at least, the characteristic roots λ1 = 0 and λ2 = −1.

(a) No, it is not possible for the system’s characteristic equation to be λ+1 = 0 since the required
mode at λ = 0 is missing.

(b) Yes, it is possible for the system’s characteristic equation to be
√
3(λ2 + λ) = 0 since this

equation has the two required roots λ1 = 0 and λ2 = −1.

(c) Yes, it is possible for the system’s characteristic equation to be λ(λ + 1)2 = 0. This equation
supports a general zero-input response of y0(t) = c1+c2e

−t+c3te
−t. By letting c1 = 3, c2 = 2,

and c3 = 0, the observed zero-input response is possible.

Solution 2.2-12

(a) We know that ic(t) = Cv̇c(t). Using Kirchoff’s current law, we see that

x(t)− vc(t)

R
+

y(t)− 0

Rf
= 0 ⇒ vc(t) =

R

Rf
y(t) + x(t).
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Also,

ic(t) = −y(t)

Rf
= Cv̇c(t) = C

(
R

Rf
ẏ(t) + ẋ(t)

)

.

Thus,
RC

Rf
ẏ(t) +

1

Rf
y(t) = −Cẋ(t)

or

ẏ(t) +
1

RC
y(t) = −Rf

R
ẋ(t).

Therefore,
a1 = 1

RC , b0 = −Rf

R , and b1 = 0.

(b) Since R = 300 kΩ, Rf = 1.2 MΩ, and C = 5 µF, we see that

ẏ(t) +
2

3
y(t) = −4ẋ(t).

The characteristic equation is λ+ 2
3 = 0, the characteristic root is λ = − 2

3 , and the zero-input

response is y0(t) = c1e
−2t/3.

We shall use y0(0) to determine the coefficient c1. Since the zero-input response requires
x(t) = 0, we see that

ic(t) =
0− vc(t)

R
=

0− y0(t)

Rf
⇒ y0(t) =

Rf

R
vc(t).

Thus,

y0(0) =
Rf

R
vc(0) = 4.

From this initial condition, we see that c1 = 4 and the zero-input response is

y0(t) = 4e−2t/3.

Solution 2.3-1

(a) By inspection, the characteristic equation is λ2 + 1 = 0, the characteristic roots are ±j, and
the characteristic modes are ejt and e−jt. Since b0 = 0, the impulse response takes the form

h(t) = [P (D)yn(t)]u(t) =
[
2D
(
c1e

jt + c2e
−jt
)]

u(t).

Using Eq. (2.18), we see that

yn(0) = 0 = c1 + c2 and ẏn(0) = 1 = jc1 − jc2.

Next, we use MATLAB to solve for c1 and c2.

>> c = inv([1 1;1j -1j])*[0;1]

c = 0.0000 - 0.5000i

0.0000 + 0.5000i

Thus,
c1 = 1

2j and c2 = − 1
2j

and

h(t) =

[

2D

(
ejt

2j
− e−jt

2j

)]

u(t) = [2D (sin(t))]u(t).

Simplifying, we obtain
h(t) = 2 cos(t)u(t).
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(b) By inspection, the characteristic equation is λ3 + λ = 0, the characteristic roots are 0, j, and
−j, and the characteristic modes are e0t = 1, ejt and e−jt. Since b0 = 2, the impulse response
takes the form

h(t) = 2δ(t) + [P (D)yn(t)] u(t) = 2δ(t) +
[
(2D3 + 1)

(
c1 + c2e

jt + c3e
−jt
)]

u(t).

Using Eq. (2.18), we see that

yn(0) = 0 = c1 + c2 + c3

ẏn(0) = 0 = jc2 − jc3

ÿn(0) = 1 = −c2 − c3

Next, we use MATLAB to solve for c1, c2, and c3.

>> c = inv([1 1 1;0 1j -1j;0 -1 -1])*[0;0;1]

c = 1.0000

-0.5000

-0.5000

Thus,
c1 = 1, c2 = − 1

2 and c3 = − 1
2

and

h(t) = 2δ(t) +

[

(2D3 + 1)

(

1− ejt

2
− e−jt

2

)]

u(t) = 2δ(t) +
[
(2D3 + 1) (1− cos(t))

]
u(t).

Simplifying, we obtain

h(t) = 2δ(t) + [−2 sin(t) + 1− cos(t)] u(t).

(c) In this case, the characteristic equation is

λ2 + 2λ+ 5 = 0.

We determine the characterstic roots using MATLAB. Next, we use MATLAB to solve for c1
and c2.

>> lambda = roots([1 2 5])

lambda = -1.0000 + 2.0000i

-1.0000 - 2.0000i

Thus, the characterstic modes are

e(−1+j2)t and e(−1−j2)t.

Since b0 = 0, the impulse response takes the form

h(t) = [P (D)yn(t)]u(t) =
[

8
(

c1e
(−1+j2)t + c2e

(−1−j2)t
)]

u(t).

Using Eq. (2.18), we see that

yn(0) = 0 = c1 + c2 and ẏn(0) = 1 = (−1 + j2)c1 + (−1− j2)c2.

Next, we use MATLAB to solve for c1 and c2.
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>> c = inv([1 1;-1+2j -1-2j])*[0;1]

c = -0.0000 - 0.2500i

0.0000 + 0.2500i

Thus,

c1 = 1
4j and c2 = − 1

4j

and

h(t) = 8

(
1

4j
e(−1+j2)t − 1

4j
e(−1−j2)t

)

u(t).

Simplifying, we obtain

h(t) = 4e−t sin(2t)u(t).

Solution 2.3-2

The characteristic equation is λ2 + 4λ + 3 = (λ + 1)(λ + 3) = 0. The characteristic modes are e−t

and e−3t. Therefore,

yn(t) = c1e
−t + c2e

−3t

ẏn(t) = −c1e
−t − 3c2e

−3t

Setting t = 0, and substituting y(0) = 0, ẏ(0) = 1, we obtain

0 = c1 + c2
1 = −c1 − 3c2

}

=⇒ c1 = 1
2

c2 = − 1
2

.

Therefore,

yn(t) =
1

2
(e−t − e−3t)

and

h(t) = [P (D)yn(t)]u(t) = [(D + 5)yn(t)]u(t) = [ẏn(t) + 5yn(t)]u(t).

Simplifying, we see that

h(t) = (2e−t − e−3t)u(t).

Solution 2.3-3

The characteristic equation is λ2 + 5λ+ 6 = (λ + 2)(λ+ 3) = 0. Thus,

yn(t) = c1e
−2t + c2e

−3t

ẏn(t) = −2c1e
−2t − 3c2e

−3t

Setting t = 0, and substituting y(0) = 0, ẏ(0) = 1, we obtain

0 = c1 + c2
1 = −2c1 − 3c2

}

=⇒ c1 = 1
c2 = −1

.

Therefore,

yn(t) = e−2t − e−3t

and

[P (D)yn(t)]u(t) = [ÿn(t) + 7ẏn(t) + 11yn(t)]u(t) = (e−2t + e−3t)u(t).

Hence

h(t) = bnδ(t) + [P (D)yn(t)]u(t) = δ(t) + (e−2t + e−3t)u(t).
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Solution 2.3-4

The characteristic equation is λ+ 1 = 0, and

yn(t) = ce−t.

In this case, the initial condition is yn−1
n (0) = yn(0) = 1. Setting t = 0 and using yn(0) = 1, we

obtain c = 1. Further,

yn(t) = e−t and P (D)yn(t) = [−ẏn(t) + yn(t)]u(t) = 2e−tu(t).

Hence,
h(t) = bnδ(t) + [P (D)yn(t)]u(t) = −δ(t) + 2e−tu(t).

Solution 2.3-5

The characteristic equation is λ2 + 6λ+ 9 = (λ + 3)2 = 0. Therefore,

yn(t) = (c1 + c2t)e
−3t

ẏn(t) = [−3(c1 + c2t) + c2]e
−3t

Using yn(0) = 0 and ẏn(0) = 1, we obtain

0 = c1
1 = −3c1 + c2

}

=⇒ c1 = 0
c2 = 1

.

Consequently,
yn(t) = te−3t

and
h(t) = [P (D)yn(t)]u(t) = [2ẏn(t) + 9yn(t)]u(t) = (2 + 3t)e−3tu(t).

Solution 2.3-6

From the solution to Prob. 2.2-12, the differential equation that describes the op-amp circuit of
Fig. P2.2-12 is

ẏ(t) +
2

3
y(t) = −4ẋ(t).

The characteristic equation is λ + 2
3 = 0, the characteristic root is λ = − 2

3 , and yn(t) = c1e
−2t/3.

Letting t = 0 and using yn(0) = 1, we see that c1 = 1.
From Eq. (2.17), we know that

h(t) = b0δ(t) + [P (D)yn(t)]u(t) = −4δ(t) +
[

(−4D)
(

e−2t/3
)]

u(t).

Simplifying, we obtain

h(t) = −4δ(t) +
8

3
e−2t/3u(t).

Solution 2.3-7

(a) Differentiating the integral equation three times yields

(D3 + 3D2 + 2D)y(t) = (D − 1)x(t).

(b) The characteristic equation is

λ3 + 3λ2 + 2λ = λ(λ + 1)(λ+ 2) = 0.

The characteristic roots are clearly 0, −1, and −2. Thus,

the characteristic modes are e0t = 1, e−t, and e−2t.
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(c) Since b0 = 0, the impulse response takes the form

h(t) = [P (D)yn(t)]u(t) =
[
(D − 1)

(
c1 + c2e

−t + c3e
−2t
)]

u(t).

Using Eq. (2.18),

yn(0) = 0 = c1 + c2 + c3

ẏn(0) = 0 = 0− c2 − 2c3

ÿn(0) = 1 = 0 + c2 + 4c3

Next, we use MATLAB to solve for c1, c2, and c3.

>> c = inv([1 1 1;0 -1 -2;0 1 4])*[0;0;1]

c = 0.5000

-1.0000

0.5000

Thus,

h(t) =

[

(D − 1)

(
1

2
− e−t +

1

2
e−2t

)]

u(t).

Simplifying, we obtain

h(t) =

[

−1

2
+ 2e−t − 3

2
e−2t

]

u(t).

Solution 2.4-1

(a) The plots of h1(τ) and h2(t− τ) are shown in Fig. S2.4-1.

0 1 3

τ

-1

0h
1
(τ

)

(τ-3)/2

t+1 t+2

τ

0

1

2

h
2
(t

-τ
)

Figure S2.4-1

(b) There are five regions (R1 to R5) for this convolution.

R1: t < −1 f(t) =
∫ 3

1
2
(
τ−3
2

)
dτ

R2: −1 ≤ t < 0 f(t) =
∫ t+2

1
τ−3
2 dτ +

∫ 3

t+2
2
(
τ−3
2

)
dτ

R3: 0 ≤ t < 1 f(t) =
∫ t+2

t+1
τ−3
2 dτ +

∫ 3

t+2 2
(
τ−3
2

)
dτ

R4: 1 ≤ t < 2 f(t) =
∫ 3

t+1
τ−3
2 dτ

R5: t ≥ 2 f(t) =
∫
0 dτ = 0

(c) We use R4 to find f(1).

f(1) =

∫ 3

2

τ − 3

2
dτ =

τ2

4
− 3τ

2

∣
∣
∣
∣

3

τ=2

=
9

4
− 9

2
−
(
4

4
− 3

)

= −1

4
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Solution 2.4-2

To help visualize this problem, plots of x(τ) and h(t− τ) are shown in Fig. S2.4-2.

(a) The last time tlast that y(t) is nonzero occurs when the left edge of h(t − τ), which occurs at
τ = t− 1, reaches the right edge of x(τ), which occurs at τ = 3π/2. Thus,

tlast − 1 =
3π

2
⇒ tlast =

3π + 2

2
≈ 5.71.

(b) The signal y(t) will be a maximum (approximately) when x(τ) (a negative pulse) is centered
on the negative pulse of h(t− τ). That is,

tmax ≈ π.

0 π/2 3π/2

τ

-1

0x(
τ)

t-1 t+1 t+3

τ

-1

0

1

h(
t-
τ)

Figure S2.4-2

Solution 2.4-3

To help visualize this problem, plots of x(τ) and h(t− τ) are shown in Fig. S2.4-3. The signal y(t)
will be a minimum (approximately) when x(τ) (a positive pulse with center at τ = − 3π

2 ) is aligned
with the negative pulse of h(t− τ), which is centered at τ = t+ 1

2 . That is,

tmin +
1

2
≈ −3π

2
⇒ tmin ≈ −3π + 1

2
≈ −5.21.

-2π -π 0

τ

0

1

x(
τ)

t-2.5 t-1 t+2

τ

-1

0

2

h(
t-
τ)

Figure S2.4-3

Solution 2.4-4

To help visualize this problem, plots of h(τ) and x(t − τ) are shown in Fig. S2.4-4. There are five
regions (R1 to R5) for this convolution.

R1: t < 1 y(t) =
∫∞
−∞ 0 dτ = 0

R2: 1 ≤ t < 2 y(t) =
∫ t+1

2 3 dτ = 3τ |t+1
τ=2 = 3(t+ 1− 2) = 3t− 3

R3: 2 ≤ t < 4 y(t) =
∫ t+1

t
3 dτ = 3τ |t+1

τ=t = 3(t+ 1− t) = 3

R4: 4 ≤ t < 6 y(t) =
∫ t+1

t
3 dτ −

∫ t−2

2
3
2 dτ = 3−

(
3
2τ
∣
∣
t−2

τ=2

)

= 9− 3
2 t

R5: t ≥ 6 y(t) =
∫ t+1

t
3 dτ −

∫ t−2

t−4
3
2 dτ = 3− 3 = 0
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Thus,

y(t) =







3t− 3 1 ≤ t < 2
3 2 ≤ t < 4

9− 3
2 t 4 ≤ t < 6

0 otherwise

.

A plot of y(t) is found in Fig. S2.4-4.

0 2

τ

0

3

h(
τ)

t-4 t-2 t t+1

τ

-0.5

0

1

x(
t-
τ)

1 2 4 6

t

0

3

y(
t)

Figure S2.4-4

Solution 2.4-5

(a) Written in a more conventional way, we see that

h(t) =

{
2t− t2 0 ≤ t ≤ 2

0 otherwise
.

Since h(t) = 0 for all t < 0,
yes, the system is causal.

(b) Figure S2.4-5 plots h(τ) and x(t− τ). There are three regions (R1 to R3) for this convolution.

R1: t < 0 yzsr(t) =
∫∞
−∞ 0 dτ = 0

R2: 0 ≤ t < 2 yzsr(t) =
∫ t

0
(2τ − τ2) dτ = τ2 − τ3

3

∣
∣
∣

t

τ=0
= t2 − t3

3

R3: t ≥ 2 yzsr(t) =
∫ 2

0 (2τ − τ2) dτ = τ2 − τ3

3

∣
∣
∣

2

τ=0
= 4− 8

3 = 4
3

Thus,

yzsr(t) =







0 t < 0

t2 − t3

3 0 ≤ t < 2
4
3 t ≥ 2

.

A plot of yzsr(t) is also found in Fig. S2.4-5.
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Figure S2.4-5

Solution 2.4-6

(a) Written in a more conventional way, we see that

h(t) =

{
(t+ 1)2 −2 ≤ t ≤ 0

0 otherwise
.

Since h(t) 6= 0 for all t < 0,
no, the system is not causal.

(b) Figure S2.4-6 plots h(τ) and x(t− τ). There are three regions (R1 to R3) for this convolution.

R1: t < −2 yzsr(t) =
∫∞
−∞ 0 dτ = 0

R2: −2 ≤ t < 0 yzsr(t) =
∫ t

−2(τ
2 + 2τ + 1) dτ = τ3

3 + τ2 + τ
∣
∣
∣

t

τ=−2
= t3

3 + t2 + t+ 2
3

R3: t ≥ 0 yzsr(t) =
∫ 0

−2
(τ2 + 2τ + 1) dτ = τ3

3 + τ2 + τ
∣
∣
∣

0

τ=−2
= 2

3

Thus,

yzsr(t) =







0 t < −2
t3

3 + t2 + t+ 2
3 −2 ≤ t < 0

2
3 t ≥ 0

.

A plot of yzsr(t) is also found in Fig. S2.4-6.
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-2 0

τ

0

1
h(
τ)

t

τ

0

1

x(
t-
τ)

-2 -1 0

t

0

1/3

2/3

y zs
r(t

)

Figure S2.4-6

Solution 2.4-7

Figure S2.4-7 plots h(τ) and x(t− τ). There are five regions (R1 to R5) for this convolution.

R1: t < 2 yzsr(t) =
∫ 1

−1
2(−2) dτ +

∫ 2

1.5
(−3)(−2) dτ = −4τ |1τ=−1 + 6τ |2τ=1.5 = −5

R2: 2 ≤ t < 4 yzsr(t) =
∫ 1

t−3 2(−2) dτ +
∫ 2

1.5(−3)(−2) dτ = −4τ |1τ=t−3 + 6τ |2τ=1.5 = 4t− 13

R3: 4 ≤ t < 9
2 yzsr(t) =

∫ 2

1.5
(−3)(−2) dτ = 6τ |2τ=1.5 = 3

R4: 9
2 ≤ t < 5 yzsr(t) =

∫ 2

t−3(−3)(−2) dτ = 6τ |2τ=t−3 = 30− 6t

R5: t ≥ 5 yzsr(t) =
∫∞
−∞ 0 dτ = 0

Thus,

yzsr(t) =







−5 t < 2
4t− 13 2 ≤ t < 4

3 4 ≤ t < 9
2

30− 6t 9
2 ≤ t < 5

0 t ≥ 5

.

A plot of yzsr(t) is also found in Fig. S2.4-7.
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Figure S2.4-7

Solution 2.4-8

(a) Figure S2.4-8a plots x(τ) and h(t− τ). There are four regions (R1 to R4) for this convolution.
Over the first region of t < −2,

yzsr(t) =

∫ t−1

t−3

τ − t+ 3

2
dτ +

∫ t

t−1

1 dτ =
1

4
τ2 +

(3− t)

2
τ

∣
∣
∣
∣

t−1

τ=t−3

+ τ |tτ=t−1

=
1

4
(t2 − 2t+ 1− t2 + 6t− 9) +

(3− t)

2
(t− 1− t+ 3) + (t− t+ 1)

= t− 2− t+ 3 + 1 = 2.

For the second region, defined on −2 ≤ t < −1, we have

yzsr(t) =

∫ t−1

t−3

τ − t+ 3

2
dτ +

∫ −2

t−1

1 dτ =
1

4
τ2 +

(3− t)

2
τ

∣
∣
∣
∣

t−1

τ=t−3

+ τ |−2
τ=t−1

=
1

4
(t2 − 2t+ 1− t2 + 6t− 9) +

(3 − t)

2
(t− 1− t+ 3) + (−2− t+ 1)

= t− 2− t+ 3− t− 1 = −t.

The third region, defined on −1 ≤ t < 1, has

yzsr(t) =

∫ −2

t−3

τ − t+ 3

2
dτ =

1

4
τ2 +

(3− t)

2
τ

∣
∣
∣
∣

−2

τ=t−3

= 1− (3 − t)−
[
t2 − 6t+ 9

4
+

−t2 + 6t− 9

2

]

=
t2

4
− t

2
+

1

4
.

The fourth and final region, defined over t ≥ 1, has

yzsr(t) =

∫ ∞

−∞
0 dτ = 0.
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Thus,

yzsr(t) =







2 t < −2
−t −2 ≤ t < −1

t2

4 − t
2 + 1

4 −1 ≤ t < 1
0 t ≥ 1

.

A plot of yzsr(t), found using convolution where h(t) is flipped and shifted, is shown in Fig. S2.4-
8a.

-2 0

τ

0

1

x(
τ)

t-3 t-1 t

τ

0

1

h(
t-
τ) (τ-t+3)/2

-2 -1 0 1

t

0

1

2

y zs
r(t

)

Figure S2.4-8a

(b) Figure S2.4-8b plots h(τ) and x(t− τ). There are four regions (R1 to R4) for this convolution.
Over the first region of t < −2,

yzsr(t) =

∫ 1

0

1 dτ +

∫ 3

1

(
3− τ

2

)

dτ = τ |1τ=0 +
3

2
τ − 1

4
τ2
∣
∣
∣
∣

3

τ=1

= 1 + (92 − 9
4 )− (32 − 1

4 ) = 2.

For the second region, defined on −2 ≤ t < −1, we have

yzsr(t) =

∫ 1

t+2

1 dτ +

∫ 3

1

(
3− τ

2

)

dτ = τ |1τ=t+2 +
3

2
τ − 1

4
τ2
∣
∣
∣
∣

3

τ=1

= 1− (t+ 2) + (92 − 9
4 )− (32 − 1

4 ) = −t.

The third region, defined on −1 ≤ t < 1, has

yzsr(t) =

∫ 3

t+2

(
3− τ

2

)

dτ =
3

2
τ − 1

4
τ2
∣
∣
∣
∣

3

τ=t+2

=
9

4
−
(
3

2
t+ 3− t2 + 4t+ 4

4

)

=
t2

4
− t

2
+

1

4
.
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The fourth and final region, defined over t ≥ 1, has

yzsr(t) =

∫ ∞

−∞
0 dτ = 0.

Exactly as found in part (a), we therefore see that

yzsr(t) =







2 t < −2
−t −2 ≤ t < −1

t2

4 − t
2 + 1

4 −1 ≤ t < 1
0 t ≥ 1

.

A plot of yzsr(t), found using convolution where x(t) is flipped and shifted, is shown in Fig. S2.4-
8b.
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1

2

y zs
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Figure S2.4-8b

Solution 2.4-9

Ac =

∫ ∞

−∞
c(t) dt =

∫ ∞

−∞

[∫ ∞

−∞
x(τ)g(t − τ) dτ

]

dt

=

∫ ∞

−∞
x(τ)

[∫ ∞

−∞
g(t− τ) dt

]

dτ = Ag

∫ ∞

−∞
x(τ) dτ = AgAx

This property can be readily verified using Exs. 2.10 and 2.12. For Ex. 2.10, we note that
∫ ∞

−∞
e−at dt =

1

a
.

Use of this result yields Ax = 1, Ah = 0.5, and Ay = 1− 0.5 = 0.5 = AxAh.
For Ex. 2.12, Ax = 2, Ag = 1.5, and

Ac =

∫ 1

−1

1

6
(t+ 1)2 dt+

∫ 2

1

2

3
t dt+

∫ 4

2

−1

6
(t2 − 2t− 8) dt

=
4

9
+ 1 +

14

9
= 3 = AxAg.
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Solution 2.4-10

x(at) ∗ g(at) =
∫ ∞

−∞
x(aτ)g[a(t − τ)] dτ

=
1

a

∫ ∞

−∞
x(w)g(at − w) dw

=
1

a
c(at) a ≥ 0.

When a < 0, the limits of integration become from ∞ to −∞, which is equivalent to the limits from
−∞ to ∞ with a negative sign. Hence, x(at) ∗ g(at) = | 1a |c(at).

Solution 2.4-11

Let x(t) ∗ g(t) = c(t). Using the time scaling property in Prob. 2.4-10 with a = −1, we have
x(−t) ∗ g(−t) = c(−t). Now, if x(t) and g(t) are both even functions of t, then x(t) = x(−t)
and g(−t) = g(t). Clearly c(t) = c(−t). Using a parallel argument, we can show that if both
functions are odd, c(t) = c(−t), indicating that c(t) is even. But if one is odd and the other is even,
c(t) = −c(−t), indicating that c(t) is odd.

Solution 2.4-12

Figure S2.4-12 plots x(τ) and h(t− τ). There are five regions (R1 to R5) for this convolution. The
first region, defined for t < −1, has

yzsr(t) =

∫ t

t−1

(1− t+ τ) dτ = (1− t)τ +
τ2

2

∣
∣
∣
∣

t

τ=t−1

= (1 − t)t+
t2

2
−
(

−t2 + 2t− 1 +
t2 − 2t+ 1

2

)

=
1

2
.

The second region, which covers −1 ≤ t < 0, has

yzsr(t) =

∫ −1

t−1

(1− t+ τ) dτ = (1− t)τ +
τ2

2

∣
∣
∣
∣

−1

τ=t−1

= t− 1 +
1

2
−
(

−t2 + 2t− 1 +
t2 − 2t+ 1

2

)

=
t2

2
.

The third region, which covers 0 ≤ t < 1, has

yzsr(t) =

∫ ∞

−∞
0 dτ = 0.

The fourth region, which includes 1 ≤ t < 2, has

yzsr(t) =

∫ t

1

(1− t+ τ) dτ = (1− t)τ +
τ2

2

∣
∣
∣
∣

t

τ=1

= t− t2 +
t2

2
− (1 − t+

1

2
) = − t2

2
+ 2t− 3

2
.

The fifth and final region, which includes t ≥ 2, has

yzsr(t) =

∫ t

t−1

(1− t+ τ) dτ = (1− t)τ +
τ2

2

∣
∣
∣
∣

t

τ=t−1

= t− t2 +
t2

2
−
(

−t2 + 2t− 1 +
t2 − 2t+ 1

2

)

=
1

2
.
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Thus,

yzsr(t) =







1
2 t < −1

t2

2 −1 ≤ t < 0

0 0 ≤ t < 1

− t2

2 + 2t− 3
2 1 ≤ t < 2

1
2 t ≥ 2

.

A plot of yzsr(t) is also found in Fig. S2.4-12.
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Figure S2.4-12

Solution 2.4-13

e−atu(t) ∗ e−btu(t) =

∫ t

0

e−aτe−b(t−τ) dτ = e−bt

∫ t

0

e(b−a)τ dτ

=
e−bt

b− a
e(b−a)τ

∣
∣
∣
∣

t

0

=
e−bt

b− a
[e(b−a)t − 1] =

e−at − e−bt

b− a

Because both functions are causal, their convolution is zero for t < 0. Therefore,

e−atu(t) ∗ e−btu(t) =

(
e−at − e−bt

b− a

)

u(t).

Solution 2.4-14

Since this problem involves convolving causal functions, we know the results are 0 for t < 0.

(a) In this case,

u(t) ∗ u(t) =
{
∫ t

0
u(τ)u(t− τ) dτ =

∫ t

0
dτ = τ

∣
∣
∣

t

0
= t t ≥ 0

0 t < 0
.

Therefore,
u(t) ∗ u(t) = tu(t).
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(b) Here,

e−atu(t) ∗ e−atu(t) =

{ ∫ t

0
e−aτe−a(t−τ) dτ = e−at

∫ t

0
dτ = te−at t ≥ 0

0 t < 0
.

Thus,
e−atu(t) ∗ e−atu(t) = te−atu(t).

(c) In this final case,

tu(t) ∗ u(t) =
∫ t

0

τu(τ)u(t − τ) dτ.

The range of integration is 0 ≤ τ ≤ t. Therefore τ > 0 and τ−t > 0 so that u(τ) = u(τ−t) = 1
and

tu(t) ∗ u(t) =
∫ t

0

τ dτ =
t2

2
t ≥ 0.

Combined with the fact that the convolution is 0 for t < 0, we see that

tu(t) ∗ u(t) = 1

2
t2u(t).

Solution 2.4-15

Since this problem involves convolving causal functions, we know the results are 0 for t < 0.

(a) In the first case,

sin tu(t) ∗ u(t) =
(∫ t

0

sin τ u(τ)u(t− τ) dτ

)

u(t).

Because τ and t− τ are both nonnegative (when 0 ≤ τ ≤ t), u(τ) = u(t− τ) = 1, and

sin t u(t) ∗ u(t) =
(∫ t

0

sin τ dτ

)

u(t) = (1− cos t)u(t).

(b) Similar to part (a), we see that

cos t u(t) ∗ u(t) =
(∫ t

0

cos τ dτ

)

u(t) = sin t u(t).

Solution 2.4-16

In this problem, we use Table 2.1 to find the desired convolution.

(a) y(t) = h(t) ∗ x(t) = e−tu(t) ∗ u(t) = (1− e−t)u(t)

(b) y(t) = h(t) ∗ x(t) = e−tu(t) ∗ e−tu(t) = te−tu(t)

(c) y(t) = e−tu(t) ∗ e−2tu(t) = (e−t − e−2t)u(t)

(d) y(t) = sin 3tu(t) ∗ e−tu(t)
Here we use pair 12 (Table 2.1) with α = 0, β = 3, θ = −90◦ and λ = −1. This yields

φ = tan−1

[−3

−1

]

= −108.4◦

and

sin 3t u(t) ∗ e−tu(t) =
(cos 18.4◦)e−t − cos(3t+ 18.4◦)√

10
u(t)

=
0.9486e−t − cos(3t+ 18.4◦)√

10
u(t)
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Solution 2.4-17

(a)

y(t) = (2e−3t − e−2t)u(t) ∗ u(t) = 2e−3tu(t) ∗ u(t)− e−2tu(t) ∗ u(t)

=

[
2(1− e−3t)

3
− 1− e−2t

2

]

u(t)

=

(
1

6
− 2

3
e−3t +

1

2
e−2t

)

u(t).

(b)

(2e−3t − e−2t)u(t) ∗ e−tu(t) = 2e−3tu(t) ∗ e−tu(t)− e−2tu(t) ∗ e−tu(t)

=

[
2(e−t − e−3t)

2
− e−t − e−2t

1

]

u(t)

= (e−2t − e−3t)u(t).

(c)

y(t) = (2e−3t − e−2t)u(t) ∗ e−2tu(t) = 2e−3tu(t) ∗ e−2tu(t)− e−2tu(t) ∗ e−2tu(t)

=

[
2(e−2t − e−3t)

1
− te−2t

]

u(t)

= [(2− t)e−2t − 2e−3t]u(t).

Solution 2.4-18

y(t) = (1 − 2t)e−2tu(t) ∗ u(t) = e−2tu(t) ∗ u(t)− 2te−2tu(t) ∗ u(t)

=

[(
1− e−2t

2

)

−
(
1

2
− 1

2
e−2t − te−2t

)]

u(t)

= te−2tu(t).

Solution 2.4-19

(a) For y(t) = 4e−2t cos 3t u(t) ∗ u(t), we use pair 12 of Table 2.1 with α = 2, β = 3, θ = 0, λ = 0.
Therefore,

φ = tan−1

[−3

2

]

= −56.31◦

and

y(t) = 4

[
cos(56.31◦)− e−2t cos(3t+ 56.31◦)√

4 + 9

]

u(t)

=
4√
13

[
0.555− e−2t cos(3t+ 56.31◦)

]
u(t).

(b) For y(t) = 4e−2t cos 3tu(t) ∗ e−tu(t), we use pair 12 of Table 2.1 with α = 2, β = 3, θ = 0, and
λ = −1. Therefore,

φ = tan−1

[−3

1

]

= −71.56◦
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and

y(t) = 4

[
cos(71.56◦)e−t − e−2t cos(3t+ 71.56◦)√

10

]

u(t)

=
4√
10

[
0.316e−t − e−2t cos(3t+ 71.56◦)

]
u(t)

= 4

[

0.1e−t − 1√
10

e−2t cos(3t+ 71.56◦)

]

u(t).

Solution 2.4-20

(a) Using pair 4 of Table 2.1,

y(t) = e−tu(t) ∗ e−2tu(t) = (e−t − e−2t)u(t).

(b) Since e−2(t−3)u(t) = e6e−2tu(t), we use pair 4 of Table 2.1 to obtain

y(t) = e6
[
e−tu(t) ∗ e−2tu(t)

]
= e6(e−t − e−2t)u(t).

(c) Here, e−2tu(t − 3) = e−6e−2(t−3)u(t − 3). Using the result in part (a) and the shift property
of convolution [Eq. (2.28)], we obtain

y(t) = e−6
[

e−(t−3)u(t)− e−2(t−3)
]

u(t− 3).

(d) In this case, x(t) = u(t)−u(t− 1). Now y1(t), the system response to x1(t) = u(t), is given by

y1(t) = e−tu(t) ∗ u(t) = (1− e−t)u(t).

The system response to u(t − 1) is y1(t − 1) because of time-invariance property. Therefore,
the response y(t) to x(t) = u(t)− u(t− 1) is given by

y(t) = y1(t)− y1(t− 1) = (1− e−t)u(t)− [1− e−(t−1)]u(t− 1).

The response is shown in Fig. S2.4-20d.
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Solution 2.4-21

(a) Here,

yzsr(t) = [−δ(t) + 2e−tu(t)] ∗ etu(−t)

= −δ(t) ∗ etu(−t) + 2e−tu(t) ∗ etu(−t)

= −etu(−t) + [e−tu(t) + etu(−t)]

= e−tu(t)

(b) The input x(t) = etu(−t) and corresponding zero-state response yzsr(t) are shown in Fig. S2.4-
21b. This is quite an interesting case. Although the system is an allpass filter, we see that
that output is dramatically different in appearance than the input. In fact, we see that our
anticausal input generates a completely causal output!
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Figure S2.4-21b

Solution 2.4-22

(a) We first plot the input x(t) and the impulse response h(t) (shaded). To determine y(t) for
t = −1, 0, 1, 2, 3, 4, 5, and 6, we plot x(τ) and h(t− τ) (shaded) for the respective values of
t; the output y(t) is just the area of the product x(τ)h(t − τ). See Fig. S2.4-22.

(b) Using Fig. S2.4-22, it is easy to show that the system response y(t) to input x(t) is

y(t) =







0 t < −1
t+ 1 −1 ≤ t < 0
1 0 ≤ t < 5

6− t 5 ≤ t < 6
0 t ≥ 6

.
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Figure S2.4-22

Solution 2.4-23

The output has the term e−3tu(t) that is not in the input. Hence, h(t) should include the term
e−3tu(t). There is also a possibility of an impulse term in h(t) that will result in a term of the form
e−2tu(t) in the output. Let us try

h(t) = aδ(t) + be−3tu(t).

This yields the output

y(t) = x(t) ∗ h(t)
= 2e−2tu(t) ∗

[
aδ(t) + be−3tu(t)

]

= 2ae−2tu(t) + 2b
[
e−2t − e−3t

]
u(t)

= (2a+ 2b)e−2t − 2be−3tu(t).
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Matching the coefficients of similar terms yields

2a+ 2b = 4
−2b = 6

}

=⇒ a = 5
b = −3

.

Hence,
h(t) = 5δ(t)− 3e−3tu(t).

Solution 2.4-24

Here,
1

t2 + 1
∗ u(t) =

∫ ∞

−∞

1

τ2 + 1
u(t− τ) dτ.

Because u(t− τ) = 1 for τ < t and is 0 for τ > t, we need integrate only up to τ = t.

1

t2 + 1
∗ u(t) =

∫ t

−∞

1

τ2 + 1
dτ = tan−1 τ

∣
∣
t

−∞ = tan−1 t+
π

2
.

Figure S2.4-24 shows x(t), h(t), and x(t) ∗ h(t).
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Figure S2.4-24

Solution 2.4-25

To help visualize this problem, plots of x(τ) and g(t− τ) are shown in Fig. S2.4-25. There are three
regions (R1 to R3) for the convolution c(t) = x(t) ∗ g(t).

R1: t < 0 c(t) =
∫∞
−∞ 0 dτ = 0

R2: 0 ≤ t < 2π c(t) =
∫ t

0 sin τ dτ = 1− cos t

R3: t ≥ 2π c(t) =
∫ 2π

0
sin τ dτ = 0

Thus,

c(t) =







0 t < 0
1− cos t 0 ≤ t < 2π

0 t ≥ 2π
.

A plot of c(t) is also found in Fig. S2.4-25.
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Solution 2.4-26

To help visualize this problem, plots of x(τ) and g(t− τ) are shown in Fig. S2.4-26. There are four
regions (R1 to R4) for the convolution c(t) = x(t) ∗ g(t).

R1: t < 0 c(t) =
∫∞
−∞ 0 dτ = 0

R2: 0 ≤ t < 2π c(t) =
∫ t

0
sin τ dτ = 1− cos t

R2: 2π ≤ t < 4π c(t) =
∫ 2π

t−2π sin τ dτ = cos t− 1

R3: t ≥ 4π c(t) =
∫∞
−∞ 0 dτ = 0

Thus,

c(t) =







0 t < 0
1− cos t 0 ≤ t < 2π
cos t− 1 2π ≤ t < 4π

0 t ≥ 4π

.

A plot of c(t) is also found in Fig. S2.4-26.
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Solution 2.4-27

(a) To help visualize this problem, plots of x1(τ) and x2(t− τ) are shown in Fig. S2.4-27a. There
are five regions (R1 to R5) for the convolution c(t) = x1(t) ∗ x2(t).

R1: t < −1 c(t) =
∫∞
−∞ 0 dτ = 0

R2: −1 ≤ t < 0 c(t) =
∫ t+5

4 AB dτ = AB(t+ 1)

R3: 0 ≤ t < 1 c(t) =
∫ t+5

t+4
AB dτ = AB

R4: 1 ≤ t < 2 c(t) =
∫ 6

t+4 AB dτ = AB(2− t)

R5: t ≥ 2 c(t) =
∫∞
−∞ 0 dτ = 0

A plot of c(t) is also found in Fig. S2.4-27a.
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Figure S2.4-27a

(b) To help visualize this problem, plots of x1(τ) and x2(t− τ) are shown in Fig. S2.4-27b. There
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are four regions (R1 to R4) for the convolution c(t) = x1(t) ∗ x2(t).

R1: t < −2 c(t) =
∫∞
−∞ 0 dτ = 0

R2: −2 ≤ t < 0 c(t) =
∫ t+5

3
AB dτ = AB(t+ 2)

R3: 0 ≤ t < 2 c(t) =
∫ 5

t+3 AB dτ = AB(2− t)

R4: t ≥ 2 c(t) =
∫∞
−∞ 0 dτ = 0

A plot of c(t) is also found in Fig. S2.4-27b.
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(c) To help visualize this problem, plots of x1(τ) and x2(t− τ) are shown in Fig. S2.4-27c. There
are three regions (R1 to R3) for the convolution c(t) = x1(t) ∗ x2(t).

R1: t < −4 c(t) =
∫∞
−∞ 0 dτ = 0

R2: −4 ≤ t < −1 c(t) =
∫ t+2

−2 1 dτ = t+ 4

R3: t ≥ −1 c(t) =
∫ t+2

t−1
1 dτ = 3

A plot of c(t) is also found in Fig. S2.4-27c.
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(d) To help visualize this problem, plots of x1(τ) and x2(t− τ) are shown in Fig. S2.4-27d. There
are three regions (R1 to R3) for the convolution c(t) = x1(t) ∗ x2(t).

R1: t < −3 c(t) =
∫∞
−∞ 0 dτ = 0

R2: −3 ≤ t < 0 c(t) =
∫ t+3

0
e−τ dτ = 1− e−(t+3)

R3: t ≥ 0 c(t) =
∫ t+3

t e−τ dτ = e−t − e−(t+3)

A plot of c(t) is also found in Fig. S2.4-27d.
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(e) To help visualize this problem, plots of x1(τ) and x2(t− τ) are shown in Fig. S2.4-27e. There
are two regions (R1 and R2) for the convolution c(t) = x1(t) ∗ x2(t).

R1: t < 1 c(t) =
∫ t−1

−∞
1

τ2+1 dτ = tan−1(t− 1) + π
2

R2: t ≥ 1 c(t) =
∫ 0

−∞
1

τ2+1 dτ = π
2

A plot of c(t) is also found in Fig. S2.4-27e.
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(f) To help visualize this problem, plots of x1(τ) and x2(t− τ) are shown in Fig. S2.4-27f. There
are three regions (R1 to R3) for the convolution c(t) = x1(t) ∗ x2(t).

R1: t < 0 c(t) =
∫∞
−∞ 0 dτ = 0

R2: 0 ≤ t < 3 c(t) =
∫ t

0 e−τ dτ = 1− e−t

R3: t ≥ 0 c(t) =
∫ t

t−3 e
−τ dτ = e−(t−3) − e−t

A plot of c(t) is also found in Fig. S2.4-27f.
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(g) To help visualize this problem, plots of x1(τ) and x2(t− τ) are shown in Fig. S2.4-27g. There
are three regions (R1 to R3) for the convolution c(t) = x1(t) ∗ x2(t).

R1: t < −1 c(t) =
∫∞
−∞ 0 dτ = 0

R2: −1 ≤ t < 0 c(t) =
∫ t

−1 −τ dτ = 1
2 − t2

2

R3: t ≥ 0 c(t) =
∫ 0

−1
−τ dτ = 1

2

A plot of c(t) is also found in Fig. S2.4-27g.
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(h) To help visualize this problem, plots of x1(τ) and x2(t− τ) are shown in Fig. S2.4-27h. There
are five regions (R1 to R5) for the convolution c(t) = x1(t) ∗ x2(t).

R1: t < −2 c(t) =
∫∞
−∞ 0 dτ = 0

R2: −2 ≤ t < −1 c(t) =
∫ t

−2 e
τe−2(t−τ) dτ = e−2t

3

(
e3t − e−6

)

R3: −1 ≤ t < 0 c(t) =
∫ t

t−1
eτe−2(t−τ) dτ = e−2t

3

(
e3t − e3(t−1)

)

R4: 0 ≤ t < 1 c(t) =
∫ 0

t−1
eτe−2(t−τ) dτ = e−2t

3

(
1− e3(t−1)

)

R5: t ≥ 1 c(t) =
∫∞
−∞ 0 dτ = 0

A plot of c(t) is also found in Fig. S2.4-27h.
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Solution 2.4-28

By inspection, we find
ẋ(t) = δ(t)− δ(t− 2)

and ∫ t

0

w(τ)dτ = ∆

(
t− 1

2

)

,

where ∆(t) is a unit-triangle function. Therefore [see Eq. (2.37)],

x(t) ∗ w(t) = [δ(t)− δ(t− 2)] ∗∆
(
t− 1

2

)

= ∆

(
t− 1

2

)

−∆

(
t− 3

2

)

Figure S2.4-28 shows x(t) ∗ w(t).
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Solution 2.4-29

The unit impulse response of an ideal delay of T seconds is h(t) = δ(t − T ). Using Eq. (2.39), we
obtain

H(s) =

∫ ∞

−∞
δ(t− T )e−stdt = e−sT .

For an input x(t) = est, the output of the delay is y(t) = es(t−T ). Hence, according to Eq. (2.40)

H(s) =
es(t−T )

est
= e−sT .

Solution 2.4-30

To help visualize this problem, plots of h(τ) and x(t− τ) are shown in Fig. S2.4-30. There are three
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regions (R1 to R3) for the convolution y(t) = x(t) ∗ h(t).

R1: t < −1 y(t) =
∫∞
−∞ 0 dτ = 0

R2: −1 ≤ t < 0 y(t) =
∫ t

−1(τ + 1) dτ = t2

2 + t+ 1
2

R3: t ≥ 0 y(t) =
∫ 0

−1
(τ + 1) dτ = 1

2

Thus,

y(t) =







0 t < −1
t2

2 + t+ 1
2 −1 ≤ t < 0

1
2 t ≥ 0

.

A plot of y(t) is also found in Fig. S2.4-30g.
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Solution 2.4-31

Using the graph of the system response, h(t) = (−t/2 + 1)(u(t) − u(t − 2)). y(1) =
∫∞
−∞ htotal(τ)x(1 − τ)dτ . Since x(t) is causal, the upper limit of the integral is one. Fur-
thermore, since h(t) is causal, the total response htotal(t) = h(t) ∗ h(t) is also causal, which makes

the lower limit of the integral zero. Over [0, 1], x(t) = u(t) = 1. Thus, y(1) =
∫ 1

0
htotal(τ)dτ . To

compute y(1), it is only necessary to know htotal(t) up to t = 1.

Over (0 ≤ t < 2), htotal(t) =
∫ t

0 (−τ/2+1)(−(t− τ)/2+1)dτ =
∫ t

0 (−τ/2+1)(τ/2+1− t/2)dτ =
∫ t

0

(
−τ2/4 + τ(1 − 1 + t/2)/2 + (1− t/2)

)
dτ = − t3

12 + t3

8 + (1 − t/2)t = t3

24 − t2

2 + t.
Thus,

y(1) =

∫ 1

0

(τ3/24− τ2/2 + τ)dτ =
τ4

96
− τ3

6
+

τ2

2

∣
∣
∣
∣

1

τ=0

=
1

96
− 1

6
+

1

2
=

11

32
= 0.34375.

Solution 2.4-32

(a) Using KVL, x(t) = vL(t) + y(t). Also, iC(t) = C dy
dt and vL(t) = L diL

dt = L diC
dt = LC d2y

dt2 .
Combining yields

d2y

dt2
+

1

LC
y(t) =

1

LC
x(t).

(b) The characteristic equation is

λ2 +
1

LC
= 0.

The characteristic roots are

λ1,2 =
±j√
LC

.
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(c) The form of the zero-input response is y0(t) = c1e
λ1t + c2e

λ2t. Using λ1 = −λ2, ic(0) =

0 = C dy
dt

∣
∣
∣
t=0

= C(c1λ1 + c2λ2) = C(c1λ1 − c2λ1) = Cλ1(c1 − c2). Thus, c1 = c2. Also,

vc(0) = 1 = y(0) = c1 + c2. Combining yields 2c1 = 2c2 = 1 or c1 = c2 = 0.5. The zero-input

response is thus y0(t) = 0.5(ejt/
√
LC + e−jt/

√
LC). Using Euler’s identity yields

y0(t) = cos

(
t√
LC

)

.

(d) Figure S2.4-32 shows y0(t) for t ≥ 0. Since y0(t) is a non-decaying sinusoid, the zero-input
response continues forever; the ICs never die out. Notice here that ω0 = 1√

LC
and T = 2π√

LC
.
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Figure S2.4-32

(e) Since L = C = 1, λ1,2 = ±j. Let ỹ0(t) = c̃1e
jt + c̃2e

−jt. Using ỹ0(0) = 0 = c̃1 + c̃2, we know

c̃1 = −c̃2. Combining with ỹ
(1)
0 (0) = 1 = jc̃1 − jc̃2, we know 2jc̃1 = 1 or c̃1 = −j0.5. Thus,

c̃2 = j0.5 and ỹ0(t) =
ejt−e−jt

2j = sin(t). From this, the impulse response is determined to be

h(t) =
1

LC
sin(t)u(t) = sin(t)u(t).

Next, the zero-state response is computed as

x(t) ∗ h(t) =
∫ t

0

sin τe−(t−τ)dτ =

(

e−t

∫ t

0

Im
(
ejτeτ

)
dτ

)

u(t)

=

(

Im

(

e−t

∫ t

0

eτ(1+j)dτ

))

u(t) =

(

Im

(

e−t eτ(1+j)

1 + j

∣
∣
∣
∣

t

τ=0

))

u(t)

=

(

Im

(

e−t e
t(1+j) − 1

1 + j

))

u(t) =

(

Im

(
ejt − e−t

1 + j

))

u(t)

=
(
Im
(
0.5ejt − j0.5ejt − 0.5(1− j)e−t

))
u(t)

=
(
0.5 sin(t)− 0.5 cos(t) + 0.5e−t

)
u(t).

Summing the zero-state response and the zero-input response calculated in part (c) yields the
total response y(t) = x(t) ∗ h(t) + y0(t) = (0.5 sin(t)− 0.5 cos(t) + 0.5e−t + cos(t))u(t). Thus,

y(t) =
(
0.5 sin(t) + 0.5 cos(t) + 0.5e−t

)
u(t).

Solution 2.4-33

(a) MATLAB is used to plot h1(t) and h2(t) (see Fig. S2.4-33).
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>> u = @(t) 1.0*(t>=0); t = -2.5:.001:3.5;

>> h1 = @(t) (1-t).*(u(t)-u(t-1));

>> h2 = @(t) t.*(u(t+2)-u(t-2));

>> subplot(221); plot(t,h1(t)); grid on;

>> xlabel(’t’); ylabel(’h_1(t)’);

>> axis([-2.5 3.5 -2.5 2.5]);

>> subplot(222); plot(t,h2(t)); grid on;

>> xlabel(’t’); ylabel(’h_2(t)’);

>> axis([-2.5 3.5 -2.5 2.5]);

(b) For a parallel connection, hp(t) = h1(t) + h2(t). MATLAB is used to plot hp(t) (see Fig. S2.4-
33).

>> hp = @(t) h1(t)+h2(t);

>> subplot(223); plot(t,hp(t)); grid on;

>> xlabel(’t’); ylabel(’h_p(t)’);

>> axis([-2.5 3.5 -2.5 2.5]);

(c) For a series connection, hs(t) = h1(t) ∗ h2(t).

For (t < −2), hs(t) = 0.

For (−2 ≤ t < −1), hs(t) =
∫ t+2

0 (1 − τ)(t − τ)dτ =
∫ t+2

0

(
t− τ(t+ 1) + τ2

)
dτ =

tτ − (t+ 1)τ2/2 + τ3/3
∣
∣
t+2

τ=0
= t(t+2)− (t+1)(t+2)2/2+(t+2)3/3 = −t3/6+ t2/2+2t+2/3.

For (−1 ≤ t < 2), hs(t) =
∫ 1

0 (1 − τ)(t − τ)dτ =
∫ 1

0

(
t− τ(t+ 1) + τ2

)
dτ =

tτ − (t+ 1)τ2/2 + τ3/3
∣
∣
1

τ=0
= t− (t+ 1)/2 + 1/3 = t/2− 1/6.

For (2 ≤ t < 3), hs(t) =
∫ 1

t−2(1 − τ)(t − τ)dτ =
∫ 1

t−2

(
t− τ(t+ 1) + τ2

)
dτ =

tτ − (t+ 1)τ2/2 + τ3/3
∣
∣
1

τ=t−2
= t/2 − 1/6 −

(
t(t− 2)− (t+ 1)(t− 2)2/2 + (t− 2)3/3

)
=

t/2− 1/6−
(
−t3/6 + t2/2 + 2t− 14/3

)
= t3/6− t2/2− 3t/2 + 9/2.

For (t > 3), hs(t) = 0.

Combining all pieces yields

hs(t) =







−t3/6 + t2/2 + 2t+ 2/3 −2 ≤ t < −1
t/2− 1/6 −1 ≤ t < 2

t3/6− t2/2− 3t/2 + 9/2 2 ≤ t < 3
0 otherwise

.

MATLAB is used to plot hs(t) (see Fig. S2.4-33).

>> hs = @(t) (-t.^3/6+t.^2/2+2*t+2/3).*(u(t+2)-u(t+1))+...

>> (t/2-1/6).*(u(t+1)-u(t-2))+...

>> (t.^3/6-t.^2/2-3*t/2+9/2).*(u(t-2)-u(t-3));

>> subplot(224); plot(t,hs(t)); grid on;

>> xlabel(’t’); ylabel(’h_s(t)’);

>> axis([-2.5 3.5 -1 1]);
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Solution 2.4-34

(a) Using KVL, x(t) = RCẏ(t) + y(t) or ẏ(t) + 1
RC y(t) = 1

RC x(t). The characteristic root is
λ = −1

RC .

The zero-input response has form y0(t) = c1e
−t/(RC). Using the IC, y0(0) = 2 = c1. Thus,

y0(t) = 2e−t/(RC).

The zero-state response is x(t) ∗ h(t), where h(t) = b0δ(t) + [P (D)yn(t)]u(t). For this first-
order system, yn(t) = c1e

−t/(RC) and yn(0) = 1 = c1. Using yn(t) = e−t/(RC), b0 = 0, and
P (D) = 1

RC , the impulse response is h(t) = 1
RC e−t/(RC)u(t). Thus, the zero-state response is

yzsr(t) =

(∫ t

0

1

RC
e−τ/(RC)dτ

)

u(t)

=

(

−e−τ/(RC)
∣
∣
∣

t

τ=0

)

u(t)

=
(

1− e−t/(RC)
)

u(t).

For t ≥ 0, the total response is the sum of the zero-input response and the zero state response,

y(t) =
(

1 + e−t/(RC)
)

u(t).

(b) From part (a), we know the zero-input response is y0(t) = y0(0)e
−t/(RC). Since the system is

time-invariant, the unit step response from part (a) is shifted by one to provide the response to
x(t) = u(t− 1). Thus, the zero-state response to x(t) = u(t− 1) is

(
1− e−(t−1)/(RC)

)
u(t− 1).

Summing the two parts together and evaluating at t = 2 yields y(2) = 1/2 = y0(0)e
−2/(RC) +

(1− e−1/(RC)). Solving for y0(0) yields

y0(0) = e1/(RC) − 0.5e2/(RC).
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Solution 2.4-35

Notice, x(2t) is a compressed version of x(t). The convolution y(t) = x(t)∗x(2t) has several distinct
regions.

For t < 0 and t ≥ 3/2, y(t) = 0.

For 0 ≤ t < 1/2, y(t) =
∫ t

0
2τ(t− τ)dτ = tτ2 − 2τ3/3

∣
∣
t

τ=0
= t3/3.

For 1/2 ≤ t < 1, y(t) =
∫ 1/2

0 2τ(t− τ)dτ = tτ2 − 2τ3/3
∣
∣
1/2

τ=0
= t/4− 1/12.

For 1 ≤ t < 3/2, y(t) =
∫ 1/2

t−1
2τ(t − τ)dτ = tτ2 − 2τ3/3

∣
∣
1/2

τ=t−1
= t/4 − 1/12 − (t3 − 2t2 + t −

2t3/3 + 2t2 − 2t+ 2/3) = −t3/3 + 5t/4− 3/4.

Thus,

y(t) =







t3/3 0 ≤ t < 1/2
t/4− 1/12 1/2 ≤ t < 1

−t3/3 + 5t/4− 3/4 1 ≤ t < 3/2
0 otherwise

.

MATLAB is used to plot y(t) (see Fig. S2.4-35).

>> u = @(t) 1.0*(t>=0); t = -1:.001:2;

>> y = @(t) (t.^3/3).*(u(t)-u(t-1/2))+...

>> (t/4-1/12).*(u(t-1/2)-u(t-1))+...

>> (-t.^3/3+5*t/4-3/4).*(u(t-1)-u(t-3/2));

>> plot(t,y(t)); grid on; axis([-1 2 -.05 .25])

>> xlabel(’t’); ylabel(’y(t)’);
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Figure S2.4-35

Solution 2.4-36

Notice, vR(t) = vL1(t) = vL2(t) = v(t).

(a) KCL at the top node gives x(t) = y(t) + iL1(t) + iR. Since v(t) = L2ẏ(t), we know iR(t) =
v(t)/R = L2

R ẏ(t). Thus, x(t) = y(t) + L2

R ẏ(t) + iL1(t). Differentiating this expression yields

ẋ(t) = ẏ(t) + L2

R ÿ(t) + i
(1)
L1

(t). However, i
(1)
L1

(t) = v(t)/L1 = L2

L1
ẏ(t). Thus, ẋ(t) = ẏ(t) +

L2

R ÿ(t) + L2

L1
ẏ(t) or

ÿ(t) +

(
R

L1
+

R

L2

)

ẏ(t) =
R

L2
ẋ(t).

(b) The characteristic equation is λ2+
(

R
L1

+ R
L2

)

λ = 0 which yields characteristic roots of λ1 = 0

and λ2 = −
(

R
L1

+ R
L2

)

.

(c) The zero-input response has form y0(t) = c1+c2e
λ2t. Each inductor has an initial current of one

amp each. Thus, y0(0) = 1 = c1+ c2. The initial resistor current is iR(0) = −iL1(0)− iL2(0) =
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−2 and the initial resistor voltage is v(0) = iR(0)R = −2R. Thus, ẏ0(0) = − 2R
L2

= λ2c2.

Solving yields c2 = 2L1

L1+L2
and c1 = 1− c2 = L2−L1

L1+L2
. Thus,

y0(t) =
L2 − L1

L1 + L2
+

2L1

L1 + L2
e−tR/L1−tR/L2 .

Solution 2.4-37

Since the system step response is g(t) = e−tu(t) − e−2tu(t), the system impulse response
is h(t) = d

dts(t) = −e−tu(t) + δ(t) + 2e−2tu(t) − δ(t) = (2e−2t − e−t)u(t). The input

x(t) = δ(t − π) − cos(
√
3)u(t) is just a sum of a shifted delta function and a scaled step

function. Since the system is LTI, the output is quickly computed using h(t) and g(t). That is,

y(t) = h(t− π)− cos(
√
3)g(t)

= (2e−2(t−π) − e−(t−π))u(t− π)− cos(
√
3)(e−t − e−2t)u(t).

Solution 2.4-38

Since x(t) is (T = 2)-periodic, the convolution y(t) = x(t) ∗ h(t) is also (T = 2)-periodic. Thus, it is
sufficient to evaluate y(t) over any interval of length two.

For 0 ≤ t < 1/2, y(t) =
∫ t

0
τdτ +

∫ 3/2

t+1
τdτ = τ2

2

∣
∣
∣

t

τ=0
+ τ2

2

∣
∣
∣

3/2

τ=t+1
= t2/2+9/8− (t2/2+ t+1/2) =

−t+ 5/8.

For 1/2 ≤ t < 1, y(t) =
∫ t

0 τdτ = t2/2.

For 1 ≤ t < 3/2, y(t) =
∫ t

t−1
τdτ = τ2

2

∣
∣
∣

t

τ=t−1
= t2/2− (t2/2− t+ 1/2) = t− 1/2.

For 3/2 ≤ t < 2, y(t) =
∫ 3/2

t−1
τdτ = τ2

2

∣
∣
∣

3/2

τ=t−1
= 9/8− (t2/2− t+ 1/2) = −t2/2 + t+ 5/8.

Combining,

y(t) =







−t+ 5/8 0 ≤ t < 1/2
t2/2 1/2 ≤ t < 1

t− 1/2 1 ≤ t < 3/2
−t2/2 + t+ 5/8 3/2 ≤ t < 2

y(t+ 2) ∀t

.

Figure S2.4-38 shows the resulting signal y(t) over −3 ≤ t ≤ 3. This interval includes three periods
of the (T = 2)-periodic function y(t).
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Figure S2.4-38

>> t = -3:.001:3;

>> y = @(t) (-mod(t,2)+5/8).*((mod(t,2)>=0)&(mod(t,2)<1/2))+...

>> (mod(t,2)).^2/2.*((mod(t,2)>=1/2)&(mod(t,2)<1))+...

>> (mod(t,2)-1/2).*((mod(t,2)>=1)&(mod(t,2)<3/2))+...

>> (-(mod(t,2)).^2/2+mod(t,2)+5/8).*((mod(t,2)>=3/2)&(mod(t,2)<2));

>> plot(t,y(t)); grid on; axis([-3 3 -.05 1.05])

>> xlabel(’t’); ylabel(’y(t)’);
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Solution 2.4-39

(a) Using KVL, x(t) = i(t)R + vC1(t) + y(t) = RC2ẏ(t) + vC1(t) + y(t). Differentiating yields
ẋ(t) = RC2ÿ(t) + v̇C1(t) + ẏ(t) = RC2ÿ(t) +

1
C1

i(t) + ẏ(t) = RC2ÿ(t) +
C2

C1
ẏ(t) + ẏ(t). Thus,

ÿ(t) +

(
1

RC1
+

1

RC2

)

ẏ(t) =
1

RC2
ẋ(t).

(b) Since R = 1, C1 = 1, and C2 = 2, the differential equation becomes ÿ(t) + 3/2ẏ(t) = 1/2ẋ(t).

The characteristic equation is λ2 + 3/2λ = 0, and the characteristic roots are λ1 = 0 and
λ2 = −3/2. Thus, the form of the zero-input response is y0(t) = c1 + c2e

−3t/2. From the
initial conditions, we see that y(0) = VC2 = 1 = c1 + c2. The initial voltage across the
resistor is vR(0) = −(VC1 + VC2) = −2 − 1 = −3 which yields iR(0) = −3/R = −3. Also,
iR(0) = −3 = iC2(0) = C2ẏ(0) = 2ẏ(0). Thus, ẏ(0) = −3/2 = −3c2/2. Solving yields c2 = 1
and c1 = 0. Thus,

y0(t) = e−3t/2.

The zero-state response is x(t) ∗ h(t), where h(t) = b0δ(t) + [P (D)yn(t)]u(t). For this second-
order system, yn(t) = c1 + c2e

−3t/2, yn(0) = 0 = c1 + c2 and ẏn(0) = 1 = −3c2/2. Thus,
c2 = −2/3 and c1 = 2/3. Using b0 = 0, and P (D) = 0.5D, the impulse response is h(t) =
0.5D[yn(t)]u(t) = 0.5D[2/3 − 2/3e−3t/2]u(t) = 0.5[−2/3(−3/2)e−3t/2]u(t) = 0.5e−3t/2u(t).

Using x(t) = 4te−3t/2u(t), the zero-state response is
(∫ t

0
(4τe−3τ/2)(0.5e−3(t−τ)/2)dτ

)

u(t) =
(

2e−3t/2
∫ t

0 τdτ
)

u(t) =
(
2e−3t/2t2/2

)
u(t). Thus,

x(t) ∗ h(t) = t2e−3t/2u(t).

Since the input is driving a natural mode, resonance is expected; thus, the t2 term seems
sensible.

For (t ≥ 0), the total response is the sum of the zero-input response and the zero-state response.

y(t) = y0(t) + x(t) ∗ h(t) =
(

e−3t/2 + t2e−3t/2
)

u(t).

Solution 2.4-40

(a) No; the system is not causal because h(t) 6= 0 for all t < 0.

(b) The zero-state response is just the convolution of the input with the impulse response. There
are two regions for the convolution. For t < 2,

yzsr(t) =

∫ 0

t−2

3eτ dτ +

∫ ∞

0

3e−τ dτ = 3eτ |0t−2 + −3e−τ
∣
∣
∞
0

= 3
[
1− et−2 + 0− (−1)

]
= 6− 3et−2.

For t ≥ 2,

yzsr(t) =

∫ ∞

t+2

3e−τ dτ = −3e−τ
∣
∣
∞
t−2

= 0−
(

−3e−(t−2)
)

= 3e−(t−2).

Thus,

yzsr(t) =

{
6− 3et−2 t < 2
3e2−t t ≥ 2

.
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Solution 2.4-41

Since h(t) is only provided for over (0 ≤ t < 0.5), it is not possible to determine with certainty
whether or not the system is causal or stable. However, when looking at h(t) the waveform appears
to have a DC offset. This apparent DC offset can be very troubling if h(t) is truly an impulse
response function. If a DC offset is present, the system is neither causal nor stable. Imagine, a
non-causal, unstable heart! Something is probably wrong.

One simple explanation is that a blood-filled heart always has some ventricular pressure. Unless
removed, this relaxed-state pressure would likely appear as a DC offset to any measurements. It
would likely be most appropriate to subtract this offset when trying to measure the impulse response
function.

Another problem is that the impulse response function is most appropriate in the study of
linear, time-invariant systems. It is quite unlikely that the heart is either linear or time-invariant.
Even if the impulse response could be reliably measured at a particular time, it might not provide
much useful information.

Solution 2.4-42

(a) We obtain h(t) by directly substituting δ(t) for x(t):

hi(t) =

∫ t

−∞
δ(τ) dτ ⇒ hi(t) = u(t).

(b) For two systems in parallel, their impulse responses add. Thus,

hp(t) = hi(t) + hi(t) = 2u(t).

(c) For two systems in series, the overall impulse response is the convolution of the two component
impulse responses. Thus,

hs = hi(t) ∗ hi(t) =

(∫ t

0

dτ

)

u(t) ⇒ hs(t) = tu(t).

Solution 2.4-43

(a) x(t) ∗ x(−t) =
∫∞
−∞ x(τ)x(−(t − τ))dτ =

∫∞
−∞ x(τ)x(τ − t)dτ = rxx(t).

(b) Since rxx(t) is an even function, we only need to compute rxx(t) for either t ≥ 0 or t ≤ 0. In
either case, the autocorrelation function is computed by convolving the original signal with its
reflection.

For t < −2, rxx(t) = 0.

For −2 ≤ t < −1, rxx(t) =
∫ t+2

0
τdτ = 0.5τ2

∣
∣
t+2

τ=0
= t2/2 + 2t+ 2.

For −1 ≤ t < 0, rxx(t) =
∫ t+1

0 τ(τ − t)dτ +
∫ 1

t+1 τdτ +
∫ t+2

1 dτ =

(

τ3

3 − t τ
2

2

∣
∣
∣

t+1

τ=0

)

+ τ2

2

∣
∣
∣

1

τ=t+1
+

τ |t+2
τ=1 = t3+3t2+3t+1

3 − t3+2t2+t
2 + 1

2 − t2+2t+1
2 + (t+ 2− 1) = −t3/6− t2/2 + t/2 + 4/3.

Combining and using rxx(t) = rxx(−t) yields

rxx(t) =







t2/2 + 2t+ 2 −2 ≤ t < −1
−t3/6− t2/2 + t/2 + 4/3 −1 ≤ t < 0
t3/6− t2/2− t/2 + 4/3 0 ≤ t < 1

t2/2− 2t+ 2 1 ≤ t < 2
0 otherwise

MATLAB is used to plot the result (see Fig. S2.4-43).
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>> LSS3eSMMATLABFigFormat(4,1.5,3);

>> u = @(t) 1.0*(t>=0); t = -2.5:.001:2.5;

>> rxx = @(t) (t.^2/2+2*t+2).*(u(t+2)-u(t+1))+...

>> (-t.^3/6-t.^2/2+t/2+4/3).*(u(t+1)-u(t))+...

>> (t.^3/6-t.^2/2-t/2+4/3).*(u(t)-u(t-1))+...

>> (t.^2/2-2*t+2).*(u(t-1)-u(t-2));

>> plot(t,rxx(t)); grid on; axis([-2.5 2.5 -.05 1.5]);

>> xlabel(’t’); ylabel(’r_{xx}(t)’); set(gca,’ytick’,0:1/3:4/3);

>> set(gca,’yticklabel’,{’0’,’1/3’,’2/3’,’1’,’4/3’});
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Figure S2.4-43

Solution 2.4-44

(a) KCL at the negative terminal of the op-amp yields x(t)−0
R + Cẏ(t) = 0. Thus,

ẏ(t) = − 1

RC
x(t).

(b) The zero-state response is y(t) = x(t) ∗ h(t), where h(t) = b0δ(t) + [P (D)ỹ0(t)]u(t). This is
a first order system with λ = 0, thus ỹ0(t) = c̃1e

λt = c̃1. Since ỹ0(0) = 1 = c̃1, b0 = 0, and
P (D) = − 1

RC , the impulse response is h(t) = − 1
RC u(t). Thus,

y(t) =

(∫ t

0

− 1

RC
dτ

)

u(t) = − t

RC
u(t).

Notice, |y(t)| ramps toward infinity as time increases. Intuitively, this makes sense; a DC input
to an integrator should output an unbounded ramp function.

Solution 2.4-45

The system response to u(t) is g(t) and the response to step u(t− τ) is g(t− τ). The input x(t) is
made up of step components. The step component at τ has a height △f which can be expressed as

△f =
△f

△τ
△τ = ẋ(τ)△τ.

The step component at n△τ has a height ẋ(n△τ)△τ and it can be expressed as [ẋ(n△τ)△τ ]u(t −
n△τ). Its response △y(t) is

△y(t) = [ẋ(n△τ)△τ ]g(t − n△τ).

The total response due to all components is

y(t) = lim
△τ→0

∞∑

n=−∞
ẋ(n△τ)g(t− n△τ)△τ

=

∫ ∞

−∞
ẋ(τ)g(t − τ) dτ = ẋ(τ) ∗ g(τ)
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Solution 2.4-46

Consider the input x(t) = ejω0t. Letting s = jω0 in Eq. (2.38), the system response is found as

y(t) = H(jω0)e
jω0t.

Using Eq. (2.31), the system response to input x̂(t) = cosω0t = Re[ejω0t] is ŷ(t), where

ŷ(t) = Re[H(jω0)e
jω0t]

= Re
{

|H(jω0)|ej[ω0t+∠H(jω0)]
}

= |H(jω0)| cos[ω0t+ ∠H(jω0)].

Where H(jω) is H(s)|s=jω in Eq. (2.39). Hence,

H(jω) =

∫ ∞

−∞
h(τ)e−jωτdτ .

Solution 2.4-47

An element of length △τ at point n△τ has a charge (Fig. S2.4-47). A point x is at a distance
x− n∆τ from this charge. The electric field at point x due to the charge Q(n△τ)△τ is

△E =
Q(n△τ)△τ

4πǫ(x− n△τ)2
.

The total field due to the charge along the entire length is

E(x) = lim
△τ→0

∞∑

n=−∞

Q(n△τ)△τ

4πǫ(x− n△τ)2

=

∫ ∞

−∞

Q(τ)

4πǫ(x− τ)2
dτ = Q(x) ∗ 1

4πǫx
.

0 n�τ

�τ

x

x–n�τ

Figure S2.4-47

Solution 2.4-48

(a) Yes, the system is causal since h(t) = 0 for t < 0.

(b) To compute the zero-state response y1(t), the convolution of two rectangular pulses is required:
a pulse of amplitude j and width two and a pulse of amplitude one and a width of one. The
convolution involves several regions.

For t < 0, y1(t) = 0.

For 0 ≤ t < 1, y1(t) =
∫ t

0 jdt = jt.

For 1 ≤ t < 2, y1(t) =
∫ t

t−1
jdt = j(t− (t− 1)) = j.

For 2 ≤ t < 3, y1(t) =
∫ 2

t−1
jdt = j (2− (t− 1)) = j (3− t).
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For t ≥ 3, y1(t) = 0.

Thus,

y1(t) =







jt 0 ≤ t < 1
j 1 ≤ t < 2

j (3− t) 2 ≤ t < 3
0 otherwise

.

(c) To compute y2(t), first note that x2(t) = 2x1(t− 1) + x1(t − 2). Using the system properties
of linearity and time-invariance, the output y2(t) is given by

y2(t) = 2y1(t− 1) + y1(t− 2).

Solution 2.5-1

(a) Here, λ2 + 8λ+ 12 = (λ + 2)(λ + 6). Both roots are in LHP. The system is BIBO stable and
also asymptotically stable.

(b) In this case, λ(λ2 + 3λ + 2) = λ(λ + 1)(λ + 2). The characteristic roots are 0, −1, −2. One
root is on the imaginary axis and none are in the RHP. The system is BIBO unstable and
marginally stable.

(c) The characteristic polynomial is λ2(λ2 +2) = λ2(λ+ j
√
2)(λ− j

√
2). The characteristic roots

are 0 (repeated twice) and ±j
√
2. Because there are repeated roots on imaginary axis, the

system is BIBO unstable and asymptotically unstable.

(d) Here, (λ+ 1)(λ2 − 6λ+ 5) = (λ+ 1)(λ− 1)(λ− 5). The roots are −1, 1 and 5. There are two
roots in the RHP. The system is BIBO unstable and asymptotically unstable.

Solution 2.5-2

(a) The characteristic polynomial is (λ + 1)(λ2 + 2λ + 5)2 = (λ + 1)(λ + 1 − j2)2(λ + 1 + j2)2.
The characteristic roots −1, −1± j2 (repeated twice) are all in the LHP. The system is BIBO
stable and asymptotically stable.

(b) In this case, (λ+ 1)(λ2 + 9) = (λ+ 1)(λ+ j3)(λ− j3). The roots are −1, ±j3. There are two
(simple) roots on the imaginary axis and no roots in the RHP. The system is BIBO unstable
and marginally stable.

(c) Here, (λ + 1)(λ2 + 9)2 = (λ + 1)(λ + j3)2(λ − j3)2. The roots are −1 and ±j3 repeated
twice. Since there is a repeated root on the imaginary axis, the system is BIBO unstable and
asymptotically unstable.

(d) The characteristic polynomial is (λ2+1)(λ2+4)(λ2+9) = (λ+ j1)(λ− j1)(λ+ j2)(λ− j2)(λ+
j3)(λ− j3). The roots are ±j1, ±j2 and ±j3. All roots are simple and on the imaginary axis.
No roots are in the RHP. The system is BIBO unstable and marginally stable.

Solution 2.5-3

Notice that h(t) = et
(
2
3 cos(

3
2 t) +

1
3 sin(πt)

)
u(123 − t) is bounded by the envelope et. Thus,

|h(t)| < etu(123− t) and

∫ ∞

−∞
|h(t)| dt <

∫ ∞

−∞
etu(123− t) dt =

∫ 123

−∞
et dt = e123 < ∞.

Since h(t) is absolutely integrable, the system is BIBO stable.
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Solution 2.5-4

(a) To be causal, a system’s impulse response must equal 0 for all t < 0. Thus,

an LTIC system with h(t) = 1
tu(t− T ) is causal for T ≥ 0.

(b) To be BIBO stable, a system’s impulse response must be absolutely integrable. In the current
case,

∫ ∞

−∞
|h(t)| dt =

∫ ∞

T

1

t
dt = ln(∞)− ln(T ) ≮ ∞.

Since there is no value T for which h(t) is absolutely integrable,

there is no value T for which the system is BIBO stable.

Solution 2.5-5

It is better to chose a system that is guaranteed internally stable rather than a system that is only
guaranteed externally stable. The reason is simple: internal stability automatically guarantees
external stability, but external stability does not always guarantee internal stability. That is, by
choosing a system that is guaranteed internally stable, external stability is likewise guaranteed; the
converse is not necessarily true.

Solution 2.5-6

In this problem, we assume the system is first order and that the system mode is visible in the
impulse response h(t).

(a) Because u(t) = e0tu(t), the characteristic root is 0.

(b) The root lies on the imaginary axis, and the system is marginally stable.

(c) Since
∫∞
0 h(t) dt = ∞, the system is BIBO unstable.

(d) The integral of δ(t) is u(t). Likewise, the system response to δ(t) is u(t). Clearly, the system
is an ideal integrator, which has numerous uses.

Solution 2.5-7

Assume that a system exists that violates Eq. (2.45)) and yet produces a bounded output for every
bounded input. The response at t = t1 is

y(t1) =

∫ ∞

0

h(τ)x(t1 − τ) dτ.

Consider a bounded input x(t) such that at some instant t1,

x(t1 − τ) =

{
1 if h(τ) > 0
−1 if h(τ) < 0

.

In this case
h(τ)x(t1 − τ) = |h(τ)|

and

y(t1) =

∫ ∞

0

|h(τ)| dτ = ∞.

This violates the assumption.
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Solution 2.5-8

(a) For this convolution, there are several regions. For (t < −2) and (t ≥ 4), y(t) = 0.

For (−2 ≤ t < 0), y(t) =
∫ t+2

0 τdτ = (t+ 2)2/2 = t2/2 + 2t+ 2.

For (0 ≤ t < 2), y(t) =
∫ 2

0
τdτ = 2.

For (2 ≤ t < 4), y(t) =
∫ 2

t−2
τdτ = 22/2− (t− 2)2/2 = 2− t2/2− 2t− 2 = −t2/2 + 2t.

Combining yields

y(t) =







t2/2 + 2t+ 2 −2 ≤ t < 0
2 0 ≤ t < 2

−t2/2 + 2t 2 ≤ t < 4
0 otherwise

.

MATLAB is used to plot the result (see Fig. S2.5-8).

>> u = @(t) 1.0*(t>=0); t = -3:.001:5;

>> y = @(t) (t.^2/2+2*t+2).*(u(t+2)-u(t))+2.*(u(t)-u(t-2))+...

>> (-t.^2/2+2*t).*(u(t-2)-u(t-4));

>> plot(t,y(t)); grid on; axis([-3 5 -.25 2.25]);

>> xlabel(’t’); ylabel(’y(t)’);

-3 -2 -1 0 1 2 3 4 5

t

0

1

2

y(
t)

Figure S2.5-8

(b) Yes, the system is stable since
∫
|h(t)| = 4 < ∞.

No, the system is not causal since h(t) 6= 0 for all t < 0.

Solution 2.5-9

The system is stable since h(t) is absolutely integrable. That is,
∫∞
−∞ h(t)dt =

∫ 1

0 1dt = 1 < ∞. The
system is causal since h(t) = 0 for all t < 0.

Solution 2.5-10

Expanding h(t) =
∑∞

i=0(0.5)
iδ(t− i) yields

h(t) = (δ(t) + 0.5δ(t− 1) + 0.25δ(t− 2) + 0.125δ(t− 3) + · · · ) .

(a) Yes, the system is causal since h(t) = 0 for all t < 0.

(b) Yes, the system is stable since the impulse response is absolutely integrable. That is,
∫∞
−∞

∑∞
i=0(0.5)

iδ(t− i)dt =
∑∞

i=0(0.5)
i
∫∞
−∞ δ(t− i) =

∑∞
i=0(0.5)

i = 1−0
1−0.5 = 2 < ∞.



Student use and/or distribution of solutions is prohibited 141

Solution 2.6-1

(a) The time-constant (rise-time) of the system is Th = 10−5. The rate of pulse communication
< 1

Th
= 105 pulses/sec. The channel cannot transmit million pulses/second.

(b) The bandwidth of the channel is

B =
1

Th
= 105Hz

The channel can transmit audio signal of bandwidth 15 kHz readily.

Solution 2.6-2

The system described by (D2+2D+13/4){y(t)}= x(t) has characteristic equation λ2+2λ+13/4 = 0
and characteristic roots

λ =
−2±

√
4− 13

2
= −1± j

3

2
.

The input x(t) = cos(ωt) = 0.5ejωt + 0.5e−jωt will produce a strong response if the input frequency
ω is chosen as close as possible to the characteristic roots of the system. This can be accomplished
by choosing ω to match the imaginary portion of the characteristic roots. That is,

cos(ωt) will produce a strong response when ω = ± 3
2 rad/s.

Solution 2.6-3

For rectangular impulse response ĥ(t) to be an appropriate approximation of h(t), ĥ(t) should have
the same peak amplitude and area of h(t). To have the same peak amplitude requires that A = 2.
The area of h(t) is

∫ 2

0

(4t− 2t2) dt = (2t2 − 2t3/3)|20 = 8− 16

3
=

8

3
.

The area of ĥ(t) is

ATh =
8

3
⇒ Th =

4

3
.

Thus,
ĥ(t) appropriately approximates h(t) when A = 2 and Th = 4

3 .

Solution 2.6-4

Th =
1

B
=

1

104
= 10−4 = 0.1ms

The received pulse width = (0.5+0.1) = 0.6 ms. Each pulse takes up 0.6 ms interval. The maximum
pulse rate (to avoid interference between successive pulses) is

1

0.6× 10−3
≃ 1667 pulses/sec.

Solution 2.6-5

Using Eq. (2.47),

(a) The system rise time is Tr = Th = − 1
λ = 10−4.

(b) The system bandwidth is fc = 1/Th = 1/Tr = 104.

(c) The pulse transmission rate is fc = 104 pulses/sec.
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Solution 2.6-6

The impulse response h(t) of a 6 MHz LP system can be approximated as a rectangle of width
Th = 1000

6 ns. Applying a rectangular data pulse input x(t) that is 500
6 ns wide produces a (roughly)

trapezoidal output y(t) = h(t) ∗ x(t) that is, using the width property of convolution, 1500
6 = 250

ns wide. To avoid overlap, output pulses should be spaced no closer than 250 ns apart. Thus, a
suitable transmission rate for this system is

Frate =
1

250(10−9) = 4(106) pulses/sec .

Solution 2.6-7

A 5 kHz LP system has a time constant of Th = 1
5000 = 0.2 ms. Further, the impulse response h(t)

of an LP system is approximately rectangular, with a width equal to Th. To be noncausal, the
impulse response cannot be zero for all t < 0. Taken together, a possible impulse response of a 5
kHz noncausal LP system is

h1(t) = A[u(t+ 0.0002)− u(t)].

A plot of h1(t) is shown in Fig. S2.6-7. Many other possible solutions exist, such as the impulse
response h2(t), also shown in Fig. S2.6-7.
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Figure S2.6-7

Solution 2.6-8

System 1 is LP with a cutoff frequency of fc = 1 Hz; this is a really slow system. System 2 is allpass
(first delta) with echoes (next 2 deltas) and is obviously a much faster system. Since a fast system
is desired in the transmission of high-speed digital data,

system 2 (allpass w/ echoes) is more appropriate than system 1 (slow lowpass) .

Solution 2.6-9

(a) For a causal system with finite duration h(t), the rise time is exactly equal to the time when
the signal is last non-zero. That is,

Tr = 4 seconds.

(b) The impulse response function h(t) is consistent with a channel that has the following three
characteristics: 1) a channel with delay from input to output (for example, signal propagation
delay), 2) a channel with low-pass character (pulse dispersion that results in a δ(t) input
spreading into a square pulse), and 3) a channel with two signal paths (for example, a primary
signal path and an echo path).

For systems with predominantly low-pass character, digital information can be transmitted
without significant interference at a rate of Fc = 1

Tr
= 1/4. However, this estimate is too

conservative for the present system. Notice that h(t) = 0 for 0 ≤ t < 1, corresponding to
a transmission delay in the primary signal path. The remaining portion of h(t) has a width
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of three, so it is therefore practical to transmit at rates of Fc = 1/3. By clever interleaving
of data, it is possible to transmit at rates of Fc = 1/2. Consider transmitting the binary
sequence {b0, b1, b2, b3, . . . } using a (t = 1)-spaced delta train weighted by the pulse sequence
{b0, b1, 0, 0, b2, b3, 0, 0, . . .}. The output is the series of non-overlapping unit-duration pulses
given by {b0, b1, b0, b1, b2, b3, b2, b3, . . . }. The effective transmission rate is 0.5 bits per unit
time.

(c) The resulting convolution y(t) = x(t) ∗ h(t) has many regions.

For t < 1, y(t) = 0.

For 1 ≤ t < 2, y(t) =
∫ t

1
(−1)dt = 1− t.

For 2 ≤ t < 3, y(t) =
∫ 2

1 (−1)dt = −1.

For 3 ≤ t < 4, y(t) =
∫ 2

t−2(−1)dt+
∫ t

3 (−1)dt = (t− 2)− 2 + 3− t = −1.

For 4 ≤ t < 5, y(t) =
∫ 4

3
(−1)dt = −1.

For 5 ≤ t < 6, y(t) =
∫ 4

t−2(−1)dt = (t− 2)− 4 = t− 6.

For 6 ≤ t, y(t) = 0.

Thus,

y(t) =







1− t 1 ≤ t < 2
−1 2 ≤ t < 5
t− 6 5 ≤ t < 6
0 otherwise

.

MATLAB is used to plot the result (see Fig. S2.6-9).

>> u = @(t) 1.0*(t>=0); t = 0:.001:10;

>> y = @(t) (1-t).*(u(t-1)-u(t-2))-1*(u(t-2)-u(t-5))+...

>> (t-6).*(u(t-5)-u(t-6));

>> plot(t,y(t)); grid on; axis([0 10 -1.2 0.2]);

>> xlabel(’t’); ylabel(’y(t)’);
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Figure S2.6-9

Solution 2.6-10

(a) We use MATLAB to accurately plot h(t), the result of which is shown in Fig. S2.6-10.

>> u = @(t) 1.0*(t>=0); h = @(t) -t.*exp(-t).*u(t);

>> t = -1:.001:8; plot(t,h(t)); grid on;

>> set(gca,’ytick’,[-1/exp(1) 0],’yticklabel’,{’-1/e’,’0’});

>> axis([-1 8 -.5 0.1]); xlabel(’t’); ylabel(’h(t)’);
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Figure S2.6-10

(b) A rectangular approximation ĥ(t) to impulse response h(t) needs the same area and peak
height. First, we compute the area of h(t).

areah =

∫ ∞

−∞
h(t) dt =

∫ ∞

0

−te−t dt.

Using integration by parts (
∫
u dv = uv −

∫
v du with u = t, du = dt, v = e−t and dv =

−e−t dt), we find that

areah = −te−t
∣
∣
∞
0

−
∫ ∞

0

e−t dt = 0− 0 + e−t
∣
∣
∞
0

= 0− 1 = −1

The peak of h(t) occurs when d
dth(t) = te−t − e−t = (t − 1)e−t = 0, or at t = 1. The peak

height of h(t) is thus h(1) = −e−1, as confirmed in Fig. S2.6-10.

The time constant Th, which is also the width of ĥ(t), is thus

Th =
areah
peakh

=
−1

−e−1
= e.

Thus,
ĥ(t) is a rectangle of width Th = e and height −e−1.

That is,
ĥ(t) = −e−1[u(t)− u(t− e)].

The approximate cutoff frequency fc of this system is

fc =
1
Th

= 1
e = 0.3679 Hz .

Solution 2.6-11

(a) A rectangular approximation ĥ(t) to impulse response h(t) needs the same area and peak
height. First, we compute the area of h(t).

areah =

∫ ∞

−∞
h(t) dt =

∫ 1

0

1 dt+

∫ 3

1

3− t

2
dt

= 1 +

(

3t

2
− t2

4

∣
∣
∣
∣

3

1

)

= 1 +
9

4
− 5

4
= 2.

By inspection of Fig. P2.4-8, the peak of h(t) is just 1. The width of ĥ(t), which is also the
time constant Th, is thus

Th =
areah
peakh

=
2

1
= 2.
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Thus,

ĥ(t) is a rectangle of width Th = 2 and height 1.

That is,

ĥ(t) = u(t)− u(t− 2).

(b) From part (a), the time constant is

Th = 2.

(c) The approximate cutoff frequency fc of our LP system with a time-constant Th = 2 is fc =
1
Th

= 0.5 Hz. Expressed in radians, we see that

ωc = 2πfc = π rad/s.

(d) Since ω0 ≪ ωc, our lowpass system will pass a sinusoidal input with a simple gain of
∫
h(t) dt =

2. Thus,

x(t) = sin(ω0t+ π/3) =⇒ y(t) = 2 sin(ω0t+ π/3).

Technically there is also a small phase shift, but we can safely ignore it since ω0 ≪ ωc.

Solution 2.6-12

We approximate the impulse response of the first system as a rectangle of duration 4 µs and some
height A. Similarly, we approximate the impulse response of the second system as a rectangle of
duration 2 µs and some height B. When connected in series, the resulting impulse response is the
convolution of these two rectangular signals, which produces a trapezoidal waveform of duration
6 µs and height 2AB(10−6). All three impulse responses are shown in Fig. S2.6-12. The time
constant Tseries is the area divided by the peak height,

Tseries =
2AB(10−6)(6 − 2)(10−6)

2AB(10−6)
= 4 µs = T1.

It is not surprising that the series system has the same time constant as the first and slowest system
in the cascade; the speed of a chain of systems is limited by the slowest system in that chain!

0 2 4 6

t [µs]

0

A

h
1
(t

)

0 2 4 6

t [µs]

0

B

h
2
(t

)

0 2 4 6

t [µs]

0

2AB(10 -6)

h
se

rie
s
(t

)

Figure S2.6-12

Solution 2.7-1

(a) Here, the characteristic equation is λ4−16 = 0. Rearranging, we obtain λ4 = 16ej2πk. Solving,
we see that λ = 2ejπk/2. Using k = 0, 1, 2, and 3, we obtain the four unique characteristic
roots:

λ1 = 2, λ2 = 2j, λ3 = −2, and λ4 = −2j .

This result is easily confirmed with MATLAB.
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>> lambda = roots([1 0 0 0 -16])

lambda = -2.0000 + 0.0000i

0.0000 + 2.0000i

0.0000 - 2.0000i

2.0000 + 0.0000i

(b) From Eq. (2.17), computing h(t) requires a signal ỹn(t) =
∑4

k=1 cke
λkt. To begin, we express

the needed system of equations with a matrix representation.






1 1 1 1
2 2j −2 −2j
4 −4 4 −4
8 −8j −8 8j













c1
c2
c3
c4






=







0
0
0
1






.

Next, we use MATLAB to compute the coefficients ck.

>> lambda = [2, 2j, -2, -2j];

>> A = [lambda.^0; lambda.^1; lambda.^2; lambda.^3];

>> c = A\[0;0;0;1]

c = 0.0313 + 0.0000i

0.0000 + 0.0313i

-0.0313 + 0.0000i

0.0000 - 0.0313i

Since 0.0313 = 1
32 , we see that

c1 = 1
32 , c2 = j

32 , c3 = − 1
32 , and c4 = − j

32 .

Solution 2.7-2

(a) Here we use MATLAB to plot x(t), h1(t), and h2(t) over the interval −2.5 ≤ t ≤ 3.5. Fig-
ure S2.7-2a shows the results.

>> u = @(t) 1.0*(t>=0); x = @(t) 2*u(t+2/3)-2*u(t);

>> h1 = @(t) mod(t,1); h2 = @(t) h1(t).*(u(t-1)-u(t-2));

>> t = -2.5:.001:3.5;

>> subplot(131); plot(t,x(t)); grid on;

>> axis([-2.5 3.5 -.1 2.1]); xlabel(’t’); ylabel(’x(t)’);

>> set(gca,’xtick’,[-2/3 0],’xticklabel’,{’-2/3’,’0’});

>> subplot(132); plot(t,h1(t)); grid on;

>> axis([-2.5 3.5 -.1 2.1]); xlabel(’t’); ylabel(’h_1(t)’);

>> set(gca,’xtick’,[-2:3]);

>> subplot(133); plot(t,h2(t)); grid on;

>> axis([-2.5 3.5 -.1 2.1]); xlabel(’t’); ylabel(’h_2(t)’);

>> set(gca,’xtick’,[-2:3]);

(b) To help visualize y2(t) = x(t) ∗ h2(t), plots of h2(τ) and x(t − τ) are shown in Fig. S2.7-2b.
There are five regions (R1 to R5) for this convolution .

R1: t < 1
3 y2(t) =

∫
0 dτ = 0

R2: 1
3 ≤ t < 1 y2(t) =

∫ t+ 2
3

1 2(τ − 1) dτ = τ2 − 2τ
∣
∣
t+ 2

3

1
= t2 − 2

3 t+
1
9

R3: 1 ≤ t < 4
3 y2(t) =

∫ t+ 2
3

t 2(τ − 1) dτ = τ2 − 2τ
∣
∣
t+ 2

3

t
= 4

3 t− 8
9

R4: 4
3 ≤ t < 2 y2(t) =

∫ 2

t
2(τ − 1) dτ = τ2 − 2τ

∣
∣
2

t
= −t2 + 2t

R5: t ≥ 2 y2(t) =
∫
0 dτ = 0
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Figure S2.7-2a

Thus,

y2(t) =







0 t < 1
3

t2 − 2
3 t+

1
9

1
3 ≤ t < 1

4
3 t− 8

9 1 ≤ t < 4
3

−t2 + 2t 4
3 ≤ t < 2

0 t ≥ 2

.

A plot of y2(t) is also found in Fig. S2.7-2b.
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(c) Since h1(t) is 1-periodic, y1(t) = x(t)∗h1(t) is also 1-periodic. Thus, we only need to determine
y1(t) over a 1 second interval. By flipping and shifting x(t), there are only two regions that
need to be computed.

R1: 0 ≤ t < 1
3 y1(t) =

∫ t+ 2
3

t
2τ dτ = τ2

∣
∣
t+ 2

3

t
= 4

3 t+
4
9

R2: 1
3 ≤ t < 1 y1(t) =

∫ 1

t
2τ dτ +

∫ t+ 2
3

1
2(τ − 1) dτ = τ2

∣
∣
1

t
+ τ2 − 2τ

∣
∣
t+ 2

3

1
= − 2

3 t+
10
9

.
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Applying a periodic extension, the final result is

y1(t) =







4
3 t+

4
9 0 ≤ t < 1

3

− 2
3 t+

10
9

1
3 ≤ t < 1

y1(t+ 1) ∀t
.

A plot of y1(t) is shown at the top of Fig. S2.7-2c. This result is graphically verified (see
bottom of Fig. S2.7-2c) by modifying program CH2MP4.m in Sec. 2.7.4 with updated definitions
of x(t) and h(t), finer resolution time vector, and cosmetic changes to axis limits.
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Solution 2.7-3

(a) KCL at the negative terminal of the op-amp yields x(t)−0
Rin

+ y(t)−0
Rf

+ ic(t) = 0. Also, ic(t) =

Cẏ(t). Thus, x(t)
Rin

+ y(t)
Rf

+ Cẏ(t) = 0 or

ẏ(t) +
1

CRf
y(t) =

−1

CRin
x(t).
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The characteristic equation is λ+ 1
CRf

= 0, and the characteristic root is

λ =
−1

CRf
.

(b) The zero-state response is y(t) = x(t) ∗ h(t), where h(t) = b0δ(t) + [P (D)ỹ0(t)]u(t). This
is a first order system with λ = −1

CRf
, thus ỹ0(t) = c̃1e

λt. Since ỹ0(0) = 1 = c̃1,

b0 = 0, and P (D) = −1
CRin

, the impulse response is h(t) = −1
CRin

e−t/(CRf )u(t). Thus,

y(t) =
(∫ t

0
−1

CRin
e−τ/(CRf)dτ

)

u(t) =

(

Rf

Rin
e−τ/(CRf)

∣
∣
∣

t

τ=0

)

u(t) =
Rf

Rin
(e−t/(CRf ) − 1)u(t).

y(t) =
Rf

Rin
(e−t/(CRf ) − 1)u(t).

Notice, y(t) approaches
−Rf

Rin
as time increases; unlike a true integrator, the “lossy” integrator

provides a bounded output in response to a DC input.

(c) For this system, the characteristic root is only affected by C and Rf . Using 10% resistors,
the resistor Rf is generally expected to lie in the range (0.9Rf , 1.1Rf). Using 25% capacitors,
the capacitor C is generally expected to lie in the range (.25C, 1.25C). Since λ = −1

CRf
, the

characteristic root is expected to lie in the range (λ/[(0.9)(0.75)], λ/[(1.1)(1.25)]). Thus,

The characteristic root is expected within the interval (1.48λ, 0.73λ).

Solution 2.7-4

Identify the output of the first op-amp as v(t).

(a) KCL at the negative terminal of the first op-amp yields x(t)
R1

+ C1v̇(t) = 0 or 1
R1C1

x(t) =

−v̇(t). KCL at the negative terminal of the second op-amp yields v(t)
R2

+ y(t)
R3

+ C2ẏ(t) = 0

or v(t) = −R2

R3
y(t) − R2C2ẏ(t). Substituting this expression for v(t) into the first expression

yields 1
R1C1

x(t) = R2

R3
ẏ(t) +R2C2ÿ(t). Thus,

ÿ(t) +
1

R3C2
ẏ(t) =

1

R1R2C1C2
x(t).

The characteristic equation is λ2 + 1
R3C2

λ = 0 and the characteristic roots are

λ1 = 0 and λ2 = − 1

R3C2
.

Substituting C1 = C2 = 10µF, R1 = R2 = 100kΩ, and R3 = 50kΩ yields

ÿ(t) + 2ẏ(t) = x(t), λ1 = 0, and λ2 = −2.

Since one root lies on the ω-axis, the circuit is not BIBO stable. In particular, a DC input
results in an unbounded output.

(b) The zero-input response has form y0(t) = c1 + c2e
−2t. Each op-amp has an initial output of

one volt. Thus, y0(0) = 1 = c1+c2. KCL at the negative terminal of the second op-amp yields
1
R2

+ 1
R3

+ C2ẏ0(0) = 0 or ẏ0(0) = − 1
R2C2

− 1
R3C2

= −1− 2 = −3. Thus, ẏ0(0) = −3 = −2c2.
Thus, c2 = 3/2 and c1 = 1− 3/2 = −1/2 and

y0(t) = −1/2 + 3/2e−2t.
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(c) The zero-state response is y(t) = x(t) ∗ h(t), where h(t) = b0δ(t) + [P (D)ỹ0(t)]u(t). This is a
second order system with λ1 = 0 and λ2 = −2, so ỹ0(t) = c̃1 + c̃2e

−2t. Solving ỹ0(0) = 0 =

c̃1 + c̃2 and ỹ
(1)
0 (t) = 1 = −2c̃2 yields c̃2 = −1/2 and c̃1 = 1/2. Since b0 = 0 and P (D) = 1,

h(t) =
(
1/2− e−2t/2

)
u(t).

Next, y(t) = x(t) ∗ h(t) =
(∫ t

0
(1/2− e−2τ/2)dτ

)

u(t) =
(

τ/2 + e−2τ/4
∣
∣
t

τ=0

)

u(t) =
(
t/2 + e−2t/4− 1/4

)
u(t).

y(t) =
(
t/2 + e−2t/4− 1/4

)
u(t).

As expected, the DC nature of the unit step input results in an unbounded output.

(d) For this system, λ1 = 0 is not affected by the components and λ2 is only affected by C2

and R3. Using 10% resistors, the resistor R3 is generally expected to lie in the range
(0.9R3, 1.1R3). Using 25% capacitors, the capacitor C2 is generally expected to lie in the
range (.25C2, 1.25C2). Since λ2 = − 1

R3C2
, the characteristic root is expected to lie in the

range (λ2/[(0.9)(0.75)], λ2/[(1.1)(1.25)]). Thus,

λ1 is unaffected and λ2 is expected to lie within (−2.9630,−1.4545).

Solution 2.7-5

A plot of y1(t) is shown at the top of Fig. S2.7-5c. Here, we compute y(t) = x(t) ∗ h(t) graphically
by modifying program CH2MP4.m in Sec. 2.7.4. As shown in Fig. S2.7-5, the final result has a total
of 7 regions.

% CH2MP4.m : Chapter 2, MATLAB Program 4

% Script M-file graphically demonstrates the convolution process.

figure(1) % Create figure window and make visible on screen

u = @(t) 1.0*(t>=0);

x = @(t) 3*(u(t)-u(t-1))+2*(u(t-2)-u(t-3));

h = @(t) (4-t).*(u(t)-u(t-2));

dtau = 0.005; tau = -3:dtau:6;

ti = 0; tvec = -0.5:.02:5.5;

y = NaN*zeros(1,length(tvec)); % Pre-allocate memory

for t = tvec,

ti = ti+1; % Time index

xh = x(t-tau).*h(tau); lxh = length(xh);

y(ti) = sum(xh.*dtau); % Trapezoidal approximation of convolution integral

subplot(2,1,1),plot(tau,h(tau),’k-’,tau,x(t-tau),’k--’,t,0,’ok’);

axis([tau(1) tau(end) -1 12]);

patch([tau(1:end-1);tau(1:end-1);tau(2:end);tau(2:end)],...

[zeros(1,lxh-1);xh(1:end-1);xh(2:end);zeros(1,lxh-1)],...

[.8 .8 .8],’edgecolor’,’none’);

xlabel(’\tau’); title(’h(\tau) [solid], x(t-\tau) [dashed], h(\tau)x(t-\tau) [gray]’);

c = get(gca,’children’); set(gca,’children’,[c(2);c(3);c(4);c(1)]);

subplot(2,1,2),plot(tvec,y,’k’,tvec(ti),y(ti),’ok’);

xlabel(’t’); ylabel(’y(t) = \int h(\tau)x(t-\tau) d\tau’);

axis([tau(1) tau(end) -1 12]); grid;

drawnow;

end
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Chapter 3 Solutions

Solution 3.1-1

(a) Ex = (3)2 + 2(2)2 + 2(1)2 = 19

(b) Ex = (3)2 + 2(2)2 + 2(1)2 = 19

(c) Ex = 2(3)2 + 2(6)2 + 2(9)2 = 252

(d) Ex = 2(2)2 + 2(4)2 = 40

Solution 3.1-2

(a)

Px =
1

N0 + 1

3∑

n=−3

|x[n]|2 =
1

6

[
2(1)2 + 2(2)2 + 32

]
=

19

6

(b)

Px =
1

12

[
2(1)2 + 2(2)2 + 2(3)2

]
=

7

3

(c)

Px =
1

N0

N0−1∑

n=0

an =
1

N0

[
aN0 − 1

a− 1

]

=
aN0 − 1

N0(a− 1)

Solution 3.1-3

First, we show that the power of a signal Dej(2π/N0)n is |D|2.

P =
1

N0

N0−1∑

n=0

∣
∣
∣Dejr

2π
N0

n
∣
∣
∣

2

=
1

N0

N0−1∑

n=0

|D|2 = |D|2.

Next, we show that the power of a signal x[n] =
∑N0−1

r=0 Dre
jr(2π/N0)n is Px =

∑N0−1
r=0 |Dr|2

Px =
1

N0

N0−1∑

n=0

|x[n]|2

=
1

N0

N0−1∑

n=0

∣
∣
∣
∣
∣

N0−1∑

r=0

Dre
jrΩ0n

∣
∣
∣
∣
∣

2

=
1

N0

N0−1∑

n=0

N0−1∑

r=0

Dre
jrΩ0n

N0−1∑

m=0

D∗
me−jmΩ0n

152
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Interchanging the order of summation yields

Px =
1

N0

N0−1∑

r=0

N0−1∑

m=0

DrD∗
m

[
N0−1∑

n=0

ej(r−m)Ω0n

]

The summation within square brackets is N0 when r = m and 0 otherwise. Hence,

Px =

N0−1∑

r=0

DrD∗
r =

N0−1∑

r=0

|Dr|2 .

Solution 3.1-4

(a) Here,

x[n] = 0.8nu[n] =
1

2

{
0.8nu[n] + 0.8−nu[−n]

}

︸ ︷︷ ︸

xe[n]

+
1

2

{
0.8nu[n]− 0.8−nu[−n]

}

︸ ︷︷ ︸

xo[n]

and

Ex =

∞∑

n=0

(0.8)2n =

∞∑

n=0

0.64n =
1

1− 0.64
= 2.78.

(b) To find the energy of the even component xe[n], we observe that both terms 0.8nu[n] and
0.8−nu[−n] are nonzero at n = 0. Hence, the two terms are not disjoint, and the energy Exe

is not the sum of the energies of the two terms. For this reason, we rearrange xe[n] as

xe[n] = δ[n] +
1

2

{
0.8nu[n− 1] + 0.8−nu[−n− 1]

}
.

All the above three terms are disjoint. Hence Exe is the sum of energies of the three terms.
Thus,

Exe = 1 +
1

4

∞∑

n=1

0.64n +
1

4

−1∑

n=−∞
0.64−n

= 1 +
1

2

∞∑

n=1

0.64n = 1 +
1

2

[
0.64

1− 0.64

]

= 1.89.

The energy of xo[n] is

Exo =
1

4

[ ∞∑

n=1

0.64n +
−1∑

n=−∞
0.64−n

]

=
1

2

∞∑

n=1

0.64n = 0.89.

Hence

Exe + Exo = 1.89 + 0.89 = 2.78 = Ex

(c) Let us first consider a causal signal x[n], which can be expressed as

x[n] = x[0]δ[n] +
1

2
{x[n]u[n− 1] + x[−n]u[−n− 1]}

︸ ︷︷ ︸

xe[n]

+
1

2
{x[n]u[n− 1]− x[−n]u[−n− 1]}

︸ ︷︷ ︸

xo[n]

.
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The energy of the even component xe[n] is

Exe = x2[0] +
1

4

∞∑

n=1

|x[n]|2 + 1

4

−∞∑

n=−1

|x[−n]|2 = x2[0] +
1

2

∞∑

n=1

|x[n]|2.

Similarly,

Exo =
1

2

∞∑

n=1

|x[n]|2.

Hence,

Exe + Exo = x2[0] +

∞∑

n=1

|x[n]|2 = Ex.

Similarly, we can show that this result applies to anticausal signals also.

A general signal is made up of causal and anticausal components, which are disjoint. Hence the
energy of a signal is the sum of energies of the causal and anticausal components. Moreover the
energy of each causal and anticausal component is equal to the sum of the respective even and
odd components. Also the sum of the even components of the causal and anticausal signals
equals the even component of x[n]. The same is true of odd components. Hence, it follows
that the energy of x[n] is the sum of energies of even and odd components of x[n].

Solution 3.1-5

In this problem, x[n] = x[n]u[n] is a causal energy signal. By definition, we know that

xe[n] =
x[n] + x[−n]

2
=

x[n]u[n] + x[−n]u[−n]

2

and

xo[n] =
x[n]− x[−n]

2
=

x[n]u[n]− x[−n]u[−n]

2
.

(a) The energy of a DT signal x[n] is computed as

Ex =

∞∑

n=−∞
|x[n]u[n]|2 =

∞∑

n=0

|x[n]|2.

Computing the energy of xe[n], we obtain

Exe =

∞∑

n=−∞
|xe[n]|2

=

∞∑

n=−∞

∣
∣
∣
∣

x[n]u[n] + x[−n]u[−n]

2

∣
∣
∣
∣

2

=
1

4

∞∑

n=−∞
|x[n]|2u[n] + 2|x[0]|2δ[n] + |x[−n]|2u[−n]

=
1

4

∞∑

n=0

|x[n]|2 +
∞∑

n=−∞

1

2
|x[0]|2δ[n] + 1

4

0∑

n=−∞
|x[−n]|2

=
1

4
Ex +

1

2
|x[0]|2 + 1

4
Ex =

1

2
Ex +

1

2
|x[0]|2.
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Similarly,

Exo =

∞∑

n=−∞
|xo[n]|2

=
∞∑

n=−∞

∣
∣
∣
∣

x[n]u[n]− x[−n]u[−n]

2

∣
∣
∣
∣

2

=
1

4

∞∑

n=−∞
|x[n]|2u[n]− 2|x[0]|2δ[n] + |x[−n]|2u[−n]

=
1

4

∞∑

n=0

|x[n]|2 −
∞∑

n=−∞

1

2
|x[0]|2δ[n] + 1

4

0∑

n=−∞
|x[−n]|2

=
1

4
Ex − 1

2
|x[0]|2 + 1

4
Ex =

1

2
Ex − 1

2
|x[0]|2.

Adding Exe and Exo we obtain

Exe + Exo =
1

2
Ex +

1

2
|x[0]|2 + 1

2
Ex − 1

2
|x[0]|2 = Ex.

Clearly, Exe = Exo = 0.5Ex holds true if x[n] is causal and x[0] = 0.

(b) Next, we compute the cross energy of xe and xo as

Exe,xo =

∞∑

n=−∞
xe[n]x

∗
o[n]

=

∞∑

n=−∞

(
x[n]u[n] + x[−n]u[−n]

2

)(
x[n]u[n]− x[−n]u[−n]

2

)∗

=
1

4

∞∑

n=−∞
|x[n]|2u[n] + |x[0]|2δ[n]− |x[0]|2δ[n]− |x[−n]|2u[−n]

=
1

4

∞∑

n=0

|x[n]|2 − 1

4

0∑

n=−∞
|x[−n]|2

=
1

4
(Ex − Ex) = 0.

Solution 3.1-6

In this problem,

x[n] =

{ (
1
3

)n
n ≥ 0

An n < 0
,

where A is either 0.5, 1, or 2. For A 6= 1, the energy of x[n] is

Ex =

−1∑

−∞
A2n +

∞∑

0

(
1

3
)2n =

A−2(∞) − 1

1−A2
+

1− 0

1− 1
9

.
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For A 6= 1, the power of x[n] is

Px = lim
N→∞

1

2N + 1

( −1∑

−N

A2n +
N∑

0

(
1

3
)2n

)

= lim
N→∞

1

2N + 1

(
A−2(∞) − 1

1−A2
+

1− 0

1− 1
9

)

= lim
N→∞

1

2N + 1

(
A−2(∞) − 1

1−A2

)

.

(a) For the case A = 1
2 , we see that

Ex =
22(∞) − 1

1− 1
4

+
9

8
= ∞

and

Px = lim
N→∞

1

2N + 1

(
22(∞) − 1

1− 1
4

)

= ∞.

When A = 1
2 , x[n] is neither an energy signal nor a power signal (Ex = Px = ∞).

(b) For the case A = 1, we see that

Ex =

−1∑

−∞
1 +

∞∑

0

(
1

3
)2n = ∞

and

Px = lim
N→∞

1

2N + 1

( −1∑

−N

1 +

N∑

0

(
1

3
)2n

)

= lim
N→∞

1

2N + 1

(

N +
9

8

)

=
1

2
.

When A = 1, x[n] a power signal (Ex = ∞ and Px = 1
2 ).

(c) For the case A = 2, we see that

Ex =
2−2(∞) − 1

1− 22
+

9

8
=

1

3
+

9

8
=

35

24
.

Since energy is finite,
Px = 0.

When A = 2, x[n] is an energy signal (Ex = 35
24 and Px = 0).

Solution 3.1-7

To begin, we notice that

x[n] = Re
{

3ejπn/4
}

= 3 cos(πn/4).

We see that x[n] is 8-periodic and, therefore, a power signal.

Px =
1

8

7∑

n=0

|x[n]|2 =
1

8

[

2(3)2 + 4(3/
√

(2))2
]

=
1

8
[18 + 18] =

9

2
.

We can verify this power calculation in MATLAB.
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>> x = @(n) 3*cos(pi*n/4); n = 0:7; Px = sum((x(n)).^2)/8

Px = 4.5000

Since 0 < Px < ∞, we know that Ex = ∞. Thus,

Ex = ∞ and Px =
9

2
.

Solution 3.2-1

(a) The energy Ea of x[−n] is given by

Ea =

∞∑

n=−∞
|x[−n]|2.

Setting n = −m, we obtain

Ea =

−∞∑

m=∞
|x[m]|2 =

∞∑

m=−∞
|x[m]|2 = Ex.

(b) The energy Eb of x[n−m] is given by

Eb =

∞∑

n=−∞
|x[n−m]|2 =

∞∑

r=−∞
|x[r]|2 = Ex.

(c) The energy Ec of x[m− n] is given by

Ec =

∞∑

n=−∞
|x[m− n]|2 =

−∞∑

r=∞
|x[r]|2 =

∞∑

r=−∞
|x[r]|2 = Ex.

(d) The energy Ed of Kx[n] is given by

Ed =
∞∑

n=−∞
|Kx[n]|2 = K2

∞∑

n=−∞
|x[n]|2 = K2Ex

Solution 3.2-2

We are given that a periodic signal x[n] has power Px.

(a) The power Pa of −x[n] is given by

Pa =
1

N

∑

N

| − x[n]|2 =
1

N

∑

N

|x[n]|2 = Px.

(b) The power Pb of x[−n] is given by

Pb =
1

N

∑

N

|x[−n]|2.

Setting n′ = −n, we obtain

Pb =
1

N

∑

N

|x[n′]|2 = Px.
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(c) The power Pc of x[n−m] is given by

Pc =
1

N

∑

N

|x[n−m]|2.

Setting n′ = n−m, we obtain

Pc =
1

N

∑

N

|x[n′]|2 = Px.

(d) The power Pd of cx[n] is given by

Pd =
1

N

∑

N

|cx[n]|2 = |c|2 1

N

∑

N

|x[n]|2 = |c|2Px.

(e) The power Pe of x[m− n] is given by

Pe =
1

N

∑

N

|x[m− n]|2.

Setting n′ = m− n, we obtain

Pe =
1

N

∑

N

|x[n′]|2 = Px.

These results show that time-shift or time-inversion operations do not affect the power of a signal.
The same is the case with a sign change. Multiplication of a signal by a constant c causes |c|2-fold
increase in power.

Solution 3.2-3

This problem considers a signal x[n] that is defined as [−1, 2,−3, 4,−5, 4,−3,
↓
2,−1].

(a) We use a simple table to construct y[n] = x[−3n+ 2].

n y[n]
0 x[−3(0) + 2] = x[2] = 0
1 x[−3(1) + 2] = x[−1] = −3
2 x[−3(2) + 2] = x[−4] = 4
3 x[−3(3) + 2] = x[−7] = −1
4 x[−3(4) + 2] = x[−10] = 0

Thus,

y[n] = [
↓
0,−3, 4,−1].

(b) For z[n] = x[n/2 − 3], we see that z[n] = x[−7] (the left-most nonzero value of x[n]) when
n/2− 3 = −7 or n = −8. We obtain the remaining values of z[n] by interlacing each value of
x[n] with a single zero (upsample by 2). Thus,

z[n] = [−1, 0, 2, 0,−3, 0, 4, 0,
↓
−5, 0, 4, 0,−3, 0, 2, 0,−1].
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Solution 3.2-4

This problem considers a signal x[n] that is defined as [−1,
↓
2,−3, 4,−5, 4,−3, 2,−1].

(a) Since x[n] is finite-duration, it is an energy signal and Px = 0. The energy Ex is just a
summation of the values of |x[n]|2.

Ex = (1 + 4 + 9 + 16 + 25 + 16 + 9 + 4 + 1) = 85.

(b) We use a simple table to construct y[n] = x[2(n+ 2)].

n y[n]
−3 x[2(−3 + 2)] = x[−2] = 0
−2 x[2(−2 + 2)] = x[0] = 2
−1 x[2(−1 + 2)] = x[2] = 4
0 x[2(0 + 2)] = x[4] = 4
1 x[2(1 + 2)] = x[6] = 2
2 x[2(2 + 2)] = x[8] = 0

Thus,

y[n] = [2, 4,
↓
4, 2].

(c) For z[n] = x[−n−6
3 ], we see that z[n] = x[−1] (the left-most nonzero value of x[n]) when

−n−6
3 = −1 or n = 9. We obtain the remaining values of z[n] by reflecting x[n] and interlacing

each value with two zeros (upsample by 3). Thus,

z[n] = [−1, 0, 0, 2, 0, 0,−3, 0, 0, 4, 0, 0,−5, 0, 0,
↓
4, 0, 0,−3, 0, 0, 2, 0, 0,−1].

Solution 3.2-5

This problem considers a 4-periodic signal w[n] defined as [· · · , 1, 2, 3, 4,
↓
1, 2, 3, 4, 1, 2, 3, 4, · · · ].

(a) For x[n] = w[2n], x[n] is just w[n] downsampled by 2. Thus,

x[n] = [· · · 1, 3,
↓
1, 3, 1, 3, · · · ].

Clearly, x[n] is 2-periodic and thus a power signal with Px = 1
2 (1

2 + 32) = 10
2 = 5. Thus,

Ex = ∞ and Px = 5.

(b) For y[n] = w[2− n
3 ], y[n] is just w[n] reflected, upsampled by 3, and then shifted. To help get

oriented, we see that y[0] = w[2− 0
3 ] = w[2] = 3. Thus,

y[n] = [· · · 4, 0, 0,
↓
3, 0, 0, 2, 0, 0, 1, 0, 0, 4, 0, 0, 3, 0, 0, 2, 0, 0, 1, 0, 0, · · · ].

Clearly, y[n] is 12-periodic and thus a power signal with Py = 1
12 (1

2 +22 + 32 +42) = 30
12 = 5

2 .
Thus,

Ex = ∞ and Px =
5

2
.



160 Student use and/or distribution of solutions is prohibited

Solution 3.2-6

(a) Since x[n] is finite duration, it is an energy signal and Px = 0. Further, Ex =
∑5

n=0 |x[n]|2 =
12 + 22 + 32 + 42 + 52 + 62 = 91. Thus,

Ex = 91 and Px = 0.

(b) Since y[n] is reflected with every other term of x[n] missing, we know that N1 = −2. Since
y[n] has 2 zeros inserted between each value from x[n], we know that N2 = 3. We want x[4]
to go to y[0] = x[−2(0)/3 +N3], so we know that N3 = 4. Thus,

N1 = −2, N2 = 3, and N3 = 4.

For obvious reasons, it is also possible to have

N1 = 2, N2 = −3, and N3 = 4.

(c) Noting that y[n] has a duration of 7, a 6-periodic replication of y[n] has overlapping values

and, over one period, is given by ỹ[n] = [· · · ,
↓

(5+1), 0, 0, 3, 0, 0, (5+1), 0, 0, 3, 0, 0, · · · ]. The
power of ỹ[n] is computed as

Pỹ =
1

6

5∑

n=0

|ỹ[n]|2 =
1

6
(62 + 32) =

45

6
=

15

2
.

Thus,

Eỹ = ∞ and Pỹ =
15

2
.

Solution 3.2-7

Figure S3.2-7 shows the desired signals.
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Solution 3.2-8

Figure S3.2-8 shows the desired signals.
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Figure S3.2-8

Solution 3.2-9

This problem considers a DT signal x[n] whose nonzero values are given as x[n] = [1, -3, 2, 2, 3, -2,

-1, 1, 2, -3,
↓
3, 3, -2, 1, -3, 2, 3, -1]. Over −5 ≤ n ≤ 4, the desired signals y[n] = x[−1 − 2n] and

z[n] = x[−2 + n/3] are easily determined by direct substitution.

n -5 -4 -3 -2 -1 0 1 2 3 4
y[n] x[9] x[7] x[5] x[3] x[1] x[-1] x[-3] x[-5] x[-7] x[-9]
z[n] 0 0 x[-3] 0 0 x[-2] 0 0 x[-1] 0

As Fig. S3.2-9 makes clear, y[n] is a reflected, downsampled, and shifted version of x[n] while z[n]
is an upsampled and shifted version of x[n].

-4 -2 0 2 4

n

-3
-2
-1
0
1
2
3

y[
n]

-4 -2 0 2 4

n

-3
-2
-1
0
1
2
3

z[
n]

Figure S3.2-9

Solution 3.2-10

In this problem, we determine and locate the two largest nonzero values of signals that are functions
of x[n] = (12 )

nu[n]. The largest nonzero values of x[n] are x[0] = 1, x[1] = 1
2 , x[2] =

1
4 , and so forth.

(a) For ya[n] = x[2n], we see that

n −1 0 1 2 3 4
ya[n] x[−2] x[0] x[2] x[4] x[6] x[8]
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Thus, the two largest nonzero values are

ya[0] = x[0] = 1 and ya[1] = x[2] =
1

4
.

(b) For yb[n] = x[n/3] we see that

n −1 0 1 2 3 4
yb[n] 0 x[0] 0 0 x[1] 0

Thus, the two largest nonzero values are

yb[0] = x[0] = 1 and yb[3] = x[1] =
1

2
.

(c) For yc[n] = x[3n+ 1] we see that

n −1 0 1 2 3 4
yc[n] x[−2] x[1] x[4] x[7] x[10] x[13]

Thus, the two largest nonzero values are

yc[0] = x[1] =
1

2
and yc[1] = x[4] =

1

16
.

(d) For yd[n] = x[−2n+ 5] we see that

n −1 0 1 2 3 4
yd[n] x[7] x[5] x[3] x[1] x[−1] x[−3]

Thus, the two largest nonzero values are

yd[2] = x[1] =
1

2
and yd[1] = x[3] =

1

8
.

(e) For ye[n] = x[−(n+ 8)/2] we see that

n −12 −11 −10 −9 −8 −7 −6 −5
ye[n] x[2] 0 x[1] 0 x[0] 0 x[−1] 0

Thus, the two largest nonzero values are

ye[−8] = x[0] = 1 and ye[−10] = x[1] =
1

2
.

Solution 3.3-1

Figure S3.3-1 shows the desired signals.

(a) Px = limN→∞
1

2N+1

∑N
−N (1)2n = limN→∞

2N+1
2N+1 = 1

(b) Px = limN→∞
1

2N+1

∑N
−N (−1)2n = limN→∞

2N+1
2N+1 = 1

(c) Px = limN→∞
1

2N+1

∑N
0 (1)2 = limN→∞

N+1
2N+1 = 1

2

(d) Px = limN→∞
1

2N+1

∑N
0 (−1)2 = limN→∞

N+1
2N+1 = 1

2

(e) Here, N0 = 2π
π
3

= 6. Thus,

Px = 1
6

∑5
0(cos[

π
3n+ π

6 ])
2 = 1

6

[(√
3
2

)2

+ 02 +
(

−
√
3
2

)2

+
(

−
√
3
2

)2

+ 02 +
(√

3
2

)2
]

= 1
2 .
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Figure S3.3-1

Solution 3.3-2

(a) Since, u[n] = δ[n]+δ[n−1]+δ[n−2]+· · · , we know that u[n−2] = δ[n−2]+δ[n−3]+δ[n−4]+· · · .
Thus, u[n]−u[n− 2] = (δ[n]+ δ[n− 1]+ δ[n− 2]+ · · ·)− (δ[n− 2]+ δ[n− 3]+ δ[n− 4]+ · · ·) =
δ[n] + δ[n− 1].

(b) Because sin πn
3 = 0 for n = 0, we see that 2n−1 sin

(
πn
3

)
u[n]= 1

2 2
n sin

(
πn
3

)
u[n−1].

(c) Because n(n− 1) = 0 for n = 0 and n = 1, we see that n(n− 1)γnu[n] = n(n− 1)γnu[n− 2].

(d) Because sin πn
2 = 0 for even n and u[n] + (−1)nu[n] = 0 for odd n, we see that

(u[n] + (−1)nu[n]) sin
(πn

2

)

= 0 for all n.

(e) Because cos πn
2 = 0 for odd n and u[n] + (−1)n+1 = 0 for even n, we see that (u[n] +

(−1)n+1u[n]) cos
(πn

2

)

= 0 for all n.

Solution 3.3-3

Figure S3.3-3 shows the signals
xa[n] = u[n− 2]− u[n− 6]
xb[n] = n{u[n]− u[n− 7]}
xc[n] = (n− 2){u[n− 2]− u[n− 6]}
xd[n] = (−n+ 8){u[n− 6]− u[n− 9]}, and
xe[n] = (n− 2){u[n− 2]− u[n− 6]}+ (−n+ 8){u[n− 6]− u[n− 9]} = xc[n] + xd[n].
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Figure S3.3-3

Solution 3.3-4

(a) x[n] = (n+ 3) (u[n+ 3]− u[n]) + (−n+ 3) (u[n]− u[n− 4])

(b) x[n] = n (u[n]− u[n− 4]) + (−n+ 6) (u[n− 4]− u[n− 7])

(c) x[n] = 3n (u[n+ 3]− u[n− 4])

(d) x[n] = −2n (u[n+ 2]− u[n]) + 2n (u[n]− u[n− 3])

In all four cases, x[n] may be represented by other (slightly different) expressions. For instance,
in case (a), we may also use x[n] = (n + 3) (u[n+ 3]− u[n− 1]) + (−n + 3) (u[n− 1]− u[n− 4]).
Moreover because x[n] = 0 at n = ±3, u[n + 3] and u[n − 4] may be replaced with u[n + 2] and
u[n− 3], respectively. Similar observations apply to the other cases also. What is important is that
the expression evaluates to the correct waveform shape.

Solution 3.3-5

As eigensignals of LTID system, everlasting exponentials zn pass through LTID systems modified
only in gain and phase – no shape distortion occurs. As shown in Sec. 3.8.2 [see Eq. (3.38)], this
idea is expressed mathematically as

zn
H−→ znH(z),

where H(z) is the LTID system’s transfer function.

Solution 3.3-6

The Kronecker delta function δ[n] serves a similar role in the study of DT systems as the Dirac
delta function δ(t) does for CT systems. The two functions have similarities and differences.

The Kronecker delta function is defined as

δ[n] =

{
1 n = 0
0 otherwise

.

Thus, we see that the Kronecker delta in nonzero only at time instant n = 0. Further, we see that
a Kronecker delta has an accumulated sum (area) of 1,

∑∞
n=−∞ δ[n] = 1 . The Kronecker delta
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function can be generated in practical DT systems, and it is used as an input to determine a DT
system’s impulse response h[n].

The Dirac delta function is often defined with the sifting property as

x(t) =

∫ ∞

−∞
x(τ)δ(t − τ) dτ.

This definition requires that the Dirac delta function be nonzero only at time instant t = 0 and
that the area of δ(t) is 1. The Dirac delta function is used as an input to determine a CT system’s
impulse response h(t). These properties are very similar to the above properties of the Kronecker
delta function. The Dirac delta function, however, has unbounded amplitude at t = 0, which makes
it impossible to generate δ(t) in real-world situations.

Solution 3.3-7

(a) eλan = e−0.5n = (0.6065)n = (γa)
n

(b) eλbn = e0.5n = (1.6487)n = (γb)
n

(c) eλcn = e−jπn = (e−jπ)n = (−1)n = (γc)
n

(d) eλdn = ejπn = (ejπ)n = (−1)n = (γd)
n

Figure S3.3-7 shows locations of λ and γ in each case. By plotting these signals, we observe that
when |γ| < 1 (λ in LHP), the signal decays exponentially. When |γ| > 1 (λ in RHP), the signal
grows exponentially. When |γ| = 1 (λ on imaginary axis), the signal amplitude is constant.
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Solution 3.3-8

(a) e−(1+jπ)n = (e−1e−jπ)n =
(
− 1

e

)n

(b) e−(1−jπ)n = (e−1ejπ)n =
(
− 1

e

)n

(c) e(1+jπ)n = (e ejπ)n = (−e)n

(d) e(1−jπ)n = (e e−jπ)n = (−e)n

(e) e−(1+j π
3 )n = (e−1)n e−j π

3 n = (1e )
n[cos π

3n− j sin π
3n]

(f) e(1−j π
3 )n = (e1)n e−j π

3 n = en[cos π
3n− j sin π

3n]

Solution 3.3-9

In general, any signal can be decomposed into a sum of even and odd components as

x[n] =
1

2
{x[n] + x[−n]}
︸ ︷︷ ︸

xe[n]

+
1

2
{x[n]− x[−n]}
︸ ︷︷ ︸

xo[n]

.

(a)

u[n] =
1

2
{u[n] + u[−n]}
︸ ︷︷ ︸

xe[n]

+
1

2
{u[n]− u[−n]}
︸ ︷︷ ︸

xo[n]
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Figure S3.3-9a

(b)

nu[n] =
1

2
{nu[n]− nu[−n]}
︸ ︷︷ ︸

xe[n]

+
1

2
{nu[n] + nu[−n]}
︸ ︷︷ ︸

xo[n]
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Figure S3.3-9b

(c) sin
(
πn
4

)
is an odd function, so its even component is zero.
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(d) cos
(
πn
4

)
is an even function, so its odd component is zero.
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Solution 3.4-1

(a) Because y[n] = y[n− 1] + x[n], the standard-form difference equation is

y[n]− y[n− 1] = x[n]

(b) Realization of this equation is shown in Fig. S3.4-1.

x[n]

y[n–1]

y[n]

Σ

Delay

T

Figure S3.4-1

Solution 3.4-2

The net growth rate of the native population is 3.3− 1.3 = 2% per year. Assuming the immigrants
enter at a uniform rate throughout the year, their birth and death rate will be (3.3/2)% and
(1.3/2)%, respectively of the immigrants at the end of the year. The population p[n] at the
beginning of the kth year is p[n− 1] plus the net increase in the native population plus i[n− 1], the
immigrants entering during (n− 1)st year plus the net increase in the immigrant population for the
year (n− 1).

p[n] = p[n− 1] +
3.3− 1.3

100
p[n− 1] + i[n− 1] +

3.3− 1.3

2× 100
i[n− 1]

= 1.02p[n− 1] + 1.01i[n− 1]

Thus,
p[n]− 1.02p[n− 1] = 1.01i[n− 1] or p[n+ 1]− 1.02p[n] = 1.01i[n].
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Solution 3.4-3

(a)
y[n] = x[n] + x[n− 1] + x[n− 2] + x[n− 3] + x[n− 4]

(b) This system can be realized according to Fig. S3.4-3.

x[n]

y[n]

D

(b)

D represents unit delay

D D D Σ

Figure S3.4-3

Solution 3.4-4

The input x[n] = u[n], which has a constant value of unity for all n ≥ 0. Also y[n]−y[n−1] = Tu[n].
Hence the difference between two successive output values is always constant of value T . Clearly
y[n] must be a ramp with a possible constant component. Thus,

y[n] = (nT + c)u[n].

To find the value of unknown constant c, we let n = 0 and obtain

y[0] = c.

But from the input equation y[n]− y[n− 1] = Tu[n], we find y[0] = T [remember that y[−1] = 0].
Hence,

y[n] = (n+ 1)Tu[n] ≃ nTu[n] for T → 0.

Solution 3.4-5

The differential equation is
d2y

dt2
+ a1

dy

dt
+ a0y(t) = x(t).

We use the notation y[n] to represent y(nT ), x[n] to represent x(nT ), · · · etc. and assume that T is
small enough so that the assumption T → 0 may be made. We have

y(t) = y[n]

dy

dt
≃ y[n]− y[n− 1]

T

d2y

dt2
≃

y[n]−y[n−1]
T − y[n−1]−y[n−2]

T

T
=

y[n]− 2y[n− 1] + y[n− 2]

T 2
.

Substituting approximate difference expressions in the differential equation yields

y[n]− 2y[n− 1] + y[n− 2]

T 2
+ a1

y[n]− y[n− 1]

T
+ a0y[n] = x[n].

Simplifying, we obtain

(1 + a1T + a0T
2)y[n]− (2 + a1T )y[n− 1] + y[n− 2] = T 2x[n].
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Solution 3.4-6

(a) We can determine h[n] by direct substitution.

n ≤ −2 −1 0 1 2 3 ≥ 4
h[n] x[≥ 3] = 0 x[1] = 1 x[−1] = 3 x[−3] = 5 x[−5] = 3 x[−7] = 1 x[≤ −9] = 0

Thus,

h[n] = [1,
↓
3, 5, 3, 1].

(b) Since h[n] is finite duration, the desired difference equation follows immediately as

y[n] = x[n+ 1] + 3x[n] + 5x[n− 1] + 3x[n− 2] + x[n− 3].

(c) Since the system is described by a constant-coefficient linear difference equation, the system
is necessarily linear and time-invariant. To show linearity, we assume x1[n] −→ y1[n] and
x2[n] −→ y2[n]. Next, determine the output to x[n] = ax1[n] + bx2[n]:

y[n] = x[n+ 1] + 3x[n] + 5x[n− 1] + 3x[n− 2] + x[n− 3]

= ax1[n+ 1] + bx2[n+ 1] + 3ax1[n] + 3bx2[n] + 5ax1[n− 1] + 5bx2[n− 1]+

3ax1[n− 2] + 3bx2[n− 2] + ax1[n− 3] + bx2[n− 3]

= a (x1[n+ 1] + 3x1[n] + 5x1[n− 1] + 3x1[n− 2] + x1[n− 3])+

b (x2[n+ 1] + 3x2[n] + 5x2[n− 1] + 3x2[n− 2] + x2[n− 3])

= ay1[n] + by2[n].

Since a linear combination of inputs generates the corresponding linear combination of outputs,
the system is linear.

To show time invariance, we note that delaying any input by some amount N causes a corre-
sponding delay in the output. That is, if x[n] −→ y[n], we see that xd[n] = x[n−N ] produces
output

yd[n] = xd[n+ 1] + 3xd[n] + 5xd[n− 1] + 3xd[n− 2] + xd[n− 3]

= x[n−N + 1] + 3x[n−N ] + 5x[n−N − 1] + 3x[n−N − 2] + x[n−N − 3]

= y[n−N ].

(d) Yes. The system is BIBO stable since h[n] is absolutely summable,

∞∑

n=−∞
|h[n]| = 1 + 3 + 5 + 3 + 1 = 13 < ∞.

(e) No. The system is not memoryless since h[n] 6= 0 for all n 6= 0.

(f) No. The system is not causal since h[n] 6= 0 for all n < 0. In particular, we see that h[−1] = 1.

Solution 3.4-7

(a) Since h[n] is an involves upsampling u[n] by a factor of 3, we expect h[n] to possess a comb-like
appearance where the unit values of u[n] are interleaved with pairs of zeros. The first nonzero
value occurs when −(5 − n)/3 = 0 or n = 5. Figure S3.4-7 shows the start of h[n], which
forever repeats repeat 1, 0, 0 starting at n = 5.
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(b) To determine BIBO stability, we see whether h[n] is absolutely summable:

∞∑

n=−∞
|h[n] =

∑

n=5,8,11,···
1 = ∞ ≮ ∞.

Since h[n] is not absolutely summable,

the system is not BIBO stable.

(c) No. The system is not memoryless since h[n] 6= 0 for all n 6= 0.

(d) Yes. The system is causal since h[n] = 0 for all n < 0.

Solution 3.4-8

The node equation at the kth node is i1 + i2 + i3 = 0, or

v[n− 1]− v[n]

R
+

v[n+ 1]− v[n]

R
− v[n]

aR
= 0.

Therefore
a(v[n− 1] + v[n+ 1]− 2v[n])− v[n] = 0

or

v[n+ 1]−
(

2 +
1

a

)

v[n] + v[n− 1] = 0.

That is,

v[n+ 2]−
(

2 +
1

a

)

v[n+ 1] + v[n] = 0.

Solution 3.4-9

(a) True; all finite power signals have infinite energy, and therefore cannot be energy signals.
Energy signals and power signals are mutually exclusive.

(b) False; a signal with infinite energy need not be a power signal. For example, the signal
x[n] = 2nu[n] has infinite energy and infinite power. Thus, it is neither an energy signal nor a
power signal.

(c) True; the system is causal. Even though the input is scaled by (n + 1), the current output
only depends on the current input. Another way to see this is to rewrite the expression as
y[n] = nx[n] + x[n].

(d) False; the system is not causal. The current output depends on a future input value. To help
see this, substitute n′ = n − 1 to yield y[n′] = x[n′ + 1]; the output at time n′ requires the
future input value at time n′ + 1.
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(e) False; a signal x[n] with energy E does not guarantee that signal x[an] has energy E
|a| . Al-

though this statement is true for continuous-time signals, it is not true for discrete-time signals.
Remember, the discrete operation x[an] results in a loss of information and thus a likely loss
in energy. For example, consider x[n] = δ[n − 1], which has energy E = 1. The signal
y[n] = x[2n] = 0 has zero energy, not E/2 = 1/2.

Solution 3.4-10

Notice, y1[n] = −δ[n] + δ[n− 1] + 2δ[n− 2]. Furthermore, x2[n] = x1[n− 1]− 2x1[n− 2]. Since the
system is LTI,

y2[n] = y1[n− 1]− 2y1[n− 2].

MATLAB is used to plot the result.

>> delta = @(n) 1.0*(n==0).*(mod(n,1)==0);

>> y1 = @(n) -delta(n)+delta(n-1)+2*delta(n-2);

>> y2 = @(n) y1(n-1)-2*y1(n-2); n = -2:8;

>> stem(n,y2(n),’k.’); axis([-2.5 8.5 -4.5 3.5]);

>> grid on; xlabel(’n’); ylabel(’y_2[n]’);

-2 0 2 4 6 8

n

-4
-3
-2
-1
0
1
2
3

y 2
[n

]

Figure S3.4-10

Solution 3.4-11

Using the sifting property, this system operation is rewritten as y[n] = 0.5 (x[n] + x[−n]).

(a) This system extracts the even portion of the input.

(b) Yes, the system is BIBO stable. If the input is bounded, then the output is necessarily bounded.
That is, if |x[n]| ≤ Mx < ∞, then |y[n]| = |0.5 (x[n] + x[−n]) | ≤ 0.5 (|x[n]|+ |x[−n]|) ≤ Mx <
∞.

(c) Yes, the system is linear. Let y1[n] = 0.5(x1[n]+x1[−n]) and y2[n] = 0.5(x2[n]+x2[−n]). Ap-
plying ax1[n]+bx2[n] to the system yields y[n] = 0.5 (ax1[n] + bx2[n] + (ax1[−n] + bx2[−n])) =
0.5a(x1[n] + x1[−n]) + 0.5b(x2[n] + x2[−n]) = ay1[n] + by2[n].

(d) No, the system is not memoryless. For example, at time n = 1 the output y[1] = 0.5(x[1] +
x[−1]) depends on a past value of the input, x[−1].

(e) No, the system is not causal. For example, at time n = −1 the output y[−1] = 0.5(x[−1]+x[1])
depends on a future value of the input, x[1].

(f) No, the system is not time-invariant. For example, let the input be x1[n] = u[n+10]−u[n−11].
Since this input is already even, the output is just the input, y1[n] = x1[n]. Shifting by a non-
zero integer N , the signal x2[n] = x1[n−N ] is not even, and the output is y2[n] 6= y1[n−N ] =
x1[n−N ]. Thus, the system cannot be time-invariant.
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Solution 3.4-12

It is convenient to substitute n′ = n+1 and rewrite the system expression as y[n′] = x[n′ − 1]/x[n′].

(a) No, the system is not BIBO stable. Input values of zero can result in unbounded outputs. For
example, at n′ = 0 the bounded input x[n′] = δ[n′] yields an unbounded output y[1] = 1/0 =
∞.

(b) No, the system is not memoryless. The current output relies on a past input. For example, at
n′ = 0, the output y[n′] requires both the current input x[n′] and a stored past input x[n′− 1].

(c) Yes, the system is causal. The current output y[n′] does not depend on any future value of
the input.

Solution 3.4-13

The operation y(t) = x(2t) is a one-to-one mapping, where no information is lost. Any one-to-one
mapping is invertible. In this case, x(t) is recovered by taking y(t/2).

Since every other sample of x[n] is removed in the operation y[n] = x[2n], one half of x[n] is
lost and the process is not invertible. Thought of another way, the operation y[n] = x[2n] is not a
one-to-one mapping; many different signals x[n] map to the same signal y[n], which makes inversion
impossible.

Solution 3.4-14

Notice that y1[n] is obtained by multiplying x[n] by the repeating sequence
{
sin(π2n+ 1)

}
=

{. . . , 0.5403,−0.8415,−0.5403, 0.8415, . . .}. In this particular case, x[n] is recov-

ered by simply multiplying y[n] by the inverse repeating sequence
{

1
sin(π

2 n+1)

}

=

{. . . , 1.8508,−1.1884,−1.8508, 1.1884, . . .}.
In the case second, however, y2[n] is obtained by multiplying x[n] by the repeating sequence

{
sin(π2 (n+ 1))

}
= {. . . , 0,−1, 0, 1, . . .}. Since the sequence includes zeros, information is lost and

the original sequence cannot be recovered.

Solution 3.4-15

Using the definition of the ramp function, the system expression is rewritten as y[n] = nx[n]u[n].

(a) No, the system is not BIBO stable. For example, if the input is a unit step x[n] = u[n], then
the output is a ramp function y[n] = r[n], which grows unbounded with time.

(b) Yes, the system is linear. Let y1[n] = nx1[n]u[n] and y2[n] = nx2[n]u[n]. Applying ax1[n] +
bx2[n] to the system yields y[n] = n (ax1[n] + bx2[n])u[n] = anx1[n]u[n] + bnx2[n]u[n] =
ay1[n] + by2[n].

(c) Yes, the system is memoryless. The current output only depends on the current input multi-
plied by a known (time-varying) scale factor.

(d) Yes, the system is causal. All memoryless systems are causal. The output does not depend on
future values of the input or output.

(e) No, the system is not time-invariant. For example, applying x1[n] = δ[n] yields the output
y1[n] = nδ[n]u[n] = 0. Applying x2[n] = δ[n − 1] yields the output y2[n] = nδ[n − 1]u[n] =
δ[n− 1]. Note, x2[n] = x1[n− 1] but y2[n] 6= y1[n− 1]. Shifting the input does not produce a
corresponding shift in the output.
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Solution 3.4-16

(a) Position measurements x[n] are in meters. The difference x[n] − x[n − 1] is the change in
position, in meters, per frame of film. Since the camera operates at 60 frames per second,
dimensional analysis requires k = 60

seconds
.

(b) Since v[n] = k(x[n]− x[n− 1]) is an estimate of the velocity v(t) = d
dtx(t), it is sensible to use

a[n] = k(v[n]− v[n− 1]) as an estimate of the acceleration a(t) = d
dtv(t). Combining estimates

yields a[n] = k(k(x[n] − x[n− 1])− k(x[n− 1]− x[n− 2])) or

a[n] = k2 (x[n]− 2x[n− 1] + x[n− 2]) = 3600 (x[n]− 2x[n− 1] + x[n− 2]) .

This estimate of acceleration has two primary advantages. First, it is simple to calculate.
Second, it is a causal, stable, LTI system and therefore enjoys the properties of such systems.

There are several shortcomings of the estimate as well. Of particular significance, the estimate
a[n] lags the actual acceleration a(t). One way to see this is that the estimate a[n] depends
only on current and past values. A more balanced estimate of a(t) is a shifted version a2[n] =
a[n + 1] = k2 (x[n+ 1]− 2x[n] + x[n− 1]). While this may fix the problem of lag, the new
system is no longer causal. Both cases estimate derivatives using first-order differences; there
are more sophisticated (and more complex) methods to more accurately estimate derivatives.

By substituting δ[n] for x[n], the impulse response is

h[n] = k2 (δ[n]− 2δ[n− 1] + δ[n− 2]) .

Solution 3.5-1

(a) By inspection, the standard advance operator form is

(E + 1)y[n] =
1

2
x[n].

(b) Substituting δ[n] for x[n] and h[n] for y[n], we see that

h[n] = −h[n− 1] +
1

2
δ[n− 1].

Since the system is causal, we know h[n] = 0 for all n < 0. We use recursion to determine the
first five (0 ≤ n ≤ 4) values of h[n].

h[0] = −h[−1] +
1

2
δ[−1] = 0

h[1] = −h[0] +
1

2
δ[0] =

1

2

h[2] = −h[1] +
1

2
δ[1] = −1

2

h[3] = −h[2] +
1

2
δ[2] =

1

2

h[4] = −h[3] +
1

2
δ[3] = −1

2

Taken altogether, we see that

h[n] = −1

2
(−1)nu[n− 1].
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(c) Written in delay form for recursion, the system output is expressed as

y[n] = −y[n− 1] +
1

2
x[n− 1].

We use recursion to determine zero-state response yzsr[n] to input x[n] = 2u[n] for 0 ≤ n ≤ 4.

yzsr[0] = −yzsr[−1] +
1

2
2u[−1] = 0

yzsr[1] = −yzsr[0] +
1

2
2u[0] = 1

yzsr[2] = −yzsr[1] +
1

2
2u[1] = 0

yzsr[3] = −yzsr[2] +
1

2
2u[2] = 1

yzsr[4] = −yzsr[3] +
1

2
2u[3] = 0

(d) Setting x[n] = 0 to the recursion expression in part (c), the system (zero-input) response is
expressed as

y[n] = −y[n− 1].

We use recursion and initial condition yzir[−1] = 1 to determine zero-input response yzir[n] for
0 ≤ n ≤ 4.

yzir[0] = −yzir[−1] = −1

yzir[1] = −yzir[0] = 1

yzir[2] = −yzir[1] = −1

yzir[3] = −yzir[2] = 1

yzir[4] = −yzir[3] = −1

Solution 3.5-2

(a) Here,

y[n+ 1] = 0.5y[n]

Setting n = −1 and substituting y[−1] = 10 yield

y[0] = 0.5(10) = 5.

Setting n = 0 and substituting y[0] = 5 yield

y[1] = 0.5(5) = 2.5.

Setting n = 1 and substituting y[1] = 2.5 yield

y[2] = 0.5(2.5) = 1.25.

(b) In this case,

y[n+ 1] = −2y[n] + x[n+ 1].
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Setting n = −1 and substituting y[−1] = 0 and x[0] = 1 yield

y[0] = 0 + 1 = 1.

Setting n = 0 and substituting y[0] = 1 and x[1] = 1
e yield

y[1] = −2(1) +
1

e
= −2 +

1

e
= −1.632

Setting n = 1 and substituting y[1] = −2 + 1
e and x[2] = 1

e2 yield

y[2] = −2(−2 +
1

e
) +

1

e2
= 4− 2

e
+

1

e2
= 3.399.

Solution 3.5-3

Here,
y[n] = 0.6y[n− 1] + 0.16[n− 2].

Setting n = 0 and substituting y[−1] = −25 and y[−2] = 0 yield

y[0] = 0.6(−25) + 0.16(0) = −15.

Setting n = 1 and substituting y[−1] = 0 and y[0] = −15 yield

y[1] = 0.6(−15) + 0.16(−25) = −13.

Setting n = 2 and substituting y[1] = −13 and y[0] = −15 yield

y[2] = 0.6(−13) + 0.16(−15) = −10.2.

Solution 3.5-4

This equation can be expressed as

y[n+ 2] = −1

4
y[n+ 1]− 1

16
y[n] + x[n+ 2].

Setting n = −2 and substituting y[−1] = y[−2] = 0 and x[0] = 100 yield

y[0] = −1

4
(0)− 1

16
(0) + 100 = 100.

Setting n = −1 and substituting y[−1] = 0, y[0] = 100, and x[1] = 100 yield

y[1] = −1

4
(100)− 1

16
(0) + 100 = 75.

Setting n = 0 and substituting y[0] = 100, y[1] = 75, and x[2] = 100 yield

y[2] = −1

4
(75)− 1

16
(100) + 100 = 75.

Solution 3.5-5

Here,
y[n+ 2] = −3y[n+ 1]− 2y[n] + x[n+ 2] + 3x[n+ 1] + 3x[n].

Setting n = −2 and substituting y[−1] = 3, y[−2] = 2, x[−1] = 0, x[−2] = 0, and x[0] = 1 yield

y[0] = −3(3)− 2(2) + 1 + 3(0) + 3(0) = −12.
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Setting n = −1 and substituting y[0] = −12, y[−1] = 3, x[−1] = 0, x[0] = 1, and x[1] = 3 yield

y[1] = −3(−12)− 2(3) + 3 + 3(1) + 3(0) = 36.

Proceeding along same lines, we obtain

y[2] = −3(36)− 2(−12) + 9 + 3(3) + 3(1) = −63.

Solution 3.5-6

Expressed in a form for recursion, the difference equation is

y[n] = −2y[n− 1]− y[n− 2] + 2x[n]− x[n− 1].

Setting n = 0 and substituting y[−1] = 2, y[−2] = 3, x[0] = 1, and x[−1] = 0 yield

y[0] = −2(2)− 3 + 2(1)− 0 = −5.

Setting n = 1 and substituting y[0] = −5, y[−1] = 2, x[0] = 1, and x[1] = 1
3 yield

y[1] = −2(−5)− (2) + 2(
1

3
)− 1 = 7.667.

Setting n = 2 and substituting y[1] = 7.667, y[0] = −5, x[1] = 1
3 , and x[2] = 1

9 yield

y[2] = −2(7.667)− (−5) + 2(
1

9
)− 1

3
= −10.444.

Solution 3.6-1

In this case, the characteristic equation is

Q(γ) = γ2 + 1
6γ − 1

6 = (γ + 1
2 )(γ − 1

3 ) = 0.

Thus, the characteristic roots are

γ1 = −1

2
and γ2 =

1

3
.

The form of the zero-input response is

y0[n] = c1(− 1
2 )

n + c2(
1
3 )

n.

Using the initial conditions, we see that

y0[−1] = 3 = −2c1 + 3c2
y0[−2] = −1 = 4c1 + 9c2

}

=⇒ c1 = −1
c2 = 1

3

.

Thus,
y0[n] = −(− 1

2 )
n + 1

3 (
1
3 )

n = (13 )
n+1 − (− 1

2 )
n.

Solution 3.6-2

Here,
(E2 + 3E + 2)y[n] = 0.

The characteristic equation is γ2 + 3γ + 2 = (γ + 1)(γ + 2) = 0. Therefore,

y[n] = c1(−1)n + c2(−2)n.
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Setting n = −1 and −2 and substituting initial conditions yields

0 = −c1 − 1
2c2

1 = c1 +
1
4c2

}

=⇒ c1 = 2
c2 = −4

.

Thus,
y[n] = 2(−1)n − 4(−2)n n ≥ 0.

Solution 3.6-3

Here,
(E2 + 2E + 1)y[n] = 0.

The characteristic equation is γ2 + 2γ + 1 = (γ + 1)2 = 0. Therefore,

y[n] = (c1 + c2n)(−1)n.

Setting n = −1 and −2 and substituting initial conditions yields

1 = −c1 + c2
1 = c1 − 2c2

}

=⇒ c1 = −3
c2 = −2

.

Thus,
y[n] = −(3 + 2n)(−1)n n ≥ 0.

Solution 3.6-4

For this second-order system,
(E2 − 2E + 2)y[n] = 0.

The characteristic equation is γ2 − 2γ + 2 = (γ − 1− j1)(γ − 1 + j1) = 0. The characteristics roots
are 1± j1 =

√
2e±jπ/4. Therefore,

y[n] = c(
√
2)n cos(

π

4
n+ θ).

Setting n = −1 and −2 and substituting initial conditions yields

1 =
c√
2
cos(−π

4
+ θ) =

c√
2

(
1√
2
cos θ +

1√
2
sin θ

)

0 =
c

2
cos(−π

2
+ θ) =

c

2
sin θ

Solution of these two simultaneous equations yields

c cos θ = 2
c sin θ = 0

}

=⇒ c = 2
θ = 0

.

Thus,

y[n] = 2(
√
2)n cos(

π

4
n) n ≥ 0.

Solution 3.6-5

The equation can be expressed in terms of advance operation notation as

ENy[n] =
(
b0E

N + b1E
N−1 + · · ·+ bN

)
x[n].

The characteristic equation is
γN = 0.

Hence, all the N characteristic roots are zero. Therefore, the zero-input component is zero and the
total response in given by the zero-state component.
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Solution 3.6-6

(a) By definition, any element in the Fibonacci sequence is the sum of the previous two. Thus,
f [n] = f [n− 1] + f [n− 2]. Written in standard form, this yields

f [n]− f [n− 1]− f [n− 2] = 0.

This is a somewhat unusual system in the fact that it has no input. In the lingo of signals and
systems, f [n] is a zero-input response that is completely driven by the auxiliary conditions.

(b) The characteristic equation is γ2 − γ − 1 = 0. This yields two characteristic roots

γ1 =
1 +

√
5

2
≈ 1.618 and γ2 =

1−
√
5

2
≈ −0.618.

Since one characteristic root is in the right-half plane, the system is not stable.

(c) To determine a particular Fibonacci number, it is convenient to determine a closed form
expression for f [n]. Since f [n] is a zero-input response, it has form f [n] = c1γ

n
1 + c2γ

n
2 . The

auxiliary equations yield f [1] = 0 = c1γ1 + c2γ2 and f [2] = 1 = c1γ
2
1c2γ

2
2 . Solving yields

c1 = −γ2

γ1γ2(γ2−γ1)
=

√
5−1
2
√
5

≈ 0.2764 and c2 = γ1

γ1γ2(γ2−γ1)
=

√
5+1
2
√
5

≈ 0.7236.

MATLAB is used to solve for the requested values of f [n].

>> gamma1 = (1+sqrt(5))/2; gamma2 = (1-sqrt(5))/2;

>> c1 = -gamma2/(gamma1*gamma2*(gamma2-gamma1));

>> c2 = gamma1/(gamma1*gamma2*(gamma2-gamma1));

>> f = @(n) c1*gamma1.^(n)+c2*gamma2.^(n);

>> f(50)

ans = 7.7787e+009

>> f(1000)

ans = 2.6864e+208

Thus,

f [50] =

√
5− 1

2
√
5

(

1 +
√
5

2

)50

+

√
5 + 1

2
√
5

(

1−
√
5

2

)50

≈ 7.7787(109)

and

f [1000] =

√
5− 1

2
√
5

(

1 +
√
5

2

)1000

+

√
5 + 1

2
√
5

(

1−
√
5

2

)1000

≈ 2.6864(10208).

Solution 3.6-7

For this problem,

v(n+ 2)− 2.5v(n+ 1) + v(n) = 0 or (E2 − 2.5E + 1)v[n] = 0.

The auxiliary conditions are v(0) = 100 and v(N) = 0. The characteristic equation is γ2−2.5γ+1 =
(γ − 0.5)(γ − 2) = 0. Therefore,

v(n) = c1(0.5)
n + c2(2)

n.

Setting n = 0 and N , and substituting v(0) = 100 and v(N) = 0 yield

100 = c1 + c2
0 = c1(0.5)

N + c2(2)
N

}

=⇒
c1 = 100(2)N

2N−(0.5)N

c2 = 100(0.5)N

(0.5)N−2N

.
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Thus,

v[n] =
100

2N − (0.5)N
[2N(0.5)n − (0.5)N(2)n] n = 0, 1, · · · , N.

Solution 3.6-8

Since we are looking for the zero-input response, the term
√
3x[n− 8] is irrelevant and the equation

becomes y0[n] + y0[n − 1] + 0.25y0[n − 2] = 0. The characteristic equation for this second-order
system is γ2 + γ + 0.25 = 0. This yields a repeated root at γ = −0.5, and the zero-input response
has form y0[n] = c1(−0.5)n + c2n(−0.5)n. The pair of equations y0[−1] = 1 = −2c1 + 2c2 and
y0[1] = 1 = −c1/2− c2/2 are solved using MATLAB.

>> c = [-2 2;-1/2 -1/2]\[1;1]

c = -1.2500

-0.7500

Thus,
y0[n] = −1.25(−0.5)n − 0.75n(−0.5)n.

Solution 3.6-9

Here, we consider just one of the infinite possible solutions to this problem. A third-order system
needs three characteristic roots. For a marginally stable LTID system, there must be at least one
unrepeated root on the unit circle with any remaining roots inside the unit circle. For a stable
LTIC system, all roots need to be in the left half-plane. These conditions can be met, for example,
by selecting the roots −1, − 1

2 and − 1
4 . Using these values,

Q(x) = (x+ 1)(x+ 1
2 )(x+ 1

4 ) = (x + 1)(x2 + 3
4x+ 1

8 ) = x3 + 3
4x

23 + 1
8x+ x2 + 3

4x+ 1
8 .

Simplifying into standard form, we see that a possible solution is

Q(x) = x3 +
7

4
x2 +

7

8
x+

1

8
.

Solution 3.7-1

(a) Here,
(E + 2)y[n] = x[n].

The characteristic equation is γ + 2 = 0, and the characteristic root is −2. Also a1 = 2 and
b1 = 1. Therefore,

h[n] =
1

2
δ[n] + c(−2)n.

We need one value of h[n] to determine c. This is determined by iterative solution of

(E + 2)h[n] = δ[n] or h[n+ 1] + 2h[n] = δ[n].

Setting n = −1 and substituting h[−1] = δ[−1] = 0 yield

h[0] = 0.

Setting n = 0 and using h[0] = 0 yield

0 =
1

2
+ c =⇒ c = −1

2
.

Therefore,

h[n] =
1

2
δ[n]− 1

2
(−2)nu[n].
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(b) Here, b1 = 0, a1 = 2, and the characteristic root is −2. Therefore,

h[n] = c(−2)n.

We need one value of h[n] to determine c. This is done by solving iteratively

h[n+ 1] + 2h[n] = δ[n+ 1].

Setting n = −1 and substituting h[−1] = 0 and δ[0] = 1 yield

h[0] = 1.

Setting n = 0 and using h[0] = 0 yield

1 = c.

Consequently,

h[n] = (−2)nu[n].

Solution 3.7-2

(a) The characteristic equation is γ2+1 = 0, and the characteristic roots are γ1 = j and γ2 = −j.
The form of the impulse response is

h[n] =
1
2

1
δ[n] + [c1(j)

n + c2(−j)n]u[n].

To determine c1 and c2, we calculate h[0] and h[1] by recursion using

h[n] = −h[n− 2] + δ[n− 1] +
1

2
δ[n− 2].

Thus, h[0] = −h[−2]+ δ[−1]+ 1
2δ[−2] = 0 and h[1] = −h[−1]+ δ[0]+ 1

2δ[−1] = 1. Using these
values, we see that

h[0] = 0 =
1

2
+ c1 + c2

h[1] = 1 = 0 + jc1 − jc2.

We use MATLAB to find c1 and c2.

>> c = inv([1 1;1j -1j])*[-0.5;1]

c = -0.2500 - 0.5000i

-0.2500 + 0.5000i

Thus,

h[n] = 1
2δ[n] +

[
(− 1

4 − j
2 )(j)

n + (− 1
4 + j

2 )(−j)n
]
u[n].

This can be simplified to

h[n] = 1
2δ[n] +

[
− 1

2 cos(πn/2) + sin(πn/2)
]
u[n].

Evaluated at n = 3, this expression yields h[3] = −1. We can verify this value by continuing
our previous recursion, h[2] = −h[0] + δ[1] + 1

2δ[0] =
1
2 and h[3] = −h[1] + δ[2] + 1

2δ[1] = −1.
The recursion and the closed-form expressions match at n = 3, as expected.
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(b) The characteristic equation is γ2 − γ+ 1
4 = (γ− 1

2 )
2 = 0, and the characteristic roots are both

γ = 1
2 . The form of the impulse response is

h[n] =
[
c1(

1
2 )

n + c2n(
1
2 )

n
]
u[n].

To determine c1 and c2, we calculate h[0] and h[1] by recursion using

h[n] = h[n− 1]− 1

4
h[n− 2] + δ[n].

Thus, h[0] = h[−1]− 1
4h[−2]+ δ[0] = 1 and h[1] = h[0]− 1

4h[−1]+ δ[1] = 1. Using these values,
we see that

h[0] = 1 = c1 + 0c2
h[1] = 1 = 1

2c1 +
1
2c2

}

=⇒ c1 = 1
c2 = 1

.

Thus,
h[n] = (1 + n)(12 )

nu[n].

Evaluated at n = 3, this expression yields h[3] = 1
2 . We can verify this value by continuing

our previous recursion, h[2] = h[1]− 1
4h[0] + δ[2] = 3

4 and h[3] = h[2]− 1
4h[1] + δ[3] = 1

2 . The
recursion and the closed-form expressions match at n = 3 (and elsewhere), as expected.

(c) The characteristic equation is γ2 − 1
6γ − 1

6 = (γ − 1
2 )(γ + 1

3 ) = 0, and the characteristic roots
are γ1 = 1

2 and γ2 = − 1
3 . The form of the impulse response is

h[n] =
1
3

− 1
6

δ[n] +
[
c1(

1
2 )

n + c2(− 1
3 )

n
]
u[n].

To determine c1 and c2, we calculate h[0] and h[1] by recursion using

h[n] =
1

6
h[n− 1] +

1

6
h[n− 2] +

1

3
δ[n− 2].

Thus, h[0] = 1
6h[−1] + 1

6h[−2] + 1
3δ[−2] = 0 and h[1] = 1

6h[0] +
1
6h[−1] + 1

3δ[−1] = 0. Using
these values, we see that

h[0] = 0 = −2 + c1 + c2

h[1] = 0 = 0 +
1

2
c1 −

1

3
c2.

We use MATLAB to find c1 and c2.

>> format rat; c = inv([1 1;1/2 -1/3])*[2;0]

c = 4/5

6/5

Thus,
h[n] = −2δ[n] +

[
4
5 (

1
2 )

n + 6
5 (− 1

3 )
n
]
u[n].

Evaluated at n = 3, this expression yields h[3] = 1
18 . We can verify this value by continuing

our previous recursion, h[2] = 1
6h[1] +

1
6h[0] +

1
3δ[0] =

1
3 and h[3] = 1

6h[2] +
1
6h[1] +

1
3δ[1] =

1
18 .

The recursion and the closed-form expressions match at n = 3 (and elsewhere).

(d) The characteristic equation is γ2 + 1
6γ − 1

6 = (γ + 1
2 )(γ − 1

3 ) = 0, and the characteristic roots
are γ1 = − 1

2 and γ2 = 1
3 . The form of the impulse response is

h[n] =
[
c1(− 1

2 )
n + c2(

1
3 )

n
]
u[n].
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To determine c1 and c2, we calculate h[0] and h[1] by recursion using

h[n] = −1

6
h[n− 1] +

1

6
h[n− 2] +

1

3
δ[n].

Thus, h[0] = − 1
6h[−1]+ 1

6h[−2]+ 1
3δ[0] =

1
3 and h[1] = − 1

6h[0]+
1
6h[−1]+ 1

3δ[1] = − 1
18 . Using

these values, we see that

h[0] =
1

3
= c1 + c2

h[1] = − 1

18
= −1

2
c1 +

1

3
c2.

We use MATLAB to find c1 and c2.

>> format rat; c = inv([1 1;-1/2 1/3])*[1/3;-1/18]

c = 1/5

2/15

Thus,
h[n] =

[
1
5 (− 1

2 )
n + 2

15 (
1
3 )

n
]
u[n].

Evaluated at n = 3, this expression yields h[3] = − 13
648 . We can verify this value by continuing

our previous recursion, h[2] = − 1
6h[1]+

1
6h[0]+

1
3δ[2] =

7
108 and h[3] = − 1

6h[0]+
1
6h[−1]+ 1

3δ[1] =
− 13

648 . The recursion and the closed-form expressions match at n = 3 (and elsewhere).

(e) The characteristic equation is γ2+ 1
4 = 0, and the characteristic roots are γ1 = j

2 and γ2 = − j
2 .

The form of the impulse response is

h[n] =
[
c1(

j
2 )

n + c2(− j
2 )

n
]
u[n].

To determine c1 and c2, we calculate h[0] and h[1] by recursion using

h[n] = −1

4
h[n− 2] + δ[n].

Thus, h[0] = − 1
4h[−2] + δ[0] = 1 and h[1] = − 1

4h[−1] + δ[1] = 0. Using these values, we see
that

h[0] = 1 = c1 + c2

h[1] = 0 =
j

2
c1 −

j

2
c2.

We use MATLAB to find c1 and c2.

>> format rat; c = inv([1 1;1j/2 -1j/2])*[1;0]

c = 1/2

1/2

Thus,
h[n] =

[
1
2 (

j
2 )

n + 1
2 (−

j
2 )

n
]
u[n].

This can be simplified to
h[n] = (12 )

n cos(πn2 )u[n].

Evaluated at n = 3, this expression yields h[3] = 0. We can verify this value by continuing our
previous recursion, h[2] = − 1

4h[0] + δ[2] = − 1
4 and h[3] = − 1

4h[1] + δ[3] = 0. The recursion
and the closed-form expressions match at n = 3, as expected.
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(f) The characteristic equation is γ2 − 4
9 = (γ − 2

3 )(γ + 2
3 ) = 0, and the characteristic roots are

γ1 = 2
3 and γ2 = − 2

3 . The form of the impulse response is

h[n] = 1
− 4

9

δ[n] +
[
c1(

2
3 )

n + c2(− 2
3 )

n
]
u[n].

To determine c1 and c2, we calculate h[0] and h[1] by recursion using

h[n] =
4

9
h[n− 2] + δ[n] + δ[n− 2].

Thus, h[0] = 4
9h[−2] + δ[0] + δ[−2] = 1 and h[1] = 4

9h[−1] + δ[1] + δ[−1] = 0. Using these
values, we see that

h[0] = 1 = −9

4
+ c1 + c2

h[1] = 0 =
2

3
c1 −

2

3
c2.

We use MATLAB to find c1 and c2.

>> format rat; c = inv([1 1;2/3 -2/3])*[13/4;0]

c = 13/8

13/8

Thus,
h[n] = − 9

4δ[n] +
[
13
8 (23 )

n + 13
8 (− 2

3 )
n
]
u[n].

Evaluated at n = 3, this expression yields h[3] = 0. We can verify this value by continuing
our previous recursion, h[2] = 4

9h[0] + δ[2] + δ[0] = 13
9 and h[3] = 4

9h[1] + δ[3] + δ[1] = 0. The
recursion and the closed-form expressions match at n = 3 (and elsewhere).

(g) In this problem, we have

(E2 − 1

4
)(E +

1

2
){y[n]} = E3{x[n]}

or

(E3 +
1

2
E2 − 1

4
E − 1

8
){y[n]} = E3{x[n]}.

The characteristic equation is (γ2 − 1
4 )(γ + 1

2 ) = (γ − 1
2 )(γ + 1

2 )
2 = 0, and the characteristic

roots are γ1 = 1
2 , γ2 = − 1

2 , and γ3 = − 1
2 . The form of the impulse response is

h[n] =
[
c1(

1
2 )

n + c2(− 1
2 )

n + c3n(− 1
2 )

n
]
u[n].

To determine c1, c2, and c3, we calculate h[0], h[1], and h[2] by recursion using

h[n] = −1

2
h[n− 1] +

1

4
h[n− 2] +

1

8
h[n− 3] + δ[n].

Thus, h[0] = − 1
2h[−1]+ 1

4h[−2]+ 1
8h[−3]+δ[0] = 1, h[1] = − 1

2h[0]+
1
4h[−1]+ 1

8h[−2]+δ[1] = − 1
2 ,

and h[2] = − 1
2h[1] +

1
4h[0] +

1
8h[−1] + δ[2] = 1

2 . Using these values, we see that

h[0] = 1 = c1 + c2 + 0c3

h[1] = −1

2
=

1

2
c1 −

1

2
c2 −

1

2
c3

h[2] =
1

2
=

1

4
c1 +

1

4
c2 + (

1

4
)2c3.

We use MATLAB to find c1, c2, and c3.
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>> format rat; c = inv([1 1 0;1/2 -1/2 -1/2;1/4 1/4 1/2])*[1;-1/2;1/2]

c = 1/4

3/4

1/2

Thus,
h[n] =

[
1
4 (

1
2 )

n + 3
4 (− 1

2 )
n + 1

2n(− 1
2 )

n
]
u[n].

Evaluated at n = 3, this expression yields h[3] = − 1
4 . We can verify this value by continuing

our previous recursion, h[3] = − 1
2h[2] +

1
4h[1] +

1
8h[0] + δ[3] = − 1

4 . The recursion and the
closed-form expressions match at n = 3 (and elsewhere).

(h) The characteristic equation is γ2 − γ+ 1
4 = (γ− 1

2 )
2 = 0, and the characteristic roots are both

γ = 1
2 . The form of the impulse response is

h[n] = 1
1
4

δ[n] +
[
c1(

1
2 )

n + c2n(
1
2 )

n
]
u[n].

To determine c1 and c2, we calculate h[0] and h[1] by recursion using

h[n] = h[n− 1]− 1

4
h[n− 2] + δ[n− 2].

Thus, h[0] = h[−1]− 1
4h[−2] + δ[−2] = 0 and h[1] = h[0]− 1

4h[−1] + δ[−1] = 0. Using these
values, we see that

h[0] = 0 = 4 + c1 + 0c2
h[1] = 0 = 1

2c1 +
1
2c2

}

=⇒ c1 = −4
c2 = 4

.

Thus,
h[n] = 4δ[n] +

[
−4(12 )

n + 4n(12 )
n
]
u[n].

Evaluated at n = 3, this expression yields h[3] = 1. We can verify this value by continuing
our previous recursion, h[2] = h[1]− 1

4h[0] + δ[0] = 1 and h[3] = h[2]− 1
4h[1] + δ[1] = 1. The

recursion and the closed-form expressions match at n = 3 (and elsewhere), as expected.

Solution 3.7-3

In standard form, the system’s difference equation is

y[n] +
1

4
y[n− 2] = 2x[n] + 2x[n− 1].

(a) By inspection, we see that the system is second order.

(b) The characteristic equation is γ2+ 1
4 = (γ− j

2 )(γ+
j
2 ) = 0. The characteristic roots are γ1 = j

2

and γ2 = − j
2 . Thus,

the characteristic modes are ( j2 )
n and (− j

2 )
n.

(c) The form of the impulse response is

h[n] =
bN
aN

δ[n] + yc[n]u[n]

= 0
1
4

δ[n] +
[
c1(

j
2 )

n + c2(− j
2 )

n
]
u[n].

To find c1 and c2, we calculate h[0] and h[1] by recursion using

h[n] = − 1
4h[n− 2] + 2δ[n] + 2δ[n− 1].
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Thus, h[0] = − 1
4h[−2] + 2δ[0] + 2δ[−1] = 2 and h[1] = − 1

4h[−1] + 2δ[1] + 2δ[0] = 2. Using
these values, we see that

h[0] = 2 = c1 + c2
h[1] = 2 = j

2c1 −
j
2c2

}

=⇒ c1 = 1− 2j
c2 = 1 + 2j

.

Thus,
h[n] =

[
(1− 2j)( j2 )

n + (1 + 2j)(− j
2 )

n
]
u[n].

This can be simplified to

h[n] = 2(12 )
n [cos(πn/2) + 2 sin(πn/2)]u[n].

Solution 3.7-4

In standard form, the system’s difference equation is

y[n]− 3

10
y[n− 1]− 1

10
y[n− 2] = 2x[n− 2].

(a) By inspection, we see that the system is second order.

(b) The characteristic equation is γ2 − 3
10γ − 1

10 = (γ − 1
2 )(γ + 1

5 ) = 0. The characteristic roots
are γ1 = 1

2 and γ2 = − 1
5 . Thus,

the characteristic modes are (12 )
n and (− 1

5 )
n.

(c) The form of the impulse response is

h[n] =
bN
aN

δ[n] + yc[n]u[n]

= 2
− 1

10

δ[n] +
[
c1(

1
2 )

n + c2(− 1
5 )

n
]
u[n].

To find c1 and c2, we calculate h[0] and h[1] by recursion using

h[n] = 3
10h[n− 1] + 1

10h[n− 2] + 2δ[n− 2].

Thus, h[0] = 3
10h[−2]+ 1

10h[−1]+ 2δ[−2] = 0 and h[1] = 3
10h[−1]+ 1

10h[0] + 2δ[−1] = 0. Using
these values, we see that

h[0] = 0 = −20 + c1 + c2
h[1] = 0 = 1

2c1 − 1
5 c2

}

=⇒
c1 = 40

7

c2 = 100
7

.

Thus,
h[n] = −20δ[n] +

[
40
7 (12 )

n + 100
7 (− 1

5 )
n
]
u[n].

Solution 3.7-5

Characteristic equation is γ2 − 6γ + 9 = (γ − 3)2 = 0. Also a2 = 9 and b2 = 0. Therefore,

h[n] = (c1 + c2n)3
nu[n].

We need two values of h[n] to determine c1 and c2. This is found from iterative solution of

(E2 − 6E + 9)h[n] = Eδ[n]

or
h[n+ 2]− 6h[n+ 1] + 9h[n] = δ[n+ 1].
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Also h[−1] = h[−2] = δ[−1] = 0 and δ[0] = 1. Setting n = −2 yields

h[0]− 6(0) + 9(0) = 0 =⇒ h[0] = 0.

Setting n = −1 yields
h[1]− 6(0) + 9(0) = 1 =⇒ h[1] = 1.

Using these values, we see that

0 = c1
1 = 3(c1 + c2)

}

=⇒ c1 = 0
c2 = 1

3

.

Thus,

h[n] =
1

3
n(3)nu[n].

Solution 3.7-6

Here,
(E2 − 6E + 25)y[n] = (2E2 − 4E)x[n].

The characteristic roots are 5e±j0.9273. Since b2 = 0, there is no δ[n] term in h[n], and

h[n] = c(5)n cos(0.9273n+ θ)u[n].

We need two values of h[n] to determine c and θ. This is done by solving iteratively

h[n]− 6h[n− 1] + 25h[n− 2] = 2δ[n]− 4δ[n− 1].

Setting n = 0 yields

h[0]− 6(0) + 25(0) = 2(1)− 4(0) =⇒ h[0] = 2.

Setting n = 1 in (2) yields

h[1]− 6(2) + 25(0) = 2(0)− 4 =⇒ h[1] = 8.

Using these results, we see that

2 = c cos θ

8 = 5c cos(0.9273 + θ) = 3c cos θ − 4c sin θ.

Solution of these two equations yields

c cos θ = 2
c sin θ = −0.5

}

=⇒ c = 2.0616
θ = −0.245 rad

.

Thus,
h[n] = 2.0616(5)n cos(0.9273n− 0.245)u[n].

Solution 3.7-7

(a) Here,
y[n] = b0x[n] + b1x[n− 1] + · · ·+ bNx[n−N ].

Letting x[n] = δ[n] and y[n] = h[n] yields

h[n] = b0δ[n] + b1δ[n− 1] + · · ·+ bNδ[n−N ].
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(b) From the result in part (a), we can immediately write h[n] for this case as

h[n] = 3δ[n]− 5δ[n− 1]− 2δ[n− 3].

Solution 3.8-1

Calling x[n] = 5
2n u[n+ 5] and h[n] = 3nu[−n− 2], we see that y[n] = x[n] ∗ h[n] is computed as

y[n] =

∞∑

m=−∞
x[m]h[n−m].

To help visualize this problem, plots of x[m] and h[n−m] are shown in Fig. S3.8-1.

-10 -5 0 5

m

0

50

100

150

x[
m

]  5(0.5)m

n+2

m

0

0.1111

h[
n-

m
]

 3n-m

Figure S3.8-1

There are two regions to this convolution. The first region, when n+ 2 < −5 or n < −7, has

y[n] =
∑∞

m=−5 5(
1
2 )

m3n3−m = 5(3)n
∑∞

m=−5(
1
6 )

m

= 5(3)n
(16 )

−5 − 0

1− 1
6

= 5(3)n
65

5
6

= 66(3)n.

The second region, when n ≥ −7, has

y[n] =
∑∞

m=n+2 5(
1
2 )

m3n3−m = 5(3)n
∑∞

m=n+2(
1
6 )

m

= 5(3)n
(16 )

n+2 − 0

1− 1
6

= 5(3)n
(16 )

2(12 )
n(13 )

n

5
6

=
1

6
(
1

2
)n.

Comparing these results to

y[n] =

{
C1(γ1)

n n < N
C2(γ2)

n n ≥ N

we see that

C1 = 66, C2 = 1
6 , γ1 = 3, γ2 = 1

2 , and N = −7.

The value N = −6 also works.

Solution 3.8-2

(a) Calling x[n] = u[n − 5] − u[n − 9] + (0.5)(n−8)u[n − 9] and h[n] = u[n], we see that ya[n] =
x[n] ∗ h[n] is computed as

ya[n] =
∞∑

m=−∞
x[m]h[n−m].

To help visualize this problem, plots of x[m] and h[n−m] are shown in Fig. S3.8-2a.
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5 10 15

m

0

0.5

1
x[

m
]  (0.5)m-8

n

m

0

1

h[
n-

m
]

Figure S3.8-2a

There are three regions to this convolution. The first region, when n < 5, has

ya[n] =
∑

0 = 0.

The second region, when 5 ≤ n < 9, has

ya[n] =
∑n

m=5 1 = n− 5 + 1 = n− 4.

The third region, when n ≥ 9, has

ya[n] =
∑8

m=5 1 +
∑n

m=9(
1
2 )

m−8 = 4 + (12 )
−8 ( 1

2 )
9−( 1

2 )
n+1

1− 1
2

= 4 +
1
2−( 1

2 )
n−7

1
2

= 4 + 1− (12 )
n−8 = 5− (12 )

n−8.

Thus,

ya[n] =







0 n < 5
n− 4 5 ≤ n < 9

5− (12 )
n−8 n ≥ 9

.

(b) Calling x[n] = (12 )
|n| and h[n] = u[−n+ 5], we see that yb[n] = x[n] ∗ h[n] is computed as

yb[n] =

∞∑

m=−∞
x[m]h[n−m].

To help visualize this problem, plots of x[m] and h[n−m] are shown in Fig. S3.8-2b.

-5 0 5

m

0

0.5

1

x[
m

]

 (0.5)m (2)m

n-5

m

0

1

h[
n-

m
]

Figure S3.8-2b

There are two regions to this convolution. The first region, when n− 5 < 0 or n < 5, has

yb[n] =
∑−1

m=n−5 2
m +

∑∞
m=0(

1
2 )

m = 2n−5−20

1−2 +
( 1
2 )

0−0

1− 1
2

= 1− 2n−5 + 2 = 3− 2n−5.
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The second region, when n ≥ 5, has

yb[n] =
∑∞

m=n−5(
1
2 )

m =
( 1
2 )

n−5−0

1− 1
2

= 2(12 )
n−5.

Thus,

yb[n] =

{
3− 2n−5 n < 5
2(12 )

n−5 n ≥ 5
.

Solution 3.8-3

(a) The characteristic equation is γ6 − 1 = 0. Thus, γ6 = ej2πk and

γ = ejπk/3 for integer k.

This results in six unique characteristic roots:

γ1 = ejπ/3, γ2 = ej2π/3, γ3 = −1, γ4 = ej4π/3, γ5 = ej5π/3, and γ6 = 1.

(b) For LTID systems, y[n] = x[n] ∗ h[n]. Let us “flip and shift” x[n] so that y[n] is computed as

y[n] =

∞∑

m=−∞
h[m]x[n−m].

In vector form,

x[n−m] = [

m=n−3

↓
1
8 , 1

4 ,
1
2 , 1, 2, 4, 8,

m=n+4

↓
16 ].

At n = 10, x[10−m] ranges over 7 ≤ m ≤ 14 and overlaps h[m] as

h[m] = [

m=0

↓
2 , 2, 2, 2, 0, 0, 2, 2, 2, 2, 0, 0, 2, 2, 2,

︸ ︷︷ ︸

overlaps x[10−m]

2, 0, 0, 2, · · · ].

Thus,
y[10] = 2(18 ) + 2(14 ) + 2(12 ) + 0(1) + 0(2) + 2(4) + 2(8) + 2(16) = 57.75.

Solution 3.8-4

(a) In vector form, the impulse response is

h[n] = [−8,−4,−2,−1,− 1
2 ,− 1

4 ,

n=0

↓
0 ].

Since h[n] 6= 0 for all n < 0, we see that

the system is not causal.

(b) For LTID systems, y[n] = x[n] ∗ h[n]. Let us “flip and shift” h[n] so that y[n] is computed as

y[n] =

∞∑

m=−∞
x[m]h[n−m].

In vector form,

h[n−m] = [

m=n+1

↓
− 1

4 ,− 1
2 ,−1,−2,−4,

m=n+6

↓
−8 ].
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At n = 12, h[12−m] ranges over 13 ≤ m ≤ 18 and overlaps x[m] as

x[m] = [· · · ,
m=0

↓
1 , 2, 3, 1, 0, 0, 1, 2, 3, 1, 0, 0, 1, 2, 3, 1, 0, 0, 1,

︸ ︷︷ ︸

overlaps
h[12−m]

2, 3, 1, 0, · · · ]

Thus,
y[12] = 2(− 1

4 ) + 3(− 1
2 ) + 1(−1) + 0(−2) + 0(−4) + 1(−8) = −11.

Solution 3.8-5

In this case,

y[n] = (−2)nu[n− 1] ∗ e−nu[n+ 1]

=

∞∑

m=−∞
(−2)mu[m− 1]e−(n−m)u[n−m− 1].

However, u[m− 1] = 0 for m < 1 and u[n−m+ 1] = 0 for m > n+ 1. Hence the summation limits
may be restricted for 1 ≤ m ≤ n+ 1, and

y[n] = e−n
n+1∑

m=1

(−2e)m = e−n

[
(−2e)n+2 + 2e

−2e− 1

]

=
2e2

2e+ 1

[

(−2)n+1 − e−(n+1)
]

u[n].

We can also obtain this answer by using Table 3.1 and the shift property of convolution. If we
advance impulse response h[n] by one unit and delay the input by one unit, the convolution remains
unchanged according to the shift property. Hence, we can obtain the desired convolution by using

h[n] = (−2)n+1u[n] and x[n] = e−(n−1)u[n].

The desired convolution is therefore given by

y[n] = (−2)n+1u[n] ∗ e−(n−1)u[n]

= −2e
{
(−2)nu[n] ∗ e−nu[n]

}
.

From Table 3.1, we obtain

y[n] = −2e

[
(−2)n+1 − e−(n+1)

−1− e−1

]

u[n]

=
2e2

2e+ 1

[

(−2)n+1 − e−(n+1)
]

u[n],

which confirms our earlier result.

Solution 3.8-6

Here,

y[n] =
1

2

[
δ[n− 2]− (−2)n+1

]
u[n− 3] ∗ 3n−1u[n+ 2].

Because δ[n− 2]u[n− 3] = 0, we have

y[n] = −1

2
(−2)n+1u[n− 3] ∗ 3n−1u[n+ 2].
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If we advance the first term by 3 units and delay the second term by 2 units, the resulting convolution
yields y[n+ 1]. Hence,

y[n+ 1] = −1

2
(−2)n+4u[n] ∗ 3n−3u[n]

= −8(−2)nu[n] ∗ 1

27
3nu[n]

= − 8

27
(−2)n ∗ 3nu[n]

From Table 3.1, we obtain

y[n+ 1] = − 8

27

[
(−2)n+1 − (3)n+1

−2− 3

]

u[n]

=
8

135

[
(−2)n+1 − (3)n+1

]
u[n]

and y[n] =
8

135
[(−2)n − (3)n]u[n− 1].

Solution 3.8-7

Here let us delay x[n] by one unit and advance h[n] by one unit to obtain y[n].

y[n] = 3n+1u[n] ∗
[
2n−1 + 3(−5)n+1

]
u[n]

= 3n+1u[n] ∗ 2n−1u[n] + 3(3)n+1u[n] ∗ (−5)n+1u[n]

=
3

2
{3nu[n] ∗ 2nu[n]} − 45 {3nu[n] ∗ (−5)nu[n]}

=
3

2

[
3n+1 − 2n+1

1

]

u[n]− 45

[
3n+1 − (−5)n+1

8

]

u[n]

=

[
99

8
(3)n − 3(2)n − 225(−5)n

]

u[n]

Solution 3.8-8

Here let us delay the input x[n] by 3 units and advance h[n] by 4 units. The resulting convolution
yields y[n− 3 + 4] = y[n+ 1],

y[n+ 1] = 3−(n+1)u[n] ∗ 3(n+ 2)(2)n+1u[n]

= 2
{
3−nu[n] ∗ (n2nu[n] + 2(2)nu[n])

}

= 4
{
3−nu[n] ∗ 2nu[n]

}
+ 2

{
3−nu[n] ∗ n2nu[n]

}
.

From Table 3.1, we obtain

y[n+ 1] = −20

3

[

3−(n+1) − 2(n+1)
]

u[n] +
6

25

[
3−n + (5n− 1)2n

]
u[n].

Hence,

y[n] = −20

3

[
3−n − 2n

]
u[n− 1] +

6

25

[

3−(n−1) + (5n− 6)2(n−1)
]

u[n− 1]

= −446

75

{
3−nu[n− 1]− 2nu[n− 1]

}
+

3

5
n2nu[n− 1].
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Solution 3.8-9

Here, we advance x[n] by one unit and leave h[n] unchanged. The resulting convolution is y[n− 1].
Hence,

y[n− 1] = 2n+1u[n] ∗ 3n cos
(πn

3
− 0.5

)

u[n]

= 2
{

2nu[n] ∗ 3n cos
(πn

3
− 0.5

)

u[n]
}

To determine this convolution, we use pair 10 of Table 3.1 with

R =
[
(3)2 + (2)2 − 2(3)(2)(0.5)

]1/2
=

√
7

and φ = tan−1

[

3
√
3/2

1.5− 2

]

= 1.761 radians.

Hence,

y[n− 1] = 2

{
1√
7

[

(3)n+1 cos
[π

3
(n+ 1)− 2.26

]

− 2n+1 cos(2.261)
]}

u[n]

and

y[n] =

{
2√
7
(3)n cos

[πn

3
− 2.26

]

+ 1.273(2)n
}

u[n− 1].

Solution 3.8-10

(a) The characteristic equation is (γ − 1
2 ) = 0 and the characteristic root is γ = 1

2 . The form of
the impulse response is

h[n] =
bN
aN

δ[n] + yc[n]u[n] =
1

− 1
2

δ[n] + c(12 )
nu[n].

From the difference equation, we know that h[n] = 1
2h[n− 1]+ δ[n− 1]. Thus, h[0] = 1

2h[−1]+
δ[−1] = 0. Using this value, we see that

h[0] = 0 = −2δ[0] + c(12 )
0u[0] = −2 + c ⇒ c = 2.

Thus,
h[n] = −2δ[n] + 2(12 )

nu[n] = (12 )
n−1u[n− 1].

(b) For LTID systems, s[n] = u[n] ∗ h[n]. Let us “flip and shift” u[n] so that s[n] is computed as

s[n] =

∞∑

m=−∞
h[m]u[n−m].

In vector form,

h[m] = [

m=0

↓
0 , 1, 1

2 ,
1
4 , . . . , (

1
2 )

m−1, . . .]

and

u[n−m] = [· · · , 1, 1,
m=n

↓
1 ].

There are two regions to consider. In the first region, when n ≤ 0, we see that s[n] =
∑

0 = 0.
In the second region, when n ≥ 1, we see that

s[n] =
∑n

m=1(
1
2 )

m−1 = 2
( 1
2 )

1−( 1
2 )

n+1

1− 1
2

= 2[1− (12 )
n].

Thus,

s[n] = 2[1− (
1

2
)n]u[n− 1].
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(c) Here,
hcascade[n] = h1[n] ∗ h2[n] = h1[n] ∗ (−3u[n− 13]).

Using linearity, the shift property, and the result from part (b), we see that

hcascade[n] = −3s[n− 13] = −6[1− (12 )
n−13]u[n− 14].

Solution 3.8-11

#1
δ[n− k] ∗ x[n] = x[n− k]

δ[n− k] ∗ x[n] =
∞∑

m=0

x[m]δ[n−m− k]

Since δ[n−m− k] = 1 for m = n− k and is zero for all other values of m, the right-side sum
is given by x[n− k].

#2

γnu[n] ∗ u[n] =
n∑

m=0

γmu[n−m]

Because u[n−m] = 1 for all 0 ≤ m ≤ n, we have

γnu[n] ∗ u[n] =
n∑

m=0

γm =
γn+1 − 1

γ − 1
u[n] γ 6= 1.

We multiply the result with u[n] because the convolution is zero for n < 0.

#3

u[n] ∗ u[n] =
n∑

m=0

u[m]u[n−m]

Over the range 0 ≤ m ≤ n, u[m] = u[n−m] = 1. Hence,

u[n] ∗ u[n] =
n∑

m=0

1 = (n+ 1)u[n].

Solution 3.8-12

#4

γn
1 u[n] ∗ γn

2 u[n] =

n∑

m=0

γm
1 γn−m

2

= γn
2

n∑

m=0

(γ1/γ2)
m

= γn
2

[
(γ1/γ2)

n+1 − 1

1− (γ1/γ2)

]

γ1 6= γ2

=

[
γn+1
1 − γn+1

2

γ1 − γ2

]

u[n] γ1 6= γ2

We multiply the result by u[n] because convolution of two causal sequences is zero for n < 0.



194 Student use and/or distribution of solutions is prohibited

#5

nu[n] ∗ u[n] =
n∑

m=0

m =
n(n+ 1)

2
u[n]

#6

γnu[n] ∗ nu[n] =
n∑

m=0

γm(n−m)

= n

n∑

m=0

γm −
n∑

m=0

mγm

= n
γn+1 − 1

γ − 1
− γ + [n(γ − 1)− 1]γn+1

(γ − 1)2

=

[
γ(γn − 1) + n(1− γ)

(1 − γ)2

]

u[n]

Solution 3.8-13

#7

nu[n] ∗ nu[n] =
n∑

m=0

m(n−m)

= n
n∑

m=0

m−
n∑

m=0

m2

=
n(n+ 1)

2
− n(n+ 1)(2n+ 1)

6

=
n(n2 − 1)

6
u[n]

#8

γnu[n] ∗ γnu[n] =

n∑

m=0

γmγn−m

= γn
n∑

m=0

1

= (n+ 1)γnu[n]

Solution 3.8-14

#9

nγn
1 u[n] ∗ γn

2 u[n] =

n∑

m=0

mγm
1 γn−m

2

= γ2
2

n∑

m=0

n(γ1/γ2)
m

= γn
2

(γ1/γ2) + [(nγ1/γ2)− n− 1](γ1/γ2)
n+1

[(γ1/γ2)− 1]2

=
γ1γ2

(γ1 − γ2)2

[

γn
2 − γn

1 +
γ1 − γ2

γ2
nγn

1

]

u[n] γ1 6= γ2



Student use and/or distribution of solutions is prohibited 195

#11 Let

c[n] = γn
1 u[n] ∗ γn

2 u[−(n+ 1)]

=

∞∑

m=−∞
γm
1 γn−m

2 u[m]u[−(n−m+ 1)].

Consider c[n] for n ≥ 0. In this case−(n−m+1) ≥ 0 form ≥ n+1. Therefore u[−(n−m+1)] =
0 for m < n+ 1 and equal to 1 for m ≥ n+ 1. Also u[m] = 1 for m ≥ n+ 1 (for positive n).
Hence,

c[n] = γn
2

∞∑

m=n+1

(
γ1
γ2

)m

=
γn+1
1

γ2 − γ1
for n ≥ 0 and |γ2| > |γ1|.

When n ≤ −1, −(n−m+ 1) ≥ 0 for m ≥ 0. Hence, u[m]u[−(n−m+ 1)] = 1 for m ≥ 0 and
is zero otherwise. Thus,

c[n] = γn
2

∞∑

m=0

(
γ1
γ2

)m

=
γn+1
2

γ2 − γ1
for n ≤ −1 and |γ2| > |γ1|

Therefore

c[n] =
γn+1
1

γ2 − γ1
u[n] +

γn+1
2

γ2 − γ1
u[−(n+ 1)] |γ2| > |γ1|.

Solution 3.8-15

The characteristic root is −2. Therefore,

y0[n] = c(−2)n.

Setting n = −1 and substituting y[−1] = 10, yields

10 = − c

2
=⇒ c = −20.

Therefore,
y0[n] = −20(−2)n n ≥ 0.

For this system h[n], the unit impulse response is found in Prob. 3.7-1b to be

h[n] = (−2)nu[n].

The zero-state response is
y[n] = e−nu[n] ∗ (−2)nu[n].

Using Table 3.1, this convolution is found to be

y[n] =
e

2e+ 1
[e−(n+1) − (−2)n+1]u[n]

=
e

2e+ 1
[
1

e
(e)−n + 2(−2)n]u[n]

=

[
1

2e+ 1
(e)−n +

2e

2e+ 1
(−2)n

]

u[n].

Thus,

ytotal[n] = y0[n] + y[n]

= [−20(−2)n +
1

2e+ 1
(e)−n +

2e

2e+ 1
(−2)n]u[n]

=
1

2e+ 1
[−(38e+ 20)(−2)n + (e)−n]u[n].
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Solution 3.8-16

(a)

y[n] = 2nu[n] ∗ (0.5)nu[n]

=
2n+1 − (0.5)n+1

2− 0.5
u[n] =

2

3
[2n+1 − (0.5)n+1]u[n]

(b)

x[n] = 2(n−3)u[n] = 2−32nu[n] =
1

8
2nu[n]

From the result in part (a), it follows that

y[n] =
1

8

2

3
[2n+1 − (0.5)n+1]u[n] =

1

12
[2n+1 − (0.5)n+1]u[n].

(c)

x[n] = 2nu[n− 2] = 4{2(n−2)u[n− 2]}

Note that 2(n−2)u[n− 2] is the same as the input 2nu[n] in part (a) delayed by 2 units. From
the shift property of convolution, its response will therefore be the same as in part (a) delayed
by 2 units. The input here is 4{2(n−2)u[n− 2]}. Therefore,

y[n] = 4
2

3
[2n+1−2 − (0.5)n+1−2]u[n− 2] =

8

3
[2n−1 − (0.5)n−1]u[n− 2].

Solution 3.8-17

For x[n] = u[n]

y[n] = u[n]− 2u[n− 1].

The highest order difference is one. Hence, this is a first-order system. This is also a nonrecursive
system, whose output at any instant depends only on the input. Thus, initial conditions are not
needed to find the system response.

Solution 3.8-18

(a) Figure S3.8-18a represents the system in Fig P3.8-18 in a more convenient fashion. A parallel
connection requires the individual impulse responses to be added, and a series connection
requires the individual impulse responses to be convolved. Thus, the overall impulse response
is given by

h[n] = h1[n] ∗ h2[n] + (h1[n] ∗ h5[n] + h4[n]) ∗ h3[n].

h1[n]

h1[n] h5[n]

Σ

Σ y[n]

h4[n]

h2[n]

h3[n]

x[n]

Figure S3.8-18a
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(b) First, we shall simplify expressions for h1[n] and h2[n] by using the facts that u[n − 1] =
u[n]− δ[n], (0.9)n−1 = 1

0.9 (0.9)
n, and (0.5)n−1 = 1

0.5 (0.5)
n. Now,

h1[n] = 0.9nu[n]− 0.5

0.9
(0.9)n(u[n]− δ[n]) =

4

9
0.9nu[n] +

5

9
δ[n].

Similarly,

h2[n] = 0.5nu[n]− 0.9

0.5
(0.5)n(u[n]− δ[n]) = −0.8(0.5)nu[n] + 1.8δ[n].

Recall that x[n] ∗ δ[n] = x[n] and δ[n] ∗ δ[n] = δ[n]. Hence,

h1[n] ∗ h2[n] =
4

9
(0.9)nu[n] ∗ (−0.8)(0.5)nu[n]− 0.8(

5

9
)(0.5)nu[n] + 1.8(

4

9
)(0.9)nu[n] + δ[n]

= −16

45

[
0.9n+1 − 0.5n+1

0.4

]

u[n]− 4

9
(0.5)nu[n] +

4

5
(0.9)nu[n] + δ[n]

= δ[n].

Since the impulse response is δ[n], the cascade of the two systems is an identity system.

Solution 3.8-19

(a) From Eq. (3.37), for a causal system

g[n] =

n∑

k=0

h[k].

Let k = n−m. The limits of summation change from m = n to m = 0, resulting in

g[n] =

0∑

m=n

h[n−m].

In summation, we can sum from either direction. Hence,

g[n] =

n∑

m=0

h[n−m].

(b) When the system is noncausal,

g[n] =

n∑

k=−∞
h[k].

Let k = n−m. The original sum limits k = −∞ and k = n thus become m = ∞ and m = 0.
Hence,

g[n] =

0∑

m=∞
h[n−m] =

∞∑

m=0

h[n−m].

Solution 3.8-20

(a) First, we express h[n] in terms of delta functions δ[n] as

h[n] = 2(u[n+ 2]− u[n− 3]) = 2δ[n+ 2] + 2δ[n+ 1] + 2δ[n] + 2δ[n− 1] + 2δ[n− 2].

Substituting x[n] for δ[n] and y[n] for h[n], a suitable constant coefficient linear difference
equation is

y[n] = 2x[n+ 2] + 2x[n+ 1] + 2x[n] + 2x[n− 1] + 2x[n− 2].
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(b) Let us compute yzsr[n] = x[n] ∗ h[n] as

yzsr[n] =

∞∑

m=−∞
x[m]h[n−m].

To help visualize this problem, plots of x[m] and h[n−m] are shown in Fig. S3.8-20.

-5 0 5

m

0

0.5

1

x[
m

]

 (2)m

n-2 n+2

m

0

2

h[
n-

m
]

Figure S3.8-20

There are three regions to this convolution. In the first region, when n+ 2 ≤ 0 or n ≤ −2, we
have

yzsr[n] =
n+2∑

m=n−2

2(2)m = 2
2n−2 − 2n+3

1− 2
= 2n+4 − 2n−1 = 15.5(2)n.

In the second region, when −2 < n ≤ 2, we have

yzsr[n] =

0∑

m=n−2

2(2)m = 2
2n−2 − 2

1− 2
= 4− 2n−1.

The last region, when n > 2, has

yzsr[n] =
∑

0 = 0.

Thus,

yzsr[n] =







15.5(2)n n ≤ −2
4− 2n−1 −2 < n ≤ 2

0 n > 2
.

Solution 3.8-21

(a) As an identity system, the impulse response of system 3 is h3[n] = δ[n]. A parallel connection
of system 2 and 3 has an impulse response

h2||3[n] = h2[n] + h3[n] = [
↓
1, 0,−6,−9, 3].

Putting h2||3[n] in series with h1[n], the overall impulse response is h[n] = h1[n] ∗ h2||3[n]. Let
us use MATLAB to compute this convolution.

>> h = conv([2 -3 4],[1 0 -6 -9 3])

h = 2 -3 -8 0 9 -45 12

Thus,

h[n] = [
↓
2,−3,−8, 0, 9,−45, 12].
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(b) The zero-state response of system 2 to input x[n] = u[−n] is given by yzsr[n] = x[n] ∗ h2[n].
Let us “flip and shift” x[n] so that yzsr[n] is computed as

yzsr[n] =
∞∑

m=−∞
h[m]x[n−m].

In vector form,

x[n−m] = [

m=n

↓
1 , 1, 1, 1, 1, · · · ].

and

h[m] = [

m=2

↓
−6 ,−9, 3].

For n ≤ 2,
yzsr[n] = −6− 9 + 3 = −12.

For n = 3,
yzsr[n] = −9 + 3 = −6.

For n = 4,
yzsr[n] = 3.

For n > 4,
yzsr[n] = 0.

Thus,

yzsr[n] =







−12 n ≤ 2
−6 n = 3
3 n = 4
0 n > 4

.

Solution 3.8-22

The equation describing this situation is [see Eq. (3.4)]

(E − a)y[n] = Ex[n] a = 1 + r = 1.01.

The initial condition y[−1] = 0. Hence, there is only the zero-state component. The input is
500u[n]− 1500δ[n− 4] because at n = 4, instead of depositing the usual $500, she withdraws $1000.
To find h[n], we solve iteratively

(E − a)h[n] = Eδ[n]

or
h[n+ 1]− ah[n] = δ[n+ 1].

Setting n = −1 and substituting h[−1] = 0 and δ[0] = 1 yield

h[0] = 1.

Also, the characteristic root is a and b0 = 0. Therefore,

h[n] = canu[n].

Setting n = 0 and substituting h[0] = 1 yield

1 = c.

Therefore,
h[n] = (a)nu[n] = (1.01)nu[n].
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The (zero-state) response is

y[n] = (1.01)nu[n] ∗ x[n]
= (1.01)nu[n] ∗ {500u[n]− 1500δ[n− 4]}
= 500(1.01)nu[n] ∗ u[n]− 1500(1.01)n−4u[n− 4]

=
500

0.01
[(1.01)n+1 − 1]u[n]− 1500(1.01)n−4u[n− 4]

= 50000[(1.01)n+1 − 1]u[n]− 1500(1.01)n−4u[n− 4].

Solution 3.8-23

This problem is identical to the savings account problem with negative initial deposit (loan). If M
is the initial loan, then y[0] = −M . If y[n] is the loan balance, then [see Eq. (3.4)]

y[n+ 1]− ay[n] = x[n+ 1] a = 1 + r

or
(E − a)y[n] = Ex[n].

The characteristic root is a, and the impulse response for this system is easily found to be

h[n] = anu[n].

This problem can be solved in two ways.
First method: We may consider the loan ofM dollars as an a negative input −Mδ[n]. The monthly
payment of P starting at n = 1 also is an input. Thus the total input is x[n] = −Mδ[n] +Pu[n− 1]
with zero initial conditions. Because u[n] = δ[n] + u[n − 1], we can express the input in a more
convenient form as x[n] = −(M + P )δ[n] + Pu[n]. The loan balance (response) y[n] is

y[n] = h[n] ∗ x[n]
= anu[n] ∗ {−(M + P )δ[n] + Pu[n]}
= −(M + P )anu[n] + Panu[n] ∗ u[n]

= −(M + P )anu[n] + P

[
an+1 − 1

a− 1

]

u[n]

= −Manu[n]− P

[

an − an+1 − 1

a− 1

]

u[n]

=

{

−Man + P

[
an − 1

a− 1

]}

u[n].

Also a = 1+ r and a− 1 = r where r is the interest rate per dollar per month. At n = N , the loan
balance is zero. Therefore

y[N ] = −MaN + P

[
aN − 1

r

]

= 0

or

P =
raN

aN − 1
M =

rM

1 + a−N
=

rM

1 + (1 + r)−N
.

Second method: In this approach, the initial condition is y[0] = −M , and the input is x[n] =
Pu[n− 1] because the monthly payment of P starts at n = 1. The characteristic root is a, and The
zero-input response is

y0[n] = canu[n].

Setting n = 0 and substituting y0[0] = −M yield c = −M and

y0[n] = −Manu[n].
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The zero-state response y[n] is

y[n] = h[n] ∗ x[n] = h[n] ∗ Pu[n− 1] = Panu[n] ∗ u[n− 1].

Here we use shift property of convolution. If we let

x[n] = anu[n] ∗ u[n] = [
an+1 − 1

a− 1
]u[n],

then the shift property yields

Panu[n] ∗ u[n− 1] = x[n− 1] = P

[
an − 1

a− 1

]

u[n− 1].

The total balance is

y0[n] + y[n] = −Manu[n] + P

[
an − 1

a− 1

]

u[n− 1].

For n > 1, u[n] = u[n− 1] = 1. Therefore,

Loan balance = −Man + P

[
an − 1

a− 1

]

n > 1,

which confirms the result obtained by the first method. From here on the procedure is identical to
that of the first method.

Solution 3.8-24

We use the result in Prob. 3.8-23 with r = 0.015, a = 1.015, P = 500, and M = 10000. Therefore,

500 = 10000
(1.015)N(0.015)

(1.015)N − 1

or

(1.015)N = 1.42857

N ln(1.015) = ln(1.42857)

N =
ln(1.42857)

ln(1.015)
= 23.956.

Hence N = 23 payments are needed. The residual balance (remainder) at the 23rd payment is

y[23] = −10000(1.015)23 + 500[
(1.015)23 − 1

0.015
] = −471.2.

Solution 3.8-25

In the following convolutions, we call the first function x[n] and the second function h[n] so that

y[n] = x[n] ∗ h[n] =
∞∑

m=−∞
x[m]h[n−m].

(a) For ya[n] = x[n] ∗ h[n] = [
↓
2, 3,−2,−3] ∗ [−10,

↓
0,−5], we see that

h[n−m] = [−5, 0,

m=n+1

↓
−10 ] and x[m] = [

m=0

↓
2 , 3,−2,−3].
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Sliding h[n−m] across x[m], the convolution is computed as

n ya[n]
< −1 0
−1 −10(2) = −20
0 −10(3) + 0(2) = −30
1 −10(−2) + 0(3)− 5(2) = 10
2 −10(−3) + 0(−2)− 5(3) = 15
3 0(3)− 5(−2) = 10
4 −5(−3) = 15
> 4 0

Thus,

ya[n] = [−20,

n=0

↓
−30, 10, 15, 10, 15].

(b) For yb[n] = x[n] ∗ h[n] = [2,
↓
−1, 3,−2] ∗ [−1,−4, 1,

↓
−2], we see that

h[n−m] = [−2, 1,−4,

m=n+3

↓
−1 ] and x[m] = [

m=−1

↓
2 ,−1, 3,−2].

Sliding h[n−m] across x[m], the convolution is computed as

n yb[n]
< −4 0
−4 −1(2) = −2
−3 −1(−1)− 4(2) = −7
−2 −1(3)− 4(−1) + 1(2) = 3
−1 −1(−2)− 4(3) + 1(−1)− 2(2) = −15
0 −4(−2) + 1(3)− 2(−1) = 13
1 1(−2)− 2(3) = −8
2 −2(−2) = 4

> 2 0

Thus,

yb[n] = [−2,−7, 3,−15,

n=0

↓
13 ,−8, 4].

(c) For yc[n] = x[n] ∗ h[n] = [
↓
0, 0, 3, 2, 1, 2, 3] ∗ [2, 3,−2,

↓
1], we see that

h[n−m] = [1,−2, 3,

m=n+3

↓
2 ] and x[m] = [

m=2

↓
3 , 2, 1, 2, 3].

Sliding h[n−m] across x[m], the convolution is computed as

n yc[n]
< −1 0
−1 2(3) = 6
0 2(2) + 3(3) = 13
1 2(1) + 3(2)− 2(3) = 2
2 2(2) + 3(1)− 2(2) + 1(3) = 6
3 2(3) + 3(2)− 2(1) + 1(2) = 12
4 3(3)− 2(2) + 1(1) = 6
5 −2(3) + 1(2) = −4
6 1(3) = 3

> 6 0
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Thus,

yc[n] = [6,

n=0

↓
13 , 2, 6, 12, 6,−4, 3].

(d) For yd[n] = x[n] ∗ h[n] = [5, 0, 0,
↓
−2, 8] ∗ [−1, 1,

↓
3, 3,−2, 3], we see that

h[n−m] = [3,−2, 3, 3, 1,

m=n+2

↓
−1 ] and x[m] = [

m=−3

↓
5 , 0, 0,−2, 8].

Sliding h[n−m] across x[m], the convolution is computed as

n yd[n]
< −5 0
−5 −1(5) = −5
−4 −1(0) + 1(5) = 5
−3 −1(0) + 1(0) + 3(5) = 15
−2 −1(−2) + 1(0) + 3(0) + 3(5) = 17
−1 −1(8) + 1(−2) + 3(0) + 3(0)− 2(5) = −20
0 1(8) + 3(−2) + 3(0)− 2(0) + 3(5) = 17
1 3(8) + 3(−2)− 2(0) + 3(0) = 18
2 3(8)− 2(−2) + 3(0) = 28
3 −2(8) + 3(−2) = −22
4 3(8) = 24

> 4 0

Thus,

yd[n] = [−5, 5, 15, 17,−20,

n=0

↓
17 , 18, 28,−22, 24].

(e) For ye[n] = ([1,
↓
−1] ∗ [

↓
1,−1]) ∗ ([

↓
1,−1] ∗ [1,

↓
−1]), we first compute [1,

↓
−1] ∗ [

↓
1,−1] and

[
↓
1,−1] ∗ [1,

↓
−1]. These trivial convolutions are

[1,
↓
−1] ∗ [

↓
1,−1] = [

↓
1,−1] ∗ [1,

↓
−1] = [1,

↓
−2, 1].

Thus, ye[n] = x[n] ∗ h[n] = [1,
↓
−2, 1] ∗ [1,

↓
−2, 1], and we see that

h[n−m] = [1,−2,

m=n+1

↓
1 ] and x[m] = [

m=−1

↓
1 ,−2, 1].

Sliding h[n−m] across x[m], the convolution is computed as

n ye[n]
< −2 0
−2 1(1) = 1
−1 1(−2)− 2(1) = −4
0 1(1)− 2(−2) + 1(1) = 6
1 −2(1) + 1(−2) = −4
2 1(1) = 1

> 2 0

Thus,

ye[n] = [1,−4,

n=0

↓
6 ,−4, 1].
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(f) For yf [n] = ([2,
↓
−1] ∗ [

↓
1,−2]) ∗ ([

↓
1,−2] ∗ [2,

↓
−1]), we first compute [2,

↓
−1] ∗ [

↓
1,−2] and

[
↓
1,−2] ∗ [2,

↓
−1]. These trivial convolutions are

[2,
↓
−1] ∗ [

↓
1,−2] = [

↓
1,−2] ∗ [2,

↓
−1] = [2,

↓
−5, 2].

Thus, yf [n] = x[n] ∗ h[n] = [2,
↓
−5, 2] ∗ [2,

↓
−5, 2], and we see that

h[n−m] = [2,−5,

m=n+1

↓
2 ] and x[m] = [

m=−1

↓
2 ,−5, 2].

Sliding h[n−m] across x[m], the convolution is computed as

n ye[n]
< −2 0
−2 2(2) = 4
−1 2(−5)− 5(2) = −20
0 2(2)− 5(−5) + 2(2) = 33
1 −5(2) + 2(−5) = −20
2 2(2) = 4

> 2 0

Thus,

yf [n] = [4,−20,

n=0
↓
33 ,−20, 4].

Solution 3.8-26

By definition, we know that

x[n] ∗ h[n] =
∞∑

m=−∞
x[m]h[n−m].

Since x[m] is nonzero only for −3 ≤ m ≤ 1, this convolution is the sum of five (shifted-and-scaled)
versions of h[n]. That is,

x[−3]h[n− (−3)] −2 −1 1 2 0 0

n=0
↓
0 0

x[−2]h[n− (−2)] −4 −2 2 4 0 0 0
x[−1]h[n− (−1)] −6 −3 3 6 0 0

x[0]h[n− 0] −8 −4 4 8 0
x[1]h[n− 1] −10 −5 5 10
x[n] ∗ h[n] −2 −5 −7 −7 −7 5 13 10

Thus,

x[n] ∗ h[n] = [−2,−5,−7,−7,−7, 5,

n=0

↓
13 , 10].

Using the linearity and shift properties, we know that y[n] = (2x[n− 30]) ∗
(
− 3

2h[n− 10]
)
is just −3

times x[n] ∗ h[n] righted-shifted by 40. Thus,

y[n] = (2x[n− 30]) ∗
(
− 3

2h[n− 10]
)

= −3[−2,−5,−7,−7,−7, 5,

n=40

↓
13 , 10]

= [6, 15, 21, 21, 21,−15,

n=40

↓
−39,−30].
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Solution 3.8-27

In this problem, notice that m designates a fixed shift parameter and does not reflect the convolution
sum variable typically used in the chapter.

(a) The strips corresponding to u[n] and the flipped and shifted u[n] are shown in the Fig. S3.8-27a
for n = 0 (no shift)) and n = 1 (shift by one). We see that if c[n] = u[n] ∗ u[n], then

c[0] = 1, c[1] = 2, c[2] = 3, c[3] = 4, c[4] = 5, c[5] = 6, · · · , c[n] = n+ 1.

Hence,
u[n] ∗ u[n] = (n+ 1)u[n].

(b) The appropriate strips for the two functions u[n]−u[n−m] and u[n] are shown in Figure S??b.
The upper strip corresponding to u[n]−u[n−m] has the first m slots with value 1 and all the
remaining slots have value 0. The lower strip corresponding to a flipped and shifted u[n] has
values of 1 for all slots left of position n. From this figure it follows that

c[0] = 1, c[1] = 2, c[2] = 3, · · · , c[m− 1] = m = c[m] = c[m+ 1] = · · · .

Hence,
c[n] = (n+ 1)u[n]− (n−m+ 1)u[n−m].

n = 0
(a)

(b)

6

4

2

0 1 2 3 4 5 6

n = 1

0 1 m–1 m+1m

1

1 1 1 1 1 1

1

1 1 1 1 1 1 1

1 1 0 0

1 1 1 0 0

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

y[0] = 1

y[1] = 2

y[0] = 1

y[1] = 2
1 2 3 m–1

c[n]

c[n]

n

n

Figure S3.8-27

Solution 3.8-28

From Fig. S3.8-28 we observe that:

n y[n]
0 0 + 1 + 2 + 3 + 4 + 5 = 15 y[n] = 0 k ≥ 6
1 1 + 2 + 3 + 4 + 5 = 15
2 2 + 3 + 4 + 5 = 14 y[n] = 15 n < 0
3 3 + 4 + 5 = 12
4 4 + 5 = 9
5 5
6 0
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y[0] = 15
y[n]

y[1] = 15

–4 –2 0 1 2 3 4 5 6 7

5

9

12
14

15

y[–1] = 15

n = 0

n = 1

n = –1

n

0

1 1 1 1 1 1 1 1

1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

Figure S3.8-28

Solution 3.8-29

From Fig. S3.8-29, we observe the following values for y[n]:

n y[n] n y[n]
0 5× 5 + 5× 5 = 50 ±11 0× 0 + 5× 4 = 20
±1 5× 4 + 0 = 20 ±12 0× 0 + 5× 3 = 15
±2 5× 3 + 0 = 15 ±13 0× 0 + 5× 2 = 10
±3 5× 2 + 0 = 10 ±14 0× 0 + 5× 1 = 5
±4 5× 1 + 0 = 5 ±15 0× 0 + 0× 0 = 0
±5 5× 0 + 0 = 0 ±16 0
· · · · · · ±17 0
±9 0× 0 + 0× 0 = 0 ±18 0
±10 0× 0 + 5× 5 = 25

Further, observe that
y[n] = 0 5 ≤ |n| ≤ 9 and |n| ≥ 15.

–10

0 0 1 2 3 4 5 0 0 0 0 0 0 0 0 0 5 4 3 2 1 0 0
0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0

–5

n = 0, y[n] = 50

0

–15 –10 –5 5

20

50

15
10

5

10 15 n

Figure S3.8-29

Solution 3.8-30

(a) From Fig. S3.8-30, we observe the following values of y[n]:

n 0 ±1 ±2 ±3 ±4 ±5 ±6 ±7 |n| > 7
y[n] 7 6 5 4 3 2 1 0 0

(b) The answer is identical to that of (a). This is because when we lay the tapes x[m] and g[−m]
together, the situation is identical to that in (a).
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–4

0 1 1 1 1 1 1 1 0 0

0 1 1 1 1 1 1 1 0 0

0 1 1 1 1 1 1 1 0 0

0

0

1 1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0 0 0

0 0 1 1 1 1 1 1 1 0

0 4

n = 0

y[0] = 7

n = 1

y[1] = 6

n = –1

y[–1] = 6

y[n]7

–7 –4 –2 0 1 2 3 4 5 6 7

Figure S3.8-30

Solution 3.8-31

This problem considers the convolution

y[n] = x[n] ∗ h[n] =
∞∑

m=−∞
h[m]x[n−m],

where x[n] and y[n] are known and h[n] is unknown. The nonzero values of signal x[n] are [1, 2,
↓
2]

and the nonzero values of signal y[n] are [3, 4, 6, 6, 11,
↓
2,−2]. By the convolution width property,

h[n] must have length 7− 3 + 1 = 5. Following the sliding tape method, we see that

x[n−m] = [2, 2,

m=n+2

↓
1 ] and h[m] = [

m=M

↓
a , b, c, d, e].

To produce the given output y[n] with leftmost nonzero value at n = −5 requires that

n+ 2|n=−5 = M ⇒ M = −3.

Sliding x[n − m] across h[m] five times, we use the known values of x[n] and y[n] to compute the
five unknown values of h[n]. That is,

n y[n]
< −3 0
−3 a = 3
−2 b+ 2(a) = b+ 6 = 4 ⇒ b = −2
−1 c+ 2(b) + 2(a) = c− 4 + 6 = 6 ⇒ c = 4
0 d+ 2(c) + 2(b) = d+ 8− 4 = 6 ⇒ d = 2
1 e+ 2(d) + 2(c) = e+ 4 + 8 = 11 ⇒ e = −1

.

Continuing to slide x[n−m] across h[m], we see our computed values of h[n] confirm the final values
of y[n],

n y[n]
2 1(0) + 2(e) + 2(d) = −2 + 4 = 2
3 1(0) + 2(0) + 2(e) = −2

.

Thus,

h[n] = [3,−2, 4,

n=0

↓
2 ,−1].
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Solution 3.8-32

(a)

8 = h[0]

12 = h[1] + h[0] =⇒ h[1] = 12− 8 = 4

14 = h[2] + h[1] + h[0] =⇒ h[2] = 2

15 = h[3] + h[2] + h[1] + h[0] =⇒ h[3] = 1

15.5 = h[4] + h[3] + h[2] + h[1] + h[0] =⇒ h[4] = 0.5

15.75 = h[5] + h[4] + h[3] + h[2] + h[1] + h[0] =⇒ h[5] = 0.25

Thus,

h[n] = [

n=0

↓
8 , 4, 2, 1, 0.5, 0.25, · · · ].

(b)

H =





1 0 0
2 1 0
4 2 1



 =⇒ H−1 =





1 0 0
−2 1 0
0 −2 1





x = H−1y =





1 0 0
−2 1 0
0 −2 1









1
7/3
43/9



 =





1
1/3
1/9





Hence the input sequence is: (1, 1/3, 1/9, · · · )

Solution 3.8-33

Using the sifting property, the zero-input response is rewritten as y0[n] = 2u[n] + (1/3)nu[n].

(a) Since the system is second-order, it has two characteristic roots. Both roots appear in the
zero-input response, and are easily identified as γ1 = 1 and γ2 = 1/3. Let a0 = 1 (standard
form), so γ2 + a1γ + a2 = (γ − 1)(γ − 1/3) = γ2 − 4/3γ + 1/3. Thus,

a0 = 1, a1 = −4/3, and a2 = 1/3.

(b) To produce a strong response, the input should be close to a natural mode. Since the system
has two bounded modes, any linear combination of these modes will produce a strong response.
That is, a strong response is generated in response to

x[n] = (c1γ
n
1 + c2γ

n
2 )u[n] = (c1 + c2(1/3)

n)u[n],

where c1 and c2 are arbitrary (nonzero) constants.

(c) A causal, bounded, and infinite duration input is conveniently chosen in the form x[n] = γnu[n],
where |γ| ≤ 1. To produce a weak response, the input should be far from the system’s natural
modes. In the complex plane, the farthest point γ from the modes γ1 = 1 and γ2 = 1/3 with
|γ| ≤ 1 is γ = −1. Thus, a relatively weak response is generated in response to

x[n] = c1(−1)nu[n],

where c1 is an arbitrary nonzero constant.
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Solution 3.8-34

(a) MATLAB is used to plot h1[n] and h2[n] (see Fig. S3.8-34).

>> delta = @(n) 1.0*(n==0).*(mod(n,1)==0);

>> u = @(n) 1.0*(n>=0).*(mod(n,1)==0); n = -10:10;

>> h1 = @(n) delta(n+2)-delta(n-2); h2 = @(n) n.*(u(n+4)-u(n-4));

>> subplot(221); stem(n,h1(n),’k.’); axis on; grid on;

>> xlabel(’n’); ylabel(’h_1[n]’); axis([-10.5 10.5 -5 5]);

>> set(gca,’xtick’,-10:2:10,’ytick’,-5:2:5);

>> subplot(222); stem(n,h2(n),’k.’); axis on; grid on;

>> xlabel(’n’); ylabel(’h_2[n]’); axis([-10.5 10.5 -5 5]);

>> set(gca,’xtick’,-10:2:10,’ytick’,-5:2:5);

(b) The impulse response of two systems in parallel is just the sum of the individual impulse
responses,

hp[n] = h1[n] + h2[n].

MATLAB easily computes and plots hp[n] (see Fig. S3.8-34).

>> hp = @(n) h1(n)+h2(n); subplot(223); stem(n,hp(n),’k.’); axis on; grid on;

>> xlabel(’n’); ylabel(’h_p[n]’); axis([-10.5 10.5 -5 5]);

>> set(gca,’xtick’,-10:2:10,’ytick’,-5:2:5);

(c) The impulse response of two systems in series is just the convolution of the individual impulse
responses,

hs[n] = h1[n] ∗ h2[n].

MATLAB easily computes and plots hs[n] (see Fig. S3.8-34).

>> hs = conv(h1(n),h2(n)); n = -20:20; subplot(224); stem(n,hs,’k.’); axis on;

>> grid on; xlabel(’n’); ylabel(’h_s[n]’); axis([-10.5 10.5 -5 5]);

>> set(gca,’xtick’,-10:2:10,’ytick’,-5:2:5);
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Figure S3.8-34
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Solution 3.8-35

(a) (z3 + z2 + z + 1)2 = z6 + 2z5 + 3z4 + 4z3 + 3z2 + 2z + 1. MATLAB is used to compute the
convolution [1111] ∗ [1111].

>> conv([1 1 1 1],[1 1 1 1])

ans = 1 2 3 4 3 2 1

Notice, the coefficients of the polynomial expansion are the same as the terms from the con-
volution.

(b) It is possible to expand the product of two polynomial expressions by convolving the coefficients
from each ordered polynomial expression. Repeated convolution can be used to expand the
product of more than two polynomial expressions. Care must be used to include all coefficient
terms, including zeros, from the highest power to the lowest, and coefficients need to be ordered
in a consistent manner.

(c) (z−4 − 2z−3 + 3z−2)4 = ((z−4 − 2z−3 + 3z−2)2)2. First, use MATLAB and convolution to
compute (z−4 − 2z−3 + 3z−2)2.

>> temp = conv([1 -2 3],[1 -2 3]);

Convolution is used to square this intermediate result and obtain (z−4 − 2z−3 + 3z−2)4.

>> conv(temp,temp)

ans = 1 -8 36 -104 214 -312 324 -216 81

Recognizing that the highest power of z−1 in the result must be 16, the expansion is

z−16 − 8z−15 + 36z−14 − 104z−13 + 214z−12 − 312z−11 + 324z−10 − 216z−9 + 81z−8.

(d) First, use convolution to expand (z5 + 2z4 + 3z2 + 5)2.

>> temp = conv([1 2 0 3 0 5],[1 2 0 3 0 5]);

Convolution is again used to multiply the resulting polynomial by (13 − 5z−2 + z−4). It is
important to order the coefficients in descending powers of z to be compatible with the first
result.

>> conv(temp,[13 0 -5 0 1])

ans = 13 52 47 58 137 104 321 -44 257 10 204 0 -95 0 25

Recognizing that the highest power of z in the result must be 10, the expansion is

13z10+52z9+47z8+58z7+137z6+104z5+321z4−44z3+257z2+10z+204−95z−2+25z−4.

Solution 3.8-36

(a) Actually, only a first-order difference equation is necessary to describe this system. On refill
n, the amount of sugar y[n] is equal to the amount added x[n] plus whatever was still in the
mug. Since Joe drinks 2/3 of his cup of coffee before each refill, one-third of the sugar from
the previous cup remains. Thus, y[n] = y[n− 1]/3 + x[n]. Thus,

a1 = −1/3, a2 = 0, b0 = 1, b1 = 0, and b2 = 0.

In standard form, the difference equation is

y[n]− y[n− 1]/3 = x[n].
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(b) Since Joe adds two teaspoons of sugar each time he fills his cup,

x[n] = 2u[n].

(c) The total solution to a difference equation is the sum of the zero-input response and the zero-
state response. Since Joe starts with a clean mug, y[−1] = 0 and the zero-input response is
necessarily zero, y0[n] = 0. Thus, the total solution is just the zero-state solution.

To obtain the zero-state solution, the impulse response h[n] is needed. In this case, h[n] =
0

1/3+ỹ0[n]u[n], where ỹ0[n] = cγn. To determine c, input x[n] = δ[n] into the original difference

equation to yield h[n]− h[n− 1]/3 = δ[n]. Since h[n] is causal, h[0]− h[−1]/3 = h[0] = δ[0] =
1 = ỹ0[0]u[0] = c. Thus, h[n] = 3−nu[n]. The zero-state solution is

x[n] ∗ h[n] = (
∑n

k=0 2(3)
−n)u[n] = 2 1−3−(n+1)

1−1/3 u[n] = (3− 3−n)u[n],

and
y[n] =

(
3− 3−n

)
u[n].

(d)
lim
n→∞

y[n] = lim
n→∞

(
3− 3−n

)
= 3.

That is, after many cups of coffee, Joe’s mug reaches a steady-state of three teaspoons of sugar.

One way to make Joe’s coffee remain a constant for all non-negative n is begin at the steady-
state value of three and then add two teaspoons of sugar at each refill. That is,

x[n] = 2u[n] + δ[n].

The added δ[n] “jump starts” the sugar content of the first cup to the steady-state value.

If Joe desires a steady value of two teaspoons, which is two-thirds the original steady-state
value, the input is simply scaled by 2/3. That is, the steady level y[n] = 2u[n] is achieved
using the input

x[n] =
4

3
u[n] +

2

3
δ[n].

Solution 3.8-37

(a) The characteristic equation is jγ + 0.5 = 0. Thus, the characteristic root of the system is
γ = j0.5. The impulse response has form h[n] = bN

aN
δ[n]+cγnu[n] = c(j0.5)nu[n]. To determine

c, evaluate the original difference equation according to jh[0]+0.5h[−1] = jh[0] = −5δ[0] = −5.
Thus, h[0] = j5 = c. Taken together,

h[n] = j5(j0.5)nu[n].

(b) First, compute the zero-input response y0(t) = c(jy0.5)n. To find c, use the initial condition
y0[−1] = j = c(jy0.5)−1. Thus, c = jy20.5 = −0.5 and y0[n] = −0.5(j0.5)n.

The zero-state response is

h[n] ∗ x[n] =
(
∑n−5

k=0 j5(j0.5)
k
)

u[n− 5] =
(

j5 1−(j0.5)n−4

1−j0.5

)

u[n− 5].

Adding the zero-input and zero-state responses yields the total response for n ≥ 0,

y[n] = −0.5(j0.5)n +

(

j5
1− (j0.5)n−4

1− j0.5

)

u[n− 5].
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Solution 3.8-38

(a) MATLAB is used to plot the function h[n] = n(u[n− 2]− u[n+ 2]) (see Fig. S3.8-38).

>> u = @(n) 1.0*(n>=0).*(mod(n,1)==0);

>> n = -5:5; h = @(n) n.*(u(n-2)-u(n+2));

>> stem(n,h(n),’k.’); axis on; grid on;

>> xlabel(’n’); ylabel(’h[n]’); axis([-5.5 5.5 -2.5 2.5]);

-5 0 5

n

-2

0

2

h[
n]

Figure S3.8-38

(b) Using Fig. S3.8-38, write h[n] = 2δ[n+2]+δ[n+1]−δ[n−1]. A difference equation representation
immediately follows from this form,

y[n] = 2x[n+ 2] + x[n+ 1]− x[n− 1].

Solution 3.8-39

For this solution, consider the signals x[n] = δ[n]− δ[n− 1] = [1,−1], y[n] = z[n] = δ[n] + δ[n− 1] =
[1, 1]. In this case, x[n] (y[n] ∗ z[n]) = [1,−2].

(a) Not equivalent. By counter-example, (x[n] ∗ y[n])z[n] = [1] 6= [1,−2] = x[n] (y[n] ∗ z[n]).

(b) Not equivalent. By counter-example, (x[n]y[n]) ∗ (x[n]z[n]) = [1,−2, 1] 6= [1,−2] =
x[n] (y[n] ∗ z[n]).

(c) Not equivalent. By counter-example, (x[n]y[n]) ∗ z[n] = [1, 0,−1] 6= [1,−2] = x[n] (y[n] ∗ z[n]).

(d) True. None of the above expressions is equivalent to x[n] (y[n] ∗ z[n]).

Solution 3.8-40

In this problem, a causal system with input x[n] and output y[n] is described by difference equation
y[n]− ny[n− 1] = x[n]. Since the system is causal, its impulse response h[n] equals 0 for n < 0.

(a) Substituting δ[n] for x[n] and h[n] for y[n], we can determine h[n] through recursion according
to

h[n] = nh[n− 1] + δ[n].

The first six nonzero values of h[n] are thus

n 0 1 2 3 4 5
h[n] 1 = 0! 1(1) = 1 = 1! 2(1) = 2 = 2! 3(2) = 6 = 3! 4(6) = 24 = 4! 5(24) = 120 = 5!

.

That is,

h[n] = [
↓
0, 1, 1, 2, 6, 24, 120, . . .]

or, more generally,
h[n] = (

∑∞
i=0 i!δ[n− i])u[n].

The system is not BIBO stable since h[n] grows without bound and is not absolutely summable.
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(b) Assuming all initial conditions are zero, we can determine the system output yR[n] in response
to x[n] = u[n] through recursion according to

yR[n] = ny|rmR[n− 1] + u[n].

Thus,

n 0 1 2 3 4
yR[n] 0(0) + 1 = 1 1(1) + 1 = 2 2(2) + 1 = 5 3(5) + 1 = 16 4(16) + 1 = 65

.

At n = 4, we see that
yR[4] = 65.

(c) Designating yC[n] = h[n] ∗ u[n], we compute yC[4] as

yC[4] =

∞∑

m=−∞
h[m]u[4−m].

Since h[n] and x[n] are both causal, we see that

yC[4] =

4∑

m=0

h[m] = 1 + 1 + 2 + 6 + 24 = 34.

(d) From parts (b) and (c), we see that yR[4] = 65 6= 34 = yC[4]. That is, the recursive solution
and the convolution solution do not agree. The recursive solution yR[n] correctly reflects the
zero state response of the system. The convolution solution yC[n] = h[n] ∗ x[n] can compute
the zero state response if the system is both linear and time-invariant. Although this system
is linear, it is not time-invariant. Thus, yC[n] = h[n] ∗ x[n] cannot correctly compute the zero
state response. Notice that although the system is BIBO unstable, this fact does not explain
why yR[n] 6= yC[n].

Solution 3.9-1

Assume that a system exists that violates Eq. (3.43) and yet produces bounded output for every
bounded input. The system response at n = n1 is

y[n1] =
∞∑

m=0

h[m]x[n1 −m]

Consider a bounded input x[n] such that

x[n1 −m] =

{
1 if h[m] > 0
−1 if h[m] < 0

In this case
h[m]x[n1 −m] = |h[m]|

and

y[n1] =

∞∑

m=0

|h[m]| = ∞.

This violates the assumption.
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Solution 3.9-2

(a) Here,
γ2 + 0.6γ − 1.6 = (γ − 0.2)(γ + 0.8).

The characteristic roots are 0.2 and −0.8. Since both are inside the unit circle,

the system is BIBO stable and asymptotically stable.

(b) In this case,
γ2 + 3γ + 2 = (γ + 2)(γ + 1).

The characteristic roots are −1 and −2. Since one root outside the unit circle and the other
is on the unit circle,

the system is BIBO unstable and asymptotically unstable.

(c) Now,

(γ − 1)2(γ +
1

2
).

The characteristic roots are 1 (multiplicity two) and −0.5. Since there is a repeated root on
unit circle,

the system is BIBO unstable and asymptotically unstable.

(d) In this case,
γ2 + 2γ + 0.96 = (γ + 0.8)(γ + 1.2).

The characteristic roots are −0.8 and −1.2. Since the root (−1.2) is outside the unit circle,

the system is BIBO unstable and asymptotically unstable.

(e) Here,
γ2 + γ − 2 = (γ + 0.5 + j1.5)(γ + 05− j1.5).

The characteristic roots are −0.5± j1.5. Since there are roots outside the unit circle,

the system is BIBO unstable and asymptotically unstable.

(f) In the final case,
(γ2 − 1)(γ2 + 1) = (γ + 1)(γ − 1)(γ + j1)(γ − j1).

The characteristic roots are ±1 and ±j1. Since we have simple (unrepeated) roots on the unit
circle and no roots outside the unit circle,

the system is BIBO unstable and marginally stable.

Solution 3.9-3

The system S1 is asymptotically (and BIBO) unstable. The system S2 is BIBO and asymptotically
stable. If we cascade the two systems, the impulse response of the composite system is

h[n] = 2nu[n] ∗ (δ[n]− 2δ[n− 1]) = 2nu[n]− 2(2)n−1u[n− 1] = δ[n].

The composite system is BIBO stable. However, the system S1 will burn out (or saturate) because
its output contains a signal of the form 2n.
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Solution 3.9-4

(a) To be unstable, a causal mode must have magnitude greater than one. That is, at least one
characteristic root must be outside the unit circle. By this criteria,

systems D, E, and I are unstable.

(b) To be real, the characteristic modes need to be either real or in complex-conjugate pairs. By
this criteria,

systems A, B, C, D, E, G, I, and J are real.

(c) Oscillatory modes include sinusoids, decaying sinusoids, or exponentially growing sinusoids.
Unless the characteristic roots are all real and positive, the corresponding natural mode(s) will
exhibit oscillatory behavior. By this criteria,

systems A, B, C, D, E, F, G, H, and I have oscillatory natural modes.

(d) To have a mode that decays at a rate of 2−n, at least one characteristic root needs to lie on
the circle of radius one-half centered at the origin. By this criteria,

systems B, D, F, and J have at least one mode that decays by 2−n

(e) For a second-order system with two finite roots to only have one mode, one characteristic root
needs to be located at the origin. By this criteria,

systems F, H, and J have only one mode.

Solution 3.9-5

Notice, the system response can be written more simply as h[n] = δ[n] +
(
1
3

)n
u[n− 1] =

(
1
3

)n
u[n].

(a) The system is stable since the impulse response function is absolutely summable. That is,
∑∞

n=−∞ |h[n]| =
∑∞

n=0

(
1
3

)n
= 1−0

1−1/3 = 3/2 < ∞. The system is causal since h[n] = 0 for
n < 0.

(b) MATLAB is used to plot x[n] (see Fig. S3.9-5).

>> u = @(n) 1.0*(n>=0).*(mod(n,1)==0);

>> n = -10:10; x = @(n) (u(n-3)-u(n+3));

>> subplot(121); stem(n,x(n),’k.’); axis on; grid on;

>> xlabel(’n’); ylabel(’x[n]’); axis([-5.5 5.5 -1.1 0.1]);

(c) The zero-state response is computed as y[n] = x[n] ∗ h[n]. This convolution involves three
regions.

For n < −3, y[n] = 0.

For −3 ≤ n < 2, y[n] =
∑n

k=−3 −(1/3)n−k = −(1/3)n
∑n

k=−3 3
k = −(1/3)n 3−3−3n+1

1−3 =
3−(n+3)−3

2 .

For n ≥ 2, y[n] =
∑2

k=−3 −(1/3)n−k = −(1/3)n
∑2

k=−3 3
k = −(1/3)n 3−3−33

1−3 = − 728
54 (3)

−n.

Combining yields

y[n] =







0 n < −3
3−(n+3)−3

2 −3 ≤ n < 2
− 728

54 (3)−n n ≥ 2

.

MATLAB is used to plot the result (see Fig. S3.9-5).

>> y = @(n) (3.^(-(n+3))-3)/2.*(u(n+3)-u(n-2))-728/54*(3).^(-n).*u(n-2);

>> subplot(122); stem(n,y(n),’k.’); axis on; grid on;

>> xlabel(’n’); ylabel(’y[n]’); axis([-10.5 10.5 -1.6 0.1]);
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Figure S3.9-5

Solution 3.9-6

(a) No, the system is not causal since h[n] 6= 0 for (n < 0).

(b)

∞∑

n=−∞
|h[n]| =

∞∑

n=−∞
|
(
1

2

)|n|
| =

∞∑

n=−∞

(
1

2

)|n|

=

−1∑

n=−∞
0.5−n +

∞∑

n=0

0.5n =

−1∑

n=−∞
2n +

∞∑

n=0

0.5n

=
0− 20

1− 2
+

0.50 − 0

1− 0.5
= 1 + 2 = 3.

Since h[n] is absolutely summable, the system is BIBO stable.

(c)

Px = lim
N→∞

1

2N + 1

n=N∑

n=−N

|x[n]|2 = lim
N→∞

1

2N + 1

n=N∑

n=−N

9u[n− 5]

= lim
N→∞

1

2N + 1

n=N∑

n=5

9 lim
N→∞

1

2N + 1
9(N − 5 + 1) = lim

N→∞

9N − 36

2N + 1
=

9

2
.

Since the power Px is finite, energy must be infinite.

Ex = ∞ and Px = 9
2 .

(d) We know that y[n] = x[n] ∗ h[n] =
∑∞

k=−∞ h[k]x[n− k]. Thus,

y[10] =

∞∑

k=−∞
h[k]x[10− k] =

∞∑

k=−∞
0.5|k|3u[10− 5− k]

=

−1∑

k=−∞
3(2k) +

5∑

k=0

3(0.5k) = 3
0− 20

1− 2
+ 3

0.50 − 0.56

1− 0.5

= 3 + 3
63

32
=

285

32
.

Thus,

y[10] =
285

32
≈ 8.91.
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Solution 3.10-1

Here, we consider just one of the many possible solutions to this problem. For the input
x[n] = 2(13 )

nu[−n − 4] to cause resonance, the (13 )
n term needs to exactly match a mode of the

system. Thus, the system needs a characteristic root γ = 1
3 . A simple first-order system will do the

trick:

y[n]− 1

3
y[n− 1] = x[n].

Solution 3.10-2

Here, we consider just one of the many possible solutions to this problem. The causal LTID system
described by (E2 +1){y[n]} = (E +0.5){x[n]} has characteristic roots γ = ±j. To cause resonance,
an input needs to match at least one of the corresponding characteristic modes, either (j)n = ejπn/2

or (−j)n = e−jπn/2. To keep the input real, we use both of modes. Thus,

real input x[n] = 2 cos(π2n) = ejπn/2 + e−jπn/2 causes resonance (both modes) in the system.

Solution 3.10-3

The time constant T1 of the system with impulse response h1[n] = −(0.5)nu[n] is

T1 =
−∑∞

n=0(
1
2 )

n

−1
=

−2

−1
= 2.

The time constant T2 of the system with impulse response h2[n] = 2(u[n]− u[n− 4]) is

T2 =
2
∑3

n=0 1

2
=

2(4)

2
= 4.

Since T1 = 2 < 4 = T2,

system 1 would more efficiently transmit a binal communication signal.

That is, the faster system more efficiently transmits binary communication signals.

Solution 3.11-1

Here, we consider just one of the many possible coding solutions to this problem.

>> delta = @(n) 1.0*(n==0).*(mod(n,1)==0); u = @(n) 1.0*(n>=0).*(mod(n,1)==0);

>> x = @(n) delta(n)+u(n-50); n = -2:100; y = zeros(size(n)); y(n==-2)=2; y(n==-1)=2;

>> for nstep = 0:100,

>> y(n==nstep) = y(n==nstep-1)/3-y(n==nstep-2)/2+x(nstep);

>> end

>> stem(n,y,’k.’); grid on; axis([-.5 100.5 -1 1.5]); xlabel(’n’); ylabel(’y[n]’);
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n

-1

0

1

y[
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Figure S3.11-1
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Solution 3.11-2

To accommodate upsampling, the function needs to be modified so that it assigns a zero for non-
integer inputs.

>> f = @(n) exp(-n/5).*cos(pi*n/5).*(n>=0).*(n==fix(n));

The added term (n==fix(n)) is one if n is an integer and zero if n is not an integer. The modified
function is easy to test.

>> n = -10:10; stem(n,f(n/2),’k.’); ylabel(’f[n/2]’); xlabel(’n’); axis([-10.5 10.5 -0.5 1.1]);
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]

Figure S3.11-2

As shown in Fig. S3.11-2, f[n/2] inserts a zero between every sample of f[n], which corresponds
to the desired upsample-by-two operation.

Solution 3.11-3

(a) >> x = [2,3,-2,-3]; h = [-10,0,-5]; nx = 0:3; nh = -1:1;

>> y = conv(x,h); n = (nx(1)+nh(1)):(nx(end)+nh(end));

>> stem(n,y,’k.’); grid on; xlabel(’n’); ylabel(’y_a[n]’);

>> set(gca,’ytick’,unique(y)); del = (max(y)-min(y))/20;

>> axis([n(1)-.5 n(end)+.5 min(y)-del max(y)+del]);
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Figure S3.11-3a

From Fig. S3.11-3a,

ya[n] = [−20,

n=0

↓
−30, 10, 15, 10, 15].

This confirms the result of Prob. 3.8-25a.

(b) >> x = [2,-1,3,-2]; h = [-1,-4,1,-2]; nx = -1:2; nh = -3:0;

>> y = conv(x,h); n = (nx(1)+nh(1)):(nx(end)+nh(end));

>> stem(n,y,’k.’); grid on; xlabel(’n’); ylabel(’y_b[n]’);

>> set(gca,’ytick’,unique(y)); del = (max(y)-min(y))/20;

>> axis([n(1)-.5 n(end)+.5 min(y)-del max(y)+del]);
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Figure S3.11-3b

From Fig. S3.11-3b,

yb[n] = [−2,−7, 3,−15,

n=0

↓
13 ,−8, 4].

This confirms the result of Prob. 3.8-25b.

(c) >> x = [3,2,1,2,3]; h = [2,3,-2,1]; nx = 2:6; nh = -3:0;

>> y = conv(x,h); n = (nx(1)+nh(1)):(nx(end)+nh(end));

>> stem(n,y,’k.’); grid on; xlabel(’n’); ylabel(’y_c[n]’);

>> set(gca,’ytick’,unique(y)); del = (max(y)-min(y))/20;

>> axis([n(1)-.5 n(end)+.5 min(y)-del max(y)+del]);
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Figure S3.11-3c

From Fig. S3.11-3c,

yc[n] = [6,

n=0

↓
13 , 2, 6, 12, 6,−4, 3].

This confirms the result of Prob. 3.8-25c.

(d) >> x = [5,0,0,-2,8]; h = [-1,1,3,3,-2,3]; nx = -3:1; nh = -2:3;

>> y = conv(x,h); n = (nx(1)+nh(1)):(nx(end)+nh(end));

>> stem(n,y,’k.’); grid on; xlabel(’n’); ylabel(’y_d[n]’);

>> set(gca,’ytick’,unique(y)); del = (max(y)-min(y))/20;

>> axis([n(1)-.5 n(end)+.5 min(y)-del max(y)+del]);
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Figure S3.11-3d

From Fig. S3.11-3d,

yd[n] = [−5, 5, 15, 17,−20,

n=0

↓
17 , 18, 28,−22, 24].

This confirms the result of Prob. 3.8-25d.

(e) >> x = conv([1,-1],[1,-1]); h = conv([1,-1],[1,-1]); nx = -1:1; nh = -1:1;

>> y = conv(x,h); n = (nx(1)+nh(1)):(nx(end)+nh(end));

>> stem(n,y,’k.’); grid on; xlabel(’n’); ylabel(’y_e[n]’);

>> set(gca,’ytick’,unique(y)); del = (max(y)-min(y))/20;

>> axis([n(1)-.5 n(end)+.5 min(y)-del max(y)+del]);

-2 -1 0 1 2

n

-4

1

6

y e
[n

]

Figure S3.11-3e

From Fig. S3.11-3e,

ye[n] = [1,−4,

n=0

↓
6 ,−4, 1].

This confirms the result of Prob. 3.8-25e.

(f) >> x = conv([2,-1],[1,-2]); h = conv([1,-2],[2,-1]); nx = -1:1; nh = -1:1;

>> y = conv(x,h); n = (nx(1)+nh(1)):(nx(end)+nh(end));

>> stem(n,y,’k.’); grid on; xlabel(’n’); ylabel(’y_e[n]’);
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>> set(gca,’ytick’,unique(y)); del = (max(y)-min(y))/20;

>> axis([n(1)-.5 n(end)+.5 min(y)-del max(y)+del]);
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Figure S3.11-3f

From Fig. S3.11-3f,

yf [n] = [4,−20,

n=0

↓
33 ,−20, 4].

This confirms the result of Prob. 3.8-25f.

Solution 3.11-4

There are many ways to solve this problem. For this solution, let d[n] designate the distance from
the student’s destination, which alternates between home and the exam location, just before the
student changes his mind. For even-valued n the destination is home, and for odd-valued n the
destination is the exam location.

(a) Just before changing direction, the student is a distance of d[n] miles from his destination.
Turning around, his next destination is therefore a distance of 2−d[n] miles. The student travels

one-half of this distance, which leaves 2−d[n]
2 miles remaining. Thus, a difference equation

description of this problem is d[n + 1] = 2−d[n]
2 = 1 − 0.5d[n] = u[n] − 0.5d[n]. Rearranging

and shifting by one yields
d[n] + 0.5d[n− 1] = u[n− 1].

For this description, d[0] = 0. This auxiliary condition simply states that before the student
first decides to go to the exam, he is at home.

(b) MATLAB is used to iteratively simulate the difference equation.

>> n = 0:20; d = zeros(size(n));

>> for index = find(n>0), d(index) = 1-0.5*d(index-1); end; d

d = 0 1.0000 0.5000 0.7500 0.6250 0.6875 0.6563 0.6719

0.6641 0.6680 0.6660 0.6670 0.6665 0.6667 0.6666 0.6667

0.6667 0.6667 0.6667 0.6667 0.6667

As time increases, the remaining distance to the destination (alternating home and exam)
reaches a steady-state value of two-thirds of a mile. That is,

lim
n→∞

d[n] = 2/3.

Changing the problem so that the student travels two-thirds the remaining distance each time
changes the result. In this case, the difference equation is d[n] + 1

3d[n− 1] = 2
3u[n].

>> n = 0:20; d = zeros(size(n));

>> for index = find(n>0), d(index) = (2-d(index-1))/3; end; d

d = 0 0.6667 0.4444 0.5185 0.4938 0.5021 0.4993 0.5002

0.4999 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

0.5000 0.5000 0.5000 0.5000 0.5000
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In this case, the steady-state remaining distance is limn→∞ d[n] = 1/2.

(c) The closed form, or total, solution is the sum of the zero-input and zero-state responses. Since
the auxiliary condition is d[0] = 0, the zero-input response is just zero. To compute the zero-
state response, write the difference equation as d[n] + 0.5d[n] = u[n − 1] = x[n], where the
“input” x[n] is just a shifted unit step. In this way, h[n] = (−1/2)nu[n]. The final solution is

d[n] = h[n] ∗ x[n] =
(
∑n−1

k=0 (−0.5)k
)

u[n− 1] = 1−(−0.5)n

1−(−0.5) u[n− 1]. Thus,

d[n] =
2

3
(1− (−0.5)n)u[n− 1].

MATLAB is used to evaluate d[n].

>> n = 0:20; d = 2/3*(1-(-0.5).^n).*(n>0)

d = 0 1.0000 0.5000 0.7500 0.6250 0.6875 0.6563 0.6719

0.6641 0.6680 0.6660 0.6670 0.6665 0.6667 0.6666 0.6667

0.6667 0.6667 0.6667 0.6667 0.6667

These results are identical to the iterative solution, which provides good evidence that the
solution is correct.

Solution 3.11-5

(a) Given rxy[k] =
∑∞

n=−∞ x[n]y[n − k], substituting m = −n + k yields rxy[k] =
∑∞

m=−∞ y[−m]x[k −m] = y[−n] ∗ x[n]. Thus,

rxy[k] = x[n] ∗ y[−n].

Similarly, ryx[k] = y[n] ∗ x[−n]. In general, x[n] ∗ y[−n] 6= y[n] ∗ x[−n]. Thus,

rxy[k] 6= ryx[k].

It is true, however, that rxy[k] = ryx[−k].

(b) Yes, cross-correlation indicates similarity between signals as a function of the shift between the
two functions. That is, when the shift k aligns two similar signals, the two signals constructively
interact and rxy[k] becomes large. A large negative correlation means that the first signal is
very similar to the negative of the first signal.

(c) Here, we consider just one of the many possible coding solutions to this problem.

function [rxy,k] = crosscorr(x,y,nx,ny)

% function [rxy,k] = crosscorr(x,y,nx,ny)

% Ensure inputs are column vectors:

x=x(:); y=y(:);

% Reverse y and compute rxy using the conv command:

rxy = conv(x,flipud(y));

% Compute shifts:

k = [nx(1)-ny(end):nx(end)-ny(1)];

(d) >> delta = @(n) 1.0*(n==0).*(mod(n,1)==0); u = @(n) 1.0*(n>=0).*(mod(n,1)==0);

>> nx = 0:20; x = u(nx-5)-u(nx-10);

>> ny = -20:10; y = u(-ny-15)-u(-ny-10)+delta(ny-2);

>> [rxy,k] = crosscorr(x,y,nx,ny);

>> subplot(221); stem(nx,x,’k.’); grid on;
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>> xlabel(’n’); ylabel(’x[n]’); axis([0 20 -1.1 1.1]);

>> subplot(222); stem(ny,y,’k.’); grid on;

>> xlabel(’n’); ylabel(’y[n]’); axis([-20 10 -1.1 1.1]);

>> subplot(212); stem(k,rxy,’k.’); grid on;

>> xlabel(’k’); ylabel(’r_{xy}[k]’);

As shown in Fig. S3.11-5, the largest magnitude of rxy[k] is five and occurs at k = 19. Signal
x[n] has a unit pulse of width five starting at n = 5. Signal y[n] has a similar feature: a
negative unit pulse of width five starting at n = −14. These two similar features are separated
by a shift k = 5 − (−14) = 19. Since these are the most similar features between the two
signals, it seems very sensible that the autocorrelation function has a large, negative value at
shift k = 19.
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Figure S3.11-5

Solution 3.11-6

The functions to compute Ex and Px are nearly trivial.

(a) function [Ex] = Energy(x)

Ex = sum(x.*conj(x));

(b) function [Px] = Power(x)

Px = sum(x.*conj(x))/length(x);

Solution 3.11-7

(a) function [y] = filtermax(x,N)

% function [y] = filtermax(x,N)

M = length(x); x = x(:); x = [zeros(N-1,1);x]; y = zeros(M,1);

for m = 1:M,

y(m) = max(x([m:m+(N-1)]));

end

(b) >> delta = @(n) 1.0*(n==0).*(mod(n,1)==0);

>> n = 0:44; x = cos(pi*n/5)+delta(n-30)-delta(n-35);
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>> y4 = filtermax(x,4); y8 = filtermax(x,8); y12 = filtermax(x,12);

>> subplot(221); stem(n,x,’k.’); axis([0 44 -2.2 2.2]);

>> xlabel(’n’); ylabel(’x[n]’); grid on;

>> subplot(222); stem(n,y4,’k.’); axis([0 44 -2.2 2.2]);

>> xlabel(’n’); ylabel(’y[n] for N=4’); grid on;

>> subplot(223); stem(n,y8,’k.’); axis([0 44 -2.2 2.2]);

>> xlabel(’n’); ylabel(’y[n] for N=8’); grid on;

>> subplot(224); stem(n,y12,’k.’); axis([0 44 -2.2 2.2]);

>> xlabel(’n’); ylabel(’y[n] for N=12’); grid on;
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Figure S3.11-7

The plots are consistent with the expected behavior of a max filter. The output, which is
always greater than or equal to the input, emphasizes large input values. Larger values of N
cause particular maximum values to persist longer. The max filter is very sensitive to large,
positive outliers, such as that caused by the added δ[n− 30].

Also notice that the max filter is an FIR filter. Thus, a sinusoidal input reaches steady-state
in after N − 1 samples. Furthermore, since a sinusoidal input does not result in a sinusoidal
output, the max filter cannot be a LTI system (the max filter is TI but not linear).

Solution 3.11-8

(a) function [y] = filtermin(x,N)

% function [y] = filtermin(x,N)

M = length(x); x = x(:); x = [zeros(N-1,1);x]; y = zeros(M,1);

for m = 1:M,

y(m) = min(x([m:m+(N-1)]));

end

(b) >> delta = @(n) 1.0*(n==0).*(mod(n,1)==0);

>> n = 0:44; x = cos(pi*n/5)+delta(n-30)-delta(n-35);

>> y4 = filtermin(x,4); y8 = filtermin(x,8); y12 = filtermin(x,12);

>> subplot(221); stem(n,x,’k.’); axis([0 44 -2.2 2.2]);

>> xlabel(’n’); ylabel(’x[n]’); grid on;
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>> subplot(222); stem(n,y4,’k.’); axis([0 44 -2.2 2.2]);

>> xlabel(’n’); ylabel(’y[n] for N=4’); grid on;

>> subplot(223); stem(n,y8,’k.’); axis([0 44 -2.2 2.2]);

>> xlabel(’n’); ylabel(’y[n] for N=8’); grid on;

>> subplot(224); stem(n,y12,’k.’); axis([0 44 -2.2 2.2]);

>> xlabel(’n’); ylabel(’y[n] for N=12’); grid on;
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Figure S3.11-8

The plots are consistent with the expected behavior of a min filter. The output, which is
always less than or equal to the input, emphasizes highly negative input values. Larger values
of N cause particular minimum values to persist longer. The min filter is very sensitive to
large, negative outliers, such as that caused by the added −δ[n− 35].

Also notice that the min filter is an FIR filter. Thus, a sinusoidal input reaches steady-state
in after N − 1 samples. Furthermore, since a sinusoidal input does not result in a sinusoidal
output, the min filter cannot be a LTI system (the min filter is TI but not linear).

Solution 3.11-9

(a) function [y] = filtermedian(x,N)

% function [y] = filtermedian(x,N)

M = length(x); x = x(:); x = [zeros(N-1,1);x]; y = zeros(M,1); for

m = 1:M,

y(m) = median(x([m:m+(N-1)]));

end

(b) >> delta = @(n) 1.0*(n==0).*(mod(n,1)==0);

>> n = 0:44; x = cos(pi*n/5)+delta(n-30)-delta(n-35);

>> y4 = filtermedian(x,4); y8 = filtermedian(x,8); y12 = filtermedian(x,12);

>> subplot(221); stem(n,x,’k.’); axis([0 44 -2.2 2.2]);

>> xlabel(’n’); ylabel(’x[n]’); grid on;

>> subplot(222); stem(n,y4,’k.’); axis([0 44 -2.2 2.2]);

>> xlabel(’n’); ylabel(’y[n] for N=4’); grid on;

>> subplot(223); stem(n,y8,’k.’); axis([0 44 -2.2 2.2]);



226 Student use and/or distribution of solutions is prohibited

>> xlabel(’n’); ylabel(’y[n] for N=8’); grid on;

>> subplot(224); stem(n,y12,’k.’); axis([0 44 -2.2 2.2]);

>> xlabel(’n’); ylabel(’y[n] for N=12’); grid on;
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Figure S3.11-9

The plots are consistent with the expected behavior of a median filter. The output magnitude
tends to be smaller than the input magnitude. Unlike the max or min filters, the median filter
is not sensitive to outliers in the input data.

Also notice that the median filter is an FIR filter. Thus, a sinusoidal input reaches steady-state
in after N − 1 samples. Furthermore, since a sinusoidal input does not result in a sinusoidal
output, the median filter cannot be a LTI system (the median filter is TI but not linear).

Solution 3.11-10

(a) Replacing h[n] with y[n] and δ[n] with x[n] yields the desired difference equation,

y[n] =

N−1∑

k=−(N−1)

(

1−
∣
∣
∣
∣

k

N

∣
∣
∣
∣

)

x[n− k].

(b) To make the system causal, h[n] must be right-shifted by at least (N − 1). Since the system
is time-invariant, shifting h[n] causes the output to be delayed (shifted) by the same (N − 1)
amount.

(c) function [a,b] = interpfilter(N)

%function [a,b] = interpfilter(N)

a = 1; b = conv(ones(N,1),ones(N,1))/N;

(d) >> n = [0:9]; x = @(n) cos(n).*(fix(n)==n);

>> = 10; nup = [0:N*length(n)-1]; xup = x(nup/N);

>> [a,b] = interpfilter(N); y = filter(b,a,xup);

>> subplot(311),stem(n,x(n),’k.’); axis([0 10 -1.1 1.1]);

>> xlabel(’n’); ylabel(’x[n]’); grid on;
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>> subplot(312),stem(nup,xup,’k.’); axis([0 100 -1.1 1.1]);

>> xlabel(’n’); ylabel(’x_{up}[n]’); grid on;

>> subplot(313),stem(nup,y,’k.’); axis([0 100 -1.1 1.1]);

>> xlabel(’n’); ylabel(’y[n]’); grid on;
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Figure S3.11-10

Indeed, the filter produces the desired linear interpolation of the up-sampled input. As ex-
pected from a causal implementation of the interpolation filter, an (N − 1) delay is visible in
the output.

Solution 3.11-11

(a) First, rewrite the impulse response as

h[n] = 1
N (u[n]− u[n−N ]) = 1

N

∑N−1
k=0 δ[n− k].

Replacing h[n] with y[n] and δ[n] with x[n] yields the desired difference equation,

y[n] =
1

N

N−1∑

k=0

x[n− k].

(b) function [a,b] = filterma(N)

% function [a,b] = filterma(N)

a = 1; b = ones(N,1)/N;

(c) >> n = [0:44]; x = cos(pi*n/5)+(n==30)-(n==35);

>> N = 4; [a,b] = filterma(N);

>> y1 = filter(b,a,x);
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>> N = 8; [a,b] = filterma(N);

>> y2 = filter(b,a,x);

>> N = 12; [a,b] = filterma(N);

>> y3 = filter(b,a,x);

>> subplot(221); stem(n,x,’k’); axis([0 44 -2.1 2.1]);

>> xlabel(’n’); ylabel(’x[n]’);

>> subplot(222); stem(n,y1,’k’); axis([0 44 -2.1 2.1]);

>> xlabel(’n’); ylabel(’y[n] for N=4’);

>> subplot(223); stem(n,y2,’k’); axis([0 44 -2.1 2.1]);

>> xlabel(’n’); ylabel(’y[n] for N=8’);

>> subplot(224); stem(n,y3,’k’); axis([0 44 -2.1 2.1]);

>> xlabel(’n’); ylabel(’y[n] for N=12’);
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Figure S3.11-11c

The plots are consistent with the expected behavior of a moving average filter. The output is a
low-pass version of the input. Larger values of N average over a wider window; thus, larger N
results in greater attenuation of the input sinusoid. Large outliers have high frequency content
and are significantly attenuated.

Also notice that the moving average filter is an FIR filter. Thus, a sinusoidal input reaches
steady-state in after N − 1 samples. This particular filter is a LTI filter, so a sinusoidal input
will result in a steady-state sinusoidal output.

(d) The total impulse response of a cascade of two N -point moving average filters is

hcascade[n] =

(
u[n]− u[n−N ]

N

)

∗
(
u[n]− u[n−N ]

N

)

=

(
n∑

k=0

N−2

)

(u[n]−u[n−N ]) +





N−1∑

k=n−(N−1)

1

N2



 (u[n−N ]− u[n−(2N−1)])

=
n+ 1

N2
(u[n]− u[n−N ]) +

2N − n− 1

N2
(u[n−N ]− u[n− (2N − 1)]) .

That is, hcascade[n] is a triangle-shaped function with width 2N − 1 and maximum height
1/N .
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The impulse response of a causal linear interpolation filter is

hlininterp[n] =
N−1∑

k=−(N−1)

(

1−
∣
∣
∣
∣

k

N

∣
∣
∣
∣

)

δ(n− (N − 1)− k).

This function is identical to hcascade[n] except that it has a maximum height of 1. Thus, the
cascade of moving average filters is a factor 1/N different than the linear interpolation filter,

Nhcascade[n] = hlininterp[n].

MATLAB is used to implement a linear interpolation filter using a cascade of two moving
average filters.

>> n = [0:9]; x = @(n) cos(n).*(fix(n)==n);

>> N = 10; nup = [0:N*length(n)-1]; xup = x(nup/N);

>> [a,b] = filterma(N); y = N*filter(b,a,filter(b,a,xup));

>> subplot(311),stem(n,x(n),’k.’); axis([0 10 -1.1 1.1]);

>> xlabel(’n’); ylabel(’x[n]’); grid on;

>> subplot(312),stem(nup,xup,’k.’); axis([0 100 -1.1 1.1]);

>> xlabel(’n’); ylabel(’x_{up}[n]’); grid on;

>> subplot(313),stem(nup,y,’k.’); axis([0 100 -1.1 1.1]);

>> xlabel(’n’); ylabel(’y[n]’); grid on;
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Figure S3.11-11d

Figure S3.11-11d demonstrates that linear interpolation is possible using a cascade of two
moving average filters. As expected, a delay of N − 1 is visible in the output.
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Solution 4.1-1

(a) Here, x(t) = u(t)− u(t− 1), and

X(s) =

∫ 1

0

e−st dt = −e−st

s

∣∣∣∣
1

0

= −1

s
[e−s − 1]

=
1

s
[1− e−s].

This result is valid for all values of s. Hence the region of convergence is the entire s-plane
(the abscissa of convergence is σ0 = −∞).

(b) In this case, x(t) = te−tu(t), and

X(s) =

∫ ∞

0

te−te−st dt =

∫ ∞

0

te−(s+1) dt = −e−(s+1)t

(s+ 1)2
[−(s+ 1)t− 1]

∞
0

=
1

(s+ 1)2
,

provided that e−(s+1)∞ = 0 or Re(s+ 1) > 0. Hence the region of convergence is Re(s) > −1
(the abscissa of convergence is σ0 > −1).

(c) Here, x(t) = t cosω0t u(t), and

X(s) =

∫ ∞

0

t cosω0te
−st dt

=
1

2

{∫ ∞

0

[te(jω0−s)t + te−(jω0+s)t] dt

}

=
1

2

[
1

(s− jω0)2
+

1

(s+ jω0)2

]
, Re(s) > 0.

Simplifying, we see that

X(s) =
s2 − ω2

0

(s2 + ω2
0)

2
, Re(s) > 0.

230
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(d) For x(t) = (e2t − 2e−t)u(t), we see that

X(s) =

∫ ∞

0

(e2t − 2e−t)e−st dt

=

∫ ∞

0

e2te−st dt− 2

∫ ∞

0

e−te−st dt

=

∫ ∞

0

e−(s−2)t dt− 2

∫ ∞

0

e−(s+1)t dt

=
1

s− 2
− 2

s+ 1
.

We get the first term only if Re(s) > 2, and we get the second term only if Re(s) > −1. Both
conditions will be satisfied if Re(s) > 2. Hence,

X(s) =
1

s− 2
− 2

s+ 1
, Re(s) > 2.

(e) In this case, we see that

x(t) = cosω1t cosω2t u(t) =

[
1

2
cos(ω1 + ω2)t+

1

2
cos(ω1 − ω2)t

]
u(t).

Taking the bilateral Laplace transform, we obtain

X(s) =
1

2

∫ ∞

0

cos(ω1 + ω2)te
−st dt+

1

2

∫ ∞

0

cos(ω1 − ω2)te
−st dt

=
1

2

[
s

s2 + (ω1 + ω2)2
+

s

s2 + (ω1 − ω2)2

]
, Re(s) > 0.

(f) For x(t) = cosh(at)u(t),

X(s) =
1

2

[∫ ∞

0

eate−st dt+

∫ ∞

0

e−ate−st dt

]

=
1

2

[∫ ∞

0

e−(s−a)t dt+

∫ ∞

0

e−(s+a)t dt

]

=
s

s2 − a2
, Re(s) > |a|.

(g) For x(t) = sinh(at)u(t),

X(s) =
1

2

[∫ ∞

0

e−(s−a)t dt−
∫ ∞

0

e−(s+a)t dt

]

=
a

s2 − a2
, Re(s) > |a|.

(h) In this case, we have

x(t) = e−2t cos(5t+ θ)u(t)

=
1

2

[
e−2t+j(5t+θ) + e−2t−j(5t+θ)

]

=
1

2
ejθe−(2−j5)t +

1

2
e−jθe−(2+j5)t.
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Hence,

X(s) =
1

2
ejθ
(

1

s+ 2− j5

)
+

1

2
e−jθ

(
1

s+ 2+ j5

)
,

provided that Re(s) > −2 (necessary for both terms). Simplifying, we obtain

X(s) =
(s+ 2) cos θ − 5 sin θ

s2 + 4s+ 29
, Re(s) > −2.

Solution 4.1-2

(a) For x(t) = e−2tu(t− 5) + δ(t− 1),

X(s) =

∫ ∞

−∞

[
e−2tu(t− 5) + δ(t− 1)

]
e−st dt

=

∫ ∞

5

e−t(s+2) dt+

∫ ∞

−∞
δ(t− 1)e−st dt

= − 1

s+ 2
e−t(s+2)

∣∣∣∣
∞

t=5

+ e−s.

Convergence requires Re(s) > −2. Thus,

X(s) =
1

s+ 2
e−5(s+2) + e−s, Re(s) > −2.

(b) For x(t) = πe3tu(t+ 5)− δ(2t),

X(s) =

∫ ∞

−∞

[
πe3tu(t+ 5)− δ(2t)

]
e−st dt

= π

∫ ∞

−5

e−t(s−3) dt−
∫ ∞

−∞
δ(2t)e−st dt.

Letter t′ = 2t and dt′ = 2dt in the second integral, we obtain

X(s) = π

∫ ∞

−5

e−t(s−3) dt− 1

2

∫ ∞

−∞
δ(t′)e−st′/2 dt′ = − π

s− 3
e−t(s−3)

∣∣∣∣
∞

t=−5

− 1

2
.

Convergence requires Re(s) > 3. Thus,

X(s) =
π

s− 3
e5(s−3) − 1

2
, Re(s) > 3.

(c) For x(t) =
∑∞

k=0 δ(t− kT ) (where T > 0),

X(s) =

∫ ∞

−∞

[ ∞∑

k=0

δ(t− kT )

]
e−st dt =

∞∑

k=0

∫ ∞

−∞
δ(t− kT )e−st dt =

∞∑

k=0

(e−sT )k.

For T > 0, convergence requires that Re(s) > 0. Thus,

X(s) =
1

1− e−sT
, T > 0 and Re(s) > 0.
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Solution 4.1-3

(a)

X(s) =

∫ 1

0

te−st dt =
e−st

s
(−st− 1)

∣∣∣∣
1

0

=
1

s2
(1− e−s − se−s)

(b)

X(s) =

∫ π

0

sin t e−st dt =
e−st

s2 + 1
(−s sin t− cos t)

∣∣∣∣
π

0

=
1 + e−πs

s2 + 1

(c)

X(s) =

∫ 1

0

t

e
e−st dt+

∫ ∞

1

e−te−st dt =
1

e

∫ 1

0

te−st dt+

∫ ∞

1

e−(s+1)t dt

=
e−st

es
(−st− 1)

∣∣∣∣
1

0

− 1

s+ 1
e−(s+1)

∣∣∣∣
∞

1

=
1

es2
(1− e−s − se−s) +

1

s+ 1
e−(s+1)

Solution 4.1-4

(a)

X(s) =
2s+ 5

s2 + 5s+ 6
=

2s+ 5

(s+ 2)(s+ 3)
=

1

s+ 2
+

1

s+ 3

x(t) = (e−2t + e−3t)u(t)

(b)

X(s) =
3s+ 5

s2 + 4s+ 13

Here A = 3, B = 5, a = 2, c = 13, b =
√
13− 4 = 3.

r =

√
117 + 25− 60

13− 4
= 3.018, θ = tan−1(

1

9
) = 6.34◦

x(t) = 3.018e−2t cos(3t+ 6.34◦)u(t)

(c)

X(s) =
(s+ 1)2

s2 − s− 6
=

(s+ 1)2

(s+ 2)(s− 3)

This is an improper fraction with bn = b2 = 1. Therefore,

X(s) = 1 +
a

s+ 2
+

b

s− 3
= 1− 0.2

s+ 2
+

3.2

s− 3

x(t) = δ(t) + (3.2e3t − 0.2e−2t)u(t)

(d)

X(s) =
5

s2(s+ 2)
=

k

s
+

2.5

s2
+

1.25

s+ 2
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To find k, set s = 1 on both sides to obtain

5

3
= k + 2.5 +

5

12
=⇒ k = −1.25

and

X(s) = −1.25

s
+

2.5

s2
+

1.25

s+ 2

x(t) = 1.25(−1 + 2t+ e−2t)u(t)

(e)

X(s) =
2s+ 1

(s+ 1)(s2 + 2s+ 2)
=

−1

s+ 1
+

As+B

s2 + 2s+ 2

Multiply both sides by s and let s → ∞. This yields

0 = −1 +A =⇒ A = 1

Setting s = 0 on both sides yields

1

2
= −1 +

B

2
=⇒ B = 3

X(s) = − 1

s+ 1
+

s+ 3

s2 + 2s+ 2

In the second fraction, A = 1, B = 3, a = 1, c = 2, and b =
√
2− 1 = 1.

r =

√
2 + 9− 6

2− 1
=

√
5, θ = tan−1(

−2

1
) = −63.4◦

x(t) = [−e−t +
√
5e−t cos(t− 63.4◦)]u(t)

(f)

X(s) =
s+ 2

s(s+ 1)2
=

2

s
+

k

s+ 1
− 1

(s+ 1)2

To compute k, multiply both sides by s and let s → ∞. This yields

0 = 2 + k + 0 =⇒ k = −2

and

X(s) =
2

s
− 2

s+ 1
− 1

(s+ 1)2

x(t) = [2− (2 + t)e−t]u(t)

(g)

X(s) =
1

(s+ 1)(s+ 2)4
=

1

s+ 1
+

k1
s+ 2

+
k2

(s+ 2)2
+

k3
(s+ 2)3

− 1

(s+ 2)4

Multiply both sides by s and let s → ∞. This yields

0 = 1 + k1 =⇒ k1 = −1

1

(s+ 1)(s+ 2)4
=

1

s+ 1
− 1

s+ 2
+

k2
(s+ 2)2

+
k3

(s+ 2)3
− 1

(s+ 2)4
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Setting s = 0 and −3 on both sides yields

1

16
= 1− 1

2
+

k2
4

+
k3
8

− 1

16
=⇒ 4k2 + 2k3 = −6

−1

2
= −1

2
+ 1 + k2 − k3 − 1 =⇒ k2 − k3 = 0

Solving these two equations simultaneously yields k2 = k3 = −1. Therefore,

X(s) =
1

s+ 1
− 1

s+ 2
− 1

(s+ 2)2
− 1

(s+ 2)3
− 1

(s+ 2)4

x(t) = [e−t − (1 + t+
t2

2
+

t3

6
)e−2t]u(t)

Comment: This problem could be tackled in many ways. We could have used Eq. (B.30), or
after determining first two coefficients by Heaviside method, we could have cleared fractions.
Also instead of letting s = 0 and −3, we could have selected any other set of values. However,
in this case these values appear most suitable for numerical work.

(h)

X(s) =
s+ 1

s(s+ 2)2(s2 + 4s+ 5)
=

(1/20)

s
+

k

s+ 2
+

(1/2)

(s+ 2)2
+

As+B

s2 + 4s+ 5

Multiplying both sides by s and letting s → ∞ yield

0 =
1

20
+ k +A =⇒ k +A = − 1

20

Setting s = 1 and −1 yields

2
90 = 1

20 + k
3 + 1

18 + A+B
10 =⇒ 20k + 6A+ 6B = −5

0 = − 1
20 + k + 1

2 + −A+B
2 =⇒ 20k − 10A+ 10B = −9

Solving these three equations in k, A and B yields k = − 1
4 , A = 1

5 and B = − 1
5 . Therefore,

X(s) =
1/20

s
− 1/4

s+ 2
+

(1/2)

(s+ 2)2
+

1

5
(

s− 1

s2 + 4s+ 5
)

For the last fraction in parenthesis on the right-hand side A = 1, B = −1, a = 2, c = 5, and
b =

√
5− 4 = 1.

r =

√
5 + 1 + 4

5− 4
=

√
10 θ = tan−1(

3

1
) = 71.56◦

x(t) = [
1

20
− 1

4
(1− 2t)e−2t +

√
10

5
e−2t cos(t+ 71.56◦)]u(t)

(i)

X(s) =
s3

(s+ 1)2(s2 + 2s+ 5)
=

k

s+ 1
− 1/4

(s+ 1)2
+

As+B

s2 + 2s+ 5

Multiply both sides by s and let s → ∞ to obtain

1 = k +A

Setting s = 0 and 1 yields

0 = k − 1
4 + B

5 =⇒ 20k + 4B = 5
1
32 = k

2 − 1
16 + A+B

8 =⇒ 16k + 4A+ 4B = 3
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Solving these three equations in k, A and B yields k = 3
4 , A = 1

4 and B = − 5
2 .

X(s) =
3/4

s+ 1
− 1/4

(s+ 1)2
+

1

4
(

s− 10

s2 + 2s+ 5
)

For the last fraction in parenthesis, A = 1, B = −10, a = 1, c = 5, and b =
√
5− 1 = 2.

r =

√
5 + 100 + 20

5− 1
= 5.59 θ = tan−1(

11

4
) = 70◦

Therefore,

x(t) = [(
3

4
− 1

4
t)e−t +

5.59

4
e−t cos(2t+ 70◦)]u(t)

= [
1

4
(3− t) + 1.3975 cos(2t+ 70◦)]e−tu(t)

Solution 4.2-1

(a) Using properties, we establish that

X(s) ⇐⇒ x(t) (starting fact)

X(s+ 1
2 ) ⇐⇒ e−t/2x(t) (frequency shift property)

e−5sX(s+ 1
2 ) ⇐⇒ e−(t−5)/2x(t − 5) (time shift property)

Ya(s) = se−5sX(s+ 1
2 ) ⇐⇒ d

dt

{
e−(t−5)/2x(t− 5)

}
(time differentiation property)

Since x(t) = 2 [u(t− 2)− u(t+ 1)], we see that

ya(t) =
d

dt

{
e−(t−5)/22 [u(t− 7)− u(t− 4)]

}

= −e−(t−5)/2 [u(t− 7)− u(t− 4)] + 2e−1δ(t− 7)− 2e1/2δ(t− 4).

(b) Again using properties, we see that

X(s) ⇐⇒ x(t) (starting fact)

X(s− 2) ⇐⇒ e2tx(t) (frequency shift property)

G(s) = sX(s− 2) ⇐⇒ d

dt

{
e2tx(t)

}
(time differentiation property)

Yb(s) = 2−sG(s) = e−ln(2)sG(s) ⇐⇒ g(t− ln(2)) (time shift property)

Since x(t) = 2 [u(t− 2)− u(t+ 1)], we see that

g(t) =
d

dt

{
e2t2 [u(t− 2)− u(t+ 1)]

}
= 4e2t [u(t− 2)− u(t+ 1)] + 2e4δ(t− 2)− 2e−2δ(t+ 1).

Since yb(t) = g(t− ln(2)), we see that

yb(t) = 4e2(t−ln(2)) [u(t−2−ln(2))− u(t+1−ln(2))]+2e4δ(t−2− ln(2))−2e−2δ(t+1− ln(2)).

Figure S4.2-1 shows ya(t) and yb(t). The leftmost delta of yb(t) is almost too small to visually
represent.
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3 4 5 6 7 8

t

-2e1/2

0

2e -1

e1/2
y a

(t
)

-1+ln(2) 2+ln(2)

t

-4e4

-2e-2

2e4

y b
(t

)

Figure S4.2-1

Solution 4.2-2

In this problem, we use of Table 4.1 and the time-shifting property.

(a)
x(t) = u(t)− u(t− 1)

X(s) = L[u(t)]− L[u(t− 1)] =
1

s
− e−s 1

s
=

1

s
(1− e−s)

(b)
x(t) = e−(t−τ)u(t− τ)

X(s) =
1

s+ 1
e−sτ

(c)
x(t) = e−(t−τ)u(t) = eτe−tu(t)

Therefore, X(s) = eτ
1

s+ 1

(d)
x(t) = e−tu(t− τ) = e−τe−(t−τ)u(t− τ)

Observe that e−(t−τ)u(t− τ) is e−tu(t) delayed by τ . Therefore,

X(s) = e−τ

(
1

s+ 1

)
e−sτ =

(
1

s+ 1

)
e−(s+1)τ

(e)

x(t) = te−tu(t− τ) = (t− τ + τ)e−(t−τ+τ)u(t− τ)

= e−τ
[
(t− τ)e−(t−τ)u(t− τ) + τe−(t−τ)u(t− τ)

]

Therefore,

X(s) = e−τ

[
1

(s+ 1)2
e−sτ +

τ

(s+ 1)
e−sτ

]

=
e−(s+1)τ [1 + τ(s+ 1)]

(s+ 1)2
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(f)
x(t) = sinω0(t− τ)u(t− τ)

Note that this is sinω0t shifted by τ . Hence,

X(s) =

(
ω0

s2 + ω2
0

)
e−sτ

(g)
x(t) = sinω0(t− τ)u(t) = [sinω0t cosω0τ − cosω0t sinω0τ ]u(t)

X(s) =
ω0 cosω0τ − s sinω0τ

s2 + ω2
0

(h)

x(t) = sinω0t u(t− τ) = sin[ω0(t− τ + τ)]u(t − τ)

= cosω0τ sin[ω0(t− τ)]u(t− τ) + sinω0τ cos[ω0(t− τ)]u(t− τ)

Therefore,

X(s) =

[
cosω0τ

(
ω0

s2 + ω2
0

)
+ sinω0τ

(
s

s2 + ω2
0

)]
e−sτ

(i) From Euler’s, we know that

x(t) = t sin(t)u(t) =
1

2j
[tejt − te−jt].

Using entry 6 of Table 4.1, we see that

X(s) =
1

2j

[
1

(s− j)2
− 1

(s+ j)2

]

=
1

2j

[
s2 + 2js− 1− (s2 − 2js− 1)

(s− j)2(s+ j)2

]
.

Thus,

X(s) =
2s

(s2 + 1)2
.

(j) From Euler’s, we know that

t cos(t)u(t) =
1

2
[tejt + te−jt].

Using entry 6 of Table 4.1, we see that

L{−t cos(t)u(t)} = −1

2

[
1

(s− j)2
+

1

(s+ j)2

]

= −1

2

[
s2 + 2js− 1 + s2 − 2js− 1

(s− j)2(s+ j)2

]

= − s2 − 1

(s2 + 1)2
.

Delaying −t cos(t)u(t) by 1 yields the desired time domain signal

x(t) = (1− t) cos(t− 1)u(t− 1)

From the time-shifting property, it follows that

X(s) = e−s

[ −s2 + 1

(s2 + 1)2

]
.
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Solution 4.2-3

In this problem, we use of Table 4.1 and the time-shifting property.

(a)
x(t) = t[u(t)− u(t− 1)] = tu(t)− (t− 1)u(t− 1)− u(t− 1)

X(s) =
1

s2
− 1

s2
e−s − 1

s
e−s

(b)
x(t) = sin t u(t) + sin(t− π)u(t− π)

X(s) =
1

s2 + 1
(1 + e−πs)

(c)

x(t) = [u(t)− u(t− 1)] + e−tu(t− 1)

= tu(t)− (t− 1)u(t− 1)− u(t− 1) + e−1e−(t−1)u(t− 1)

Therefore,

X(s) =
1

s2
(1 − e−s − se−s) +

e−s

e(s+ 1)

Solution 4.2-4

d

ds
X(s) =

d

ds

{∫ ∞

−∞
x(t)e−st dt

}
=

∫ ∞

−∞
x(t)

d

ds

{
e−st

}
dt

=

∫ ∞

−∞
x(t)

{
−te−st

}
dt =

∫ ∞

−∞
{−tx(t)} e−st dt = L{−tx(t)} .

Thus,

−tx(t) ⇐⇒ d

ds
X(s).

Solution 4.2-5

(a) Using properties, we establish that

e−2tu(t) ⇐⇒ 1
s+2 (Table 4.1, entry 5)

e−2(t−2)u(t− 2) ⇐⇒ e−2s 1
s+2 (time-shifting property)

−e2e−2(t−2)u(t− 2) ⇐⇒ −e2e−2s 1
s+2 (scaling property)

x(t) = −t
(
−e−2(t−3)u(t− 2)

)
⇐⇒ d

ds

{
−e2e−2s 1

s+2

}
(s-differentiation)

Thus,

Xu(s) = −e2
{
−2e−2s 1

s+ 2
+ e−2s(−1)

1

(s+ 2)2

}
= e2(1−s) 2s+ 5

(s+ 2)2
.

(b) Since x(t) = x(t)u(t), the unilateral and bilateral Laplace transforms will be the same. The
only difference is that the ROC needs to be explicitly specified in the bilateral Laplace trans-
form. In the present case, x(t) is a right-sided signal with a pole at −2. Thus, the ROC is
Re(s) > −2. Taken together, the bilateral Laplace transform of x(t) is

X(s) = e2(1−s) 2s+ 5

(s+ 2)2
, Re(s) > −2.
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Solution 4.2-6

(a) By definition,

X(s) =

∫ ∞

−∞
x(t)e−st dt =

∫ 1

0

e−st dt =
e−st

−s

∣∣∣∣
1

t=0

=
1− e−s

s
, ROC: all s.

(b) To begin, we notice that y(t) = ( t−1
2 )x( t−1

2 ). Using properties, we see that

x(t) ⇐⇒ X(s) (starting fact)

x( t
2 ) ⇐⇒ 2X(2s) (time scale)

t
2x(

t
2 ) ⇐⇒ − 1

2
d
ds {2X(2s)} (differentiation in s)

y(t) = t−1
2 x( t−1

2 ) ⇐⇒ −e−s d
ds {X(2s)} (time shift)

Thus,

Y (s) = −e−s d

ds
X(2s), ROC: all s.

Solution 4.2-7

(a)

X(s) =
(2s+ 5)e−2s

s2 + 5s+ 6
= X̂(s)e−2s

It is clear that x(t) = x̂(t− 2).

X̂(s) =
2s+ 5

s2 + 5s+ 6
=

2s+ 5

(s+ 2)(s+ 3)
=

1

s+ 2
+

1

s+ 3

x̂(t) = (e−2t + e−3t)u(t)

x(t) = x̂(t− 2) = [e−2(t−2) + e−3(t−2)]u(t− 2)

(b)

X(s) =
s

s2 + 2s+ 2
e−3s +

2

s2 + 2s+ 2
= X1(s)e

−3s +X2(s)

where

X1(s) =
s

s2 + 2s+ 2

{
A = 1, B = 0, a = 1, c = 2, b = 1

r =
√
2, θ = tan−1(1) = π/4

x1(t) =
√
2e−t cos(t+

π

4
)

X2(s) =
2

s2 + 2s+ 2
and x2(t) = 2e−t sin t

Also

x(t) = x1(t− 3) + x2(t)

=
√
2e−(t−3) cos(t− 3 +

π

4
)u(t− 3) + 2e−t sin t u(t)
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(c)

X(s) =
(e)e−s

s2 − 2s+ 5
+

3

s2 − 2s+ 5

= e
1

s2 − 2s+ 5
e−s +

3

s2 − 2s+ 5

= eX1(s)e
−s +X2(s)

where

X1(s) =
1

s2 − 2s+ 2
and x1(t) =

1

2
et sin 2t u(t)

X2(s) =
3

s2 − 2s+ 2
and x2(t) =

3

2
et sin 2t u(t)

Therefore

x(t) = ex1(t− 1) + x2(t)

=
e

2
e(t−1) sin 2(t− 1)u(t− 1) +

3

2
et sin 2t u(t)

(d)

X(s) =
e−s + e−2s + 1

s2 + 3s+ 2
= (e−s + e−2s + 1)

[
1

s2 + 3s+ 2

]

= (e−s + e−2s + 1)

[
1

s+ 1
− 1

s+ 2

]

X(s) = (e−s + e−2s + 1)X̂(s)

where

X̂(s) =
1

s+ 1
− 1

s+ 2
and x̂(t) = (e−t − e−2t)u(t)

Moreover

x(t) = x̂(t− 1) + x̂(t− 2) + x̂(t)

= [e−(t−1) − e−2(t−1)]u(t− 1) + [e−(t−2) − e−2(t−2)]u(t− 2) + (e−t − e−2t)u(t)

Solution 4.2-8

Using properties, we see that

1 ⇐⇒ δ(t) (Table 4.1, entry 1)

e−2s ⇐⇒ δ(t− 2) (time shift)

1
s e

−2s ⇐⇒
∫ t

−∞ δ(τ − 2) dτ = u(t− 2) (time integration)

d
ds

(
e−2s

s

)
⇐⇒ −tu(t− 2) (s differentiation)

X(s) = s−1 d
ds

(
e−2s

s

)
⇐⇒ −

∫ t

−∞ τu(τ − 2) dτ (time integration)

Thus,

x(t) = −
∫ t

−∞ τu(τ − 2) dτ =

{
−
∫ t

2
τ dτ t > 2
0 t < 2

=

(
− τ2

2

∣∣∣
t

τ=2

)
u(t− 2)

or
x(t) =

(
2− t2

2

)
u(t− 2).
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Solution 4.2-9

(a)
g(t) = x(t) + x(t− T0) + x(t− 2T0) + · · ·

and

G(s) = X(s) +X(s)e−sT0 +X(s)e−2sT0 + · · ·
= X(s)[1 + e−sT0 + e−2sT0 + e−3sT0 + · · ·

=
X(s)

1− e−sT0
|e−sT0 | < 1 or Re(s) > 0.

(b)

x(t) = u(t)− u(t− 2) and X(s) =
1

s
(1− e−2s)

G(s) =
X(s)

1− e−8s
=

1

s

(
1− e−2s

1− e−8s

)

Solution 4.2-10

Pair 2

u(t) =

∫ t

0−
δ(τ) dτ ⇐⇒ 1

s
(1) =

1

s

Pair 3

tu(t) =

∫ t

0−
u(τ) dτ ⇐⇒ 1

s
(
1

s
) =

1

s2

Pair 4: Use successive integration of tu(t)
Pair 5: Applying the frequency-shifting property of Eq. (4.14) to u(t) ⇐⇒ 1

s , we obtain

eλtu(t) ⇐⇒ 1

s− λ
.

Pair 6: Applying the frequency-shifting property of Eq. (4.14) to tu(t) ⇐⇒ 1
s2 , we obtain

teλtu(t) ⇐⇒ 1

(s− λ)2
.

Pair 7: As with pairs 5 and 6, applying the frequency-shifting property of Eq. (4.14) to t2u(t),
t3u(t), . . ., generates

tneλtu(t) ⇐⇒ n!

(s− λ)n+1
.

Pair 8a:

cos bt u(t) =
1

2
(ejbt + e−jbt)u(t) ⇐⇒ 1

2

(
1

s− jb
+

1

s+ jb

)
=

s

s2 + b2

Pair 8b:

sin bt u(t) =
1

2j
(ejbt − e−jbt)u(t) ⇐⇒ 1

2j

(
1

s− jb
− 1

s+ jb

)
=

b

s2 + b2

Pair 9a: Application of the frequency-shift property of Eq. (4.14) to pair 8a yields

e−at cos bt u(t) ⇐⇒ s+ a

(s+ a)2 + b2
.
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Pair 9b: Application of the frequency-shift property of Eq. (4.14) to pair 8b yields

e−at sin bt u(t) ⇐⇒ b

(s+ a)2 + b2
.

Pairs 10a and 10b: Recognize that

re−at cos (bt+ θ) = re−at[cos θ cos bt− sin θ sin bt].

Now use results in pairs 9a and 9b to obtain pair 10a. Pair 10b is equivalent to pair 10a.

Solution 4.2-11

(a) For the first pulse x(t) = u(t)− u(t− 2), we see that

dx

dt
= δ(t)− δ(t− 2)

sX(s) = 1− e−2s

X(s) =
1

s
(1− e−2s)

For the second pulse x(t) = u(t− 2)− u(t− 4), we see that

dx

dt
= δ(t− 2)− δ(t− 4)

sX(s) = e−2s − e−4s

X(s) =
1

s
(e−2s − e−4s)

(b)

dx

dt
= u(t)− 3u(t− 2) + 2u(t− 3)

sX(s) =
1

s
− 3

s
e−2s +

2

s
e−3s [x(0−) = 0]

X(s) =
1

s2
(1− 3e−2s + 2e−3s)

Solution 4.2-12

X(s) = e−3e−s
[

s2

(s+1)(s+2)

]
= e−3e−s

[
1 + −3s−2

(s+1)(s+2)

]
= e−3e−s

[
1 + 1

(s+1) +
−4

(s+2)

]
. Thus,

x(t) = e−3
[
δ(t− 1) + e−(t−1)u(t− 1)− 4e−2(t−1)u(t− 1)

]
.

Solution 4.2-13

First, note that the nth derivative of 1
s+a is (−1)nn!

(s+1)n+1 . Thus, rewrite the transform as

X(s) =
1

(s+ 1)13
=

1

12!

12!

(s+ 1)13
=

1

12!

d12

ds12

(
1

s+ 1

)
.

Since σ > −1, the time-domain signal x(t) must be right sided. Repeated use of the frequency
differentiation property provides the resulting inverse transform.

x(t) =
1

12!
(−t)12e−tu(t) =

t12

12!
e−tu(t).
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Solution 4.2-14

(a) Using the frequency differentiation property,

L [tx(t)] = − d

ds
X(s).

(b) Here, y(t) = tx(t) = t 1tu(t) = u(t). Thus,

Y (s) =

∫ ∞

−∞
u(t)e−stdt =

∫ ∞

0

e−stdt =
e−st

−s

∣∣∣∣
∞

t=0

.

Convergence requires Re(s) > 0, resulting in

Y (s) =
1

s
.

(c) Combining the previous two parts yields − d
dsX(s) = 1

s . Thus,

X(s) = −
∫

1

s
ds = − ln(s).

Solution 4.3-1

(a)

(s2 + 3s+ 2)Y (s) = s(
1

s
)

Y (s) =
1

s2 + 3s+ 2
=

1

s+ 1
− 1

s+ 2

y(t) = (e−t − e−2t)u(t)

(b)

(s2Y (s)− 2s− 1) + 4(sY (s)− 2) + 4Y (s) = (s+ 1)
1

s+ 1
or

(s2 + 4s+ 4)Y (s) = 2s+ 10

and

Y (s) =
2s+ 10

s2 + 4s+ 4
=

2s+ 10

(s+ 2)2
=

2

s+ 2
+

6

(s+ 2)2

y(t) = (2 + 6t)e−2tu(t)

(c)

(s2Y (s)− s− 1) + 6(sY (s)− 1) + 25Y (s) = (s+ 2)
25

s
= 25 +

50

s
or

(s2 + 6s+ 25)Y (s) = s+ 32 +
50

s
=

s2 + 32s+ 50

s

and

Y (s) =
s2 + 32s+ 50

s(s2 + 6s+ 25)
=

2

s
+

−s+ 20

s2 + 6s+ 25

y(t) = [2 + 5.836e−3t cos(4t− 99.86◦)]u(t)
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Solution 4.3-2

(a)

(s2 + 3s+ 2)Y (s) = s(
1

s
)

Y (s) =
1

s2 + 3s+ 2
=

1

s+ 1
− 1

s+ 2

y(t) = (e−t − e−2t)u(t)

Since all initial conditions are zero, the zero-state response equals the total response. Thus,

yzsr(t) = (e−t − e−2t)u(t)

yzir(t) = 0

(b) The Laplace transform of the differential equation is

(s2Y (s)− 2s− 1) + 4(sY (s)− 2) + 4Y (s) = (s+ 1)
1

s+ 1

or
(s2 + 4s+ 4)Y (s)− (2s+ 9) = 1

or
(s2 + 4s+ 4)Y (s) = 2s+ 9︸ ︷︷ ︸

i.c. terms

+ 1︸︷︷︸
input

.

Y (s) =
2s+ 9

s2 + 4s+ 4︸ ︷︷ ︸
zir

+
1

s2 + 4s+ 4︸ ︷︷ ︸
zsr

=
2

s+ 2
+

5

(s+ 2)2︸ ︷︷ ︸
zir

+
1

(s+ 2)2︸ ︷︷ ︸
zsr

y(t) = (2 + 5t)e−2t

︸ ︷︷ ︸
yzir(t)

+ te−2t
︸ ︷︷ ︸
yzsr(t)

(c) The Laplace transform of the equation is

(s2Y (s)− s− 1) + 6(sY (s)− 1) + 25Y (s) = 25 +
50

s

or

(s2 + 6s+ 25)Y (s) = s+ 7︸ ︷︷ ︸
i.c. terms

+ 25 +
50

s︸ ︷︷ ︸
input

.

Y (s) =
s+ 7

s2 + 6s+ 25︸ ︷︷ ︸
zir

+
25s+ 50

s(s2 + 6s+ 25)︸ ︷︷ ︸
zsr

= (
s+ 7

s2 + 6s+ 25
) + (

2

s
+

−2s+ 13

s2 + 6s+ 25
)

y(t) = [
√
2e−3t cos(4t− π

4
)]

︸ ︷︷ ︸
yzir(t)

+ [2 + 5.154e−3t cos(4t− 112.83◦)]︸ ︷︷ ︸
yzsr(t)
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Solution 4.3-3

(a) Setting x(t) = 0 and taking the unilateral Laplace transform of 2ẏ(t) + 6y(t) = ẋ(t) − 4x(t)
yield

2
[
sYzir(s)− y(0−)

]
+ 6Yzir(s) = 0.

Thus,

Yzir(s) =
y(0−)

s+ 3
=

−3

s+ 3
.

Inverting,
yzir(t) = −3e−3tu(t).

(b) The input is x(t) = eδ(t− π). Using entry 1 of Table 4.1 and the time-shifting property,

X(s) = ee−sπ.

By inspection of 2ẏ(t) + 6y(t) = ẋ(t)− 4x(t), the system transfer function is

H(s) =
1
2s− 2

s+ 3
.

The transform of the zero-state response is

Yzsr(s) = X(s)H(s) = ee−sπ
1
2s− 2

s+ 3
= ee−sπ

[
1

2
+

− 7
2

s+ 3

]
.

Inverting,

yzsr(t) = e

[
−7

2
e−3(t−π)u(t− π) +

1

2
δ(t− π)

]
.

Solution 4.3-4

(a) Setting x(t) = 0 and taking the unilateral Laplace transform of ÿ(t)+3ẏ(t)+2y(t) = 2ẋ(t)−x(t)
yield

s2Yzir(s)− sy(0−)− ẏ(0−) + 3sYzir(s)− 3y(0−) + 2Yzir(s) = 0.

Since ẏ(0−) = 2 and y(0−) = −3,

(s2 + 3s+ 2)Yzir(s) = −(3s+ 7).

Thus,

Yzir(s) =
−3s− 7

s2 + 3s+ 2
=

−3s− 7

(s+ 1)(s+ 2)
=

−4

s+ 1
+

1

s+ 2
.

Inverting,
yzir(t) = −4e−tu(t) + e−2tu(t).

(b) The input is x(t) = u(t), which has X(s) = 1
s . By inspection of ÿ(t) + 3ẏ(t) + 2y(t) =

2ẋ(t)− x(t), the system transfer function is

H(s) =
2s− 1

s2 + 3s+ 2
=

2s− 1

(s+ 1)(s+ 2)
.

The transform of the zero-state response is

Yzsr(s) = X(s)H(s) =
2s− 1

s(s+ 1)(s+ 2)
=

− 1
2

s
+

3

s+ 1
+

− 5
2

s+ 2
.

Inverting,

yzsr(t) =

[
−1

2
+ 3e−t − 5

2
e−2t

]
u(t).
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Solution 4.3-5

(a) Laplace transform of the two equations yields

(s+ 3)Y1(s)− 2Y2(s) =
1

s
−2Y1(s) + (2s+ 4)Y2(s) = 0

Using Cramer’s rule, we obtain

Y1(s) =
s+ 2

s(s2 + 5s+ 4)
=

s+ 2

s(s+ 1)(s+ 4)
=

1/2

s
− 1/3

s+ 1
− 1/6

s+ 4

Y2(s) =
1

s(s2 + 5s+ 4)
=

1

s(s+ 1)(s+ 4)
=

1/4

s
− 1/3

s+ 1
+

1/12

s+ 4
.

Thus,

y1(t) = (
1

2
− 1

3
e−t − 1

6
e−4t)u(t)

y2(t) = (
1

4
− 1

3
e−t +

1

12
e−4t)u(t)

Since Y (s) = X(s)H(s) and X(s) = 1
s , we see that

H1(s) =
s+ 2

s2 + 5s+ 4
and H2(s) =

1

s2 + 5s+ 4
.

(b) The Laplace transform of the equations are

(s+ 2)Y1(s)− (s+ 1)Y2(s) = 0

−(s+ 1)Y1(s) + (2s+ 1)Y2(s) = 0

Application of Cramer’s rule yields

Y1(s) =
s+ 1

s(s2 + 3s+ 1)
=

s+ 1

s(s+ 0.382)(s+ 2.618)
=

1

s
− 0.724

s+ 0.382
− 0.276

s+ 2.618

Y2(s) =
s+ 2

s(s2 + 3s+ 1)
=

s+ 2

s(s+ 0.382)(s+ 2.618)
=

2

s
− 1.894

s+ 0.382
− 0.1056

s+ 2.618
.

Consequently,

y1(t) = (1− 0.724e−0.382t − 0.276e−2.618t)u(t)

y2(t) = (2− 1.894e−0.382t − 0.1056e−2.618t)u(t)

Furthermore,

H1(s) =
s+ 1

s2 + 3s+ 1
and H2(s) =

s+ 2

s2 + 3s+ 1
.

Solution 4.3-6

(a) Setting all initial conditions to zero and taking the Laplace transform of ẏ(t) + 2y(t) = ẋ(t)
yield

sY (s) + 2Y (s) = sX(s) =⇒ H(s) =
Y (s)

X(s)
=

s

s+ 2
.
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(b) First, we notice that H(s) can be expressed as

H(s) =
s

s+ 2
= 1 +

−2

s+ 2
.

Inverting, we obtain the unit impulse response as

h(t) = δ(t)− 2e−2tu(t).

(c) Taking the unilateral Laplace transform of ẏ(t) + 2y(t) = ẋ(t) yields

sY (s)− y(0−) + 2Y (s) = sX(s)− x(0−).

In this case, x(t) = e−tu(t) and X(s) = 1
s+1 . Further, y(0

−) =
√
2 and x(0−) = 0. Thus,

(s+ 2)Y (s) =
√
2 + s

1

s+ 1

or

Y (s) =
s

(s+ 1)(s+ 2)
+

√
2

s+ 2
=

−1

s+ 1
+

2

s+ 2
+

√
2

s+ 2
.

Inverting yields
ytotal(t) = −e−tu(t) + (2 +

√
2)e−2tu(t).

Solution 4.3-7

Expressing 3y(t) + ẏ(t) + ẋ(t) = 0 in standard form yields

ẏ(t) + 3y(t) = −ẋ(t).

(a) Setting all initial conditions to zero and taking the Laplace transform of ẏ(t) + 3y(t) = −ẋ(t)
yield

sY (s) + 3Y (s) = −sX(s) =⇒ H(s) =
Y (s)

X(s)
=

−s

s+ 3
.

(b) First, we notice that H(s) can be expressed as

H(s) =
−s

s+ 3
= −1 +

3

s+ 3
.

Inverting, we obtain the unit impulse response as

h(t) = −δ(t) + 3e−3tu(t).

(c) Taking the unilateral Laplace transform of ẏ(t) + 3y(t) = −ẋ(t) yields

sY (s)− y(0−) + 3Y (s) = −sX(s) + x(0−).

In this case, x(t) = e−tu(t) and X(s) = 1
s+1 . Further, y(0

−) =
√
2 and x(0−) = 0. Thus,

(s+ 3)Y (s) =
√
2− s

1

s+ 1

or

Y (s) =
−s

(s+ 1)(s+ 3)
+

√
2

s+ 3
=

1
2

s+ 1
+

− 3
2

s+ 3
+

√
2

s+ 3
.

Inverting yields

ytotal(t) =
1

2
e−tu(t) +

(√
2− 3

2

)
e−3tu(t).
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Solution 4.3-8

At t = 0, the inductor current y1(0) = 4 and the capacitor voltage is 16 volts. After t = 0, the loop
equations are

2
dy1
dt

− 2
dy2
dt

+ 5y1(t)− 4y2(t) = 40

−2
dy1
dt

− 4y1(t) + 2
dy2
dt

+ 4y2(t) +

∫ t

−∞
y2(τ) dτ = 0.

Using the given initial conditions, we see that

y1(t) ⇐⇒ Y1(s),
dy1

dt ⇐⇒ sY1(s)− 4

y2(t) ⇐⇒ Y2(s),
dy2

dt ⇐⇒ sY2(s)

∫ t

−∞
y2(τ) dτ ⇐⇒ 1

s
Y2(s) +

16

s

Thus, the Laplace transform of the loop equations are

2(sY1(s)− 4)− 2sY2(s) + 5Y1(s)− 4Y2(s) =
40

s

−2(sY1(s)− 4)− 4Y1(s) + 2sY2(s) + 4Y2(s) +
1

s
Y2(s) +

16

s
= 0

or

(2s+ 5)Y1(s)− (2s+ 4)Y2(s) = 8 +
40

s

−(2s+ 4)Y1(s) + (2s+ 4 +
1

s
)Y2(s) = −8− 16

s
.

Cramer’s rule yields

Y1(s) =
4(6s2 + 13s+ 5)

s(s2 + 3s+ 2.5)
=

8

s
+

16s+ 28

s2 + 3s+ 2.5

Y2(s) =
20(s+ 2)

(s2 + 3s+ 2.5)
.

Inverting yields

y1(t) = [8 + 17.89e−1.5t cos(
t

2
− 26.56◦)]u(t)

y2(t) = 20
√
2e−1.5t cos(

t

2
− π

4
)u(t).

Solution 4.3-9

(a) 5s+3
s2+11s+24

(b) 3s2+7s+5
s3+6s2−11s+6

(c) 3s+2
s(s3+4)

(d) 1
s+1
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Solution 4.3-10

(a) d2y
dt2 + 3 dy

dt + 8y(t) = dx
dt + 5x(t)

(b) d3y
dt3 + 8 d2y

dt2 + 5 dy
dt + 7y(t) = d2x

dt2 + 3 dx
dt + 5x(t)

(c) d2y
dt2 − 2 dy

dt + 5y(t) = 5 d2x
dt2 + 7 dx

dt + 2x(t)

Solution 4.3-11

(a) For x1(t) = 10u(t), X1(s) =
10
s and the zero-state response is

Y1(s) =
10(2s+ 3)

s(s2 + 2s+ 5)
=

6

s
+

−6s+ 8

s2 + 2s+ 5

y1(t) = [6 + 9.22e−t cos(2t− 130.6◦)]u(t)

For x2(t) = u(t− 5), X2(s) =
1
s e

−5s and the zero-state response is

Y2(s) =
2s+ 3

s(s2 + 2s+ 5)
e−5s =

[
0.6

s
+

1

10

( −6s+ 8

s2 + 2s+ 5

)]
e−5s

y2(t) =
1

10
{6 + 9.22e−(t−5) cos[2(t− 5)− 130.6◦]}u(t− 5)

(b) ÿ(t) + 2ẏ(t) + 5y(t) = 2ẋ(t) + 3x(t)

Solution 4.3-12

(a) X(s) = 1
s(s+1)

Y (s) =
1

(s+ 1)(s2 + 9)
=

0.1

s+ 1
+

rejθ

s+ j3
+

re−jθ

s− j3
r =

1

3
√
10

, θ = −161.56◦

y(t) = 0.1e−t +
1

3
√
10

cos(3t− 161.56◦)

(b)
ÿ(t) + 9y(t) = ẋ(t)

Solution 4.3-13

(a) Here, Xa(s) =
1

s+3 and

Ya(s) =
s+ 5

(s+ 3)(s2 + 5s+ 6)
=

s+ 5

(s+ 2)(s+ 3)2
=

3

s+ 2
− 3

s+ 3
− 2

(s− 3)2

ya(t) = (3e−2t − 3e−3t − 2te−3t)u(t).

(b) In this case, Xb(s) =
1

s+4 . Thus,

Yb(s) =
s+ 5

(s+ 2)(s+ 3)(s+ 4)
=

3/2

s+ 2
− 2

s+ 3
+

1/2

(s+ 4)

yb(t) =
3

2
e−2t − 2e−3t +

1

2
e−4tu(t)
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(c) Note that xc(t) is just xb(t) delayed by 5 seconds. Therefore, Xc(s) =
1

s+4e
−5s and

Yc(s) =
s+ 5

(s+ 2)(s+ 3)(s+ 4)
e−5s = [

3/2

s+ 2
− 2

s+ 3
+

1/2

(s+ 4)
]e−5s

yc(t) =
3

2
e−2(t−5) − 2e−3(t−5) +

1

2
e−4(t−5)]u(t− 5)

(d) Note that xd(t) is just xb(t) multiplied by e20 because e−4(t−5) = e20e−4t. Therefore the
output yd(t) is equal to the output yb(t) multiplied by e20,

yd(t) = e20[
3

2
e−2t − 2e−3t +

1

2
e−4t]u(t).

(e) Note that xe(t) is just xc(t) multiplied by e−20 because e−4tu(t − 5) = e−20e−4(t−5)u(t − 5).
Therefore,

ye(t) = e−20[
3

2
e−2(t−5) − 2e−3(t−5) +

1

2
e−4(t−5)]u(t− 5).

(f) (D2 + 2D + 5)y(t) = (2D + 3)x(t)

Solution 4.3-14

Although this problem can be solved with Laplace transforms, it is easier to solve in the time
domain. Since the system step response is s(t) = e−tu(t) − e−2tu(t), the system impulse re-
sponse is h(t) = d

dts(t) = −e−tu(t) + δ(t) + 2e−2tu(t) − δ(t) = (2e−2t − e−t)u(t). The input

x(t) = δ(t − π) − cos(
√
3)u(t) is just a sum of a shifted delta function and a scaled step function.

Since the system is LTI, the output is quickly computed using just h(t) and s(t). That is,

y(t) = h(t− π)− cos(
√
3)s(t) = (2e−2(t−π) − e−(t−π))u(t− π)− cos(

√
3)(e−t − e−2t)u(t).

Solution 4.3-15

(a) Let H(s) be the system transfer function,

Y (s) = X(s)H(s).

Consider the input x1(t) = ẋ(t). Then X1(s) = sX(s). If the output is y1(t) and its transform
is Y1(s), then

Y1(s) = X1(s)H(s) = sX(s)H(s) = sY (s).

This shows that

y1(t) =
dy(t)

dt
.

(b) Using similar argument we show that for the input
∫ t

0 x(τ) dτ , the output is
∫ t

0 y(τ) dτ . Because
u(t) is an integral of δ(t), the unit step response is the integral of the unit impulse response
h(t).

Solution 4.3-16

(a)

H(s) =
s+ 5

s2 + 3s+ 2
=

s+ 5

(s+ 1)(s+ 2)

Both characteristic roots (λ1 = −1 and λ2 = −2) are in the LHP. Hence the system is both
BIBO and asymptotically stable.
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(b)

H(s) =
s+ 5

s2(s+ 2)

The characteristic roots are 0, 0, -2. There are repeated roots on imaginary axis. Hence the
system is both BIBO and asymptotically unstable.

(c)

H(s) =
s(s+ 2)

s+ 5

Although the characteristic root -5 is in the LHP, because M > N , the system is BIBO
unstable.

(d)

H(s) =
s+ 5

s(s+ 2)

The characteristic roots are 0 and -2. One of the roots is on the imaginary axis and the other
is in the LHP, which makes the system BIBO unstable but marginally stable.

(e)

H(s) =
s+ 5

s2 − 2s+ 3
=

s+ 5

(s− 1− j
√
2)(s− 1 + j

√
2)

The roots are −1 ± j
√
2. Since both roots are in the LHP, the system is both BIBO and

asymptotically stable.

Solution 4.3-17

(a) Here,

(D2 + 3D + 2)y(t) = (D + 3)x(t)

or

(D + 1)(D + 2)y(t) = (D + 3)x(t).

The system transfer function is

H(s) =
s+ 3

(s+ 1)(s+ 2)
.

The characteristic roots are -1 and -2 (both in LHP). Hence the system is asymptotically and
BIBO stable.

(b) In this case,

(D2 + 3D + 2)y(t) = (D + 1)x(t)

or

(D + 1)(D + 2)y(t) = (D + 1)x(t).

The system transfer function is

H(s) =
s+ 1

(s+ 1)(s+ 2)
=

1

s+ 2
.

The characteristic roots are -1 and -2 (both in LHP). Due to a pole/zero cancellation, the only
pole of H(s) is at -2. Hence the system is asymptotically and BIBO stable.
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(c) In this case,

(D2 +D − 2)y(t) = (D − 1)x(t)

or

(D − 1)(D + 2)y(t) = (D − 1)x(t)

The system transfer function is

H(s) =
s− 1

(s− 1)(s+ 2)
=

1

s+ 2
.

The system’s characteristic roots at 1 and -2 makes system asymptotically unstable. Because
a system zero cancels the pole at 1, the only pole of H(s) is at -2. Thus, the system is BIBO
stable.

(d) Now,

(D2 − 3D + 2)y(t) = (D − 1)x(t)

or

(D − 1)(D − 2)y(t) = (D − 1)x(t).

The system transfer function is

H(s) =
s− 1

(s− 1)(s− 2)
=

1

s− 2
.

The characteristic roots are 1 and 2. Because a system zero cancels the pole at 1, the only
pole of H(s) is at 2. Hence, the system is both asymptotically and BIBO unstable.

Solution 4.4-1

The system has transfer function H(s) = 1
1+6s and differential equation

y(t) + 6ẏ(t) = x(t).

Taking the unilateral Laplace transform yields

Y (s) + 6
[
sY (s)− y(0−)

]
= X(s).

(a) In this part, we note that y(0−) = 3 and X(s) = L{u(t)} = 1
s . Thus,

Y (s) [1 + 6s] =
1

s
+ 18.

Solving for Y (s) produces

Y (s) =
1

s(1 + 6s)
+

18

1 + 6s
=

1
6

s(s+ 1
6 )

+
3

s+ 1
6

=
1

s
+

−1

s+ 1
6

+
3

s+ 1
6

=
1

s
+

2

s+ 1
6

.

Inverting, we see that

y(t) = u(t) + 2e−t/6u(t).

(b) In this part, X(s) = e−3s

s and we desire y(0−) so that y(6) = 1. From the Laplace transform
of the differential equation, we see that

Y (s) [1 + 6s] =
e−3s

s
+ 6y(0−).
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Thus,

Y (s) = e−3s 1

s
+ e−3s −1

s+ 1
6

+
y(0−)

s+ 1
6

.

Inverting yields
y(t) = u(t− 3)− e−(t−3)/6u(t− 3) + y(0−)e−t/6u(t).

Evaluating at t = 6 yields

y(6) = 1 = 1− e−1/2 + y(0−)e−1.

Thus,
y(0−) = (1 − 1 + e−1/2)e1 = e1/2 ≈ 1.6487.

Solution 4.4-2

(a) Designate the current flowing clockwise around the loop as i(t). By KVL,

x(t) = Ri(t) + y(t) ⇒ Ri(t) = x(t) − y(t).

The voltage vc(t) across the capacitor is

vc(t) = y(t)−Ri(t) = y(t)− (x(t) − y(t)) = 2y(t)− x(t).

For an ideal capacitor,

i(t) = C
dvc(t)

dt
= 2Cẏ(t)− Cẋ(t).

Substituting this expression for i(t) in the KVL equation yields

x(t) = R (2Cẏ(t)− Cẋ(t)) + y(t).

Simplifying, we obtain

ẏ(t) +
1

2RC
y(t) =

1

2
ẋ(t) +

1

2RC
x(t).

(b) For x(t) = 3e−tu(t), it follows that X(s) = 3
s+1 . Letting R = C = 1, we see that

ẏ(t) +
1

2
y(t) =

1

2
ẋ(t) +

1

2
x(t).

Taking the unilateral Laplace transform yields

sY (s)− y(0−) +
1

2
Y (s) =

1

2
sX(s) +

1

2
X(s) =

(s+ 1)3

2(s+ 1)
=

3

2
.

Since vc(0
−) = 5, we see that i(0−) = − 5

2 and y(0−) = 5 + 1i(0−) = 5
2 . Substituting this

result, we obtain (
s+

1

2

)
Y (s)− 5

2
=

3

2
.

Thus,

Y (s) =
4

s+ 1
2

.

Inverting, we obtain
y(t) = 4e−t/2u(t).
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Solution 4.4-3

Figure S4.4-3 shows the transformed network. The loop equations are

(1 +
1

s
)Y1(s)−

1

s
Y2(s) =

1

(s+ 1)2

−1

s
Y1(s) + (s+ 1 +

1

s
)Y2(s) = 0

[ s+1
s − 1

s

− 1
s

s2+s+1
s

] [
Y1(s)
Y2(s)

]
=

[ 1
(s+1)2

0

]
.

Cramer’s rule yields

Y2(s) =
1

(s+ 1)2(s2 + 2s+ 2)
=

1

(s+ 1)2
− 1

s2 + 2s+ 2
=

1

(s+ 1)2
− 1

(s+ 1)2 + 1
.

Inverting, we obtain
v0(t) = y2(t) = (te−t − e−t sin t)u(t).

1

=

Y1(s) Y2(s)
V0(s)

+

–
1

+
–

s

1
s

Figure S4.4-3

Solution 4.4-4

Before the switch is opened, the inductor current is 5A, that is y(0) = 5. Figure S4.4-4 shows the
transformed circuit for t ≥ 0 with an initial condition generator. The current Y (s) is given by

Y (s) =
(10/s) + 5

3s+ 2
=

5s+ 10

s(3s+ 2)
=

5

3

[
3

s
− 2

s+ (2/3)

]
.

Inverting, we obtain
y(t) = (5− 10

3 e
−2t/3)u(t).

Y(s)

s 5 2

2s10
s

+
–

+–

Figure S4.4-4

Solution 4.4-5

The impedance seen by the source x(t) is

Z(s) =
Ls(1/Cs)

Ls+ (1/Cs)
=

Ls

LCs2 + 1
=

Lsω0
2

s2 + ω0
2
.
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The current Y (s) is given by

Y (s) =
X(s)

Z(s)
=

s2 + ω0
2

Lsω0
2

X(s).

(a)

X(s) =
As

s2 + ω0
2
, Y (s) =

A

Lω0
2
, and y(t) =

A

Lω0
2
δ(t).

(b)

X(s) =
Aω0

s2 + ω0
2
, Y (s) =

A

Lω0s
, and y(t) =

A

Lω0
u(t).

Solution 4.4-6

At t = 0, the steady-state values of currents y1 and y2 are y1(0) = 2 and y2(0) = 1. Figure S4.4-6
shows the transformed circuit for t ≥ 0 with initial condition generators. The loop equations are

(s+ 2)Y1(s)− Y2(s) = 2 +
6

s
−Y1(s) + (s+ 2)Y2(s) = 1.

Cramer’s rule yields

Y1(s) =
2s2 + 11s+ 12

s(s+ 1)(s+ 3)
=

4

s
− 3/2

s+ 1
− 1/2

s+ 3

Y2(s) =
s2 + 4s+ 6

s(s+ 1)(s+ 3)
=

2

s
− 3/2

s+ 1
+

1/2

s+ 3
.

Inverting, we obtain

y1(t) = (4− 3
2e

−t − 1
2e

−3t)u(t)

y2(t) = (2− 3
2e

−t + 1
2e

−3t)u(t).

Y1(s) Y2(s)+
–

+– +–

6

1

1

s 2 s 1

1
s

Figure S4.4-6

Solution 4.4-7

The current in the 2 H inductor at t = 0 is 10 A. The transformed circuit with initial condition
generators is shown in Figure S4.4-7 for t ≥ 0.

Y1(s) =
10
s + 20

3s+ 1
s + 1

=
20s+ 10

3s2 + s+ 1
=

20

3

[
s+ 0.5

s2 + 1
3s + 1

3

]
.
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Here A = 1, B = 0.5, a = 1
6 , c = 1

3 , b =
√
11
6 , r =

√
15
11 = 1.168, and θ = tan−1( −2√

11
) = −31.1◦.

Thus,

y1(t) =
20
3 (1.168)e−t/6 cos(

√
11
6 t− 31.1◦)u(t)

= 7.787e−t/6 cos(
√
11
6 t− 31.1◦)u(t).

The voltage vs(t) across the switch is determined according to

Vs(s) =

(
s+

1

s

)
Y (s) =

(
s2 + 1

s

)(
20s+ 10

3s2 + s+ 1

)
=

20

s

(s2 + 1)(s+ 0.5)

s(s2 + 1
3s + 1

3 )

=
20

3

[
1 +

3/2

s
+

1

6

−8s+ 1

s2 + 1/3s+ 1/3

]

vs(t) =
20

3
δ(t) + [10 + 10.05e−t/6 cos(

√
11

6
t− 152.2◦)]u(t).

Vs(s)

+

–

10

Y(s)

2s 20 s

s
1
s

+
–

+–

Figure S4.4-7

Solution 4.4-8

Figure S4.4-8 shows the transformed circuit with mutually coupled inductor replaced by their
equivalents (see Fig. 4.14b). The loop equations are

(s+ 1)Y1(s)− 2sY2(s) =
100

s
−2sY1(s) + (4s+ 1)Y2(s) = 0.

Cramer’s rule yields

Y2(s) =
40

(s+ 0.2)
.

Inverting, we obtain

v0(t) = y2(t) = 40e−t/5u(t).

1 –s 2s

2s 1
+
–

Y1(s)100
s

Y2(s) V0(s)

Figure S4.4-8
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Solution 4.4-9

Figure S4.4-9 shows the transformed circuit with the parallel form initial condition generators. The
admittance W (s) seen by the source is

W (s) =
13

s
+ s+ 4 =

s2 + 4s+ 13

s
.

The voltage across the source terminals is

V (s) =
I(s)

W (s)
=

1
s + 3

s2+4s+13
s

=
3s+ 1

s2 + 4s+ 13
.

Also

V0(s) =
1

2
V (s) =

3s+ 1

2(s2 + 4s+ 13)
.

Inverting, we obtain
y(t) = v0(t) = 1.716e−2t cos(3t+ 29◦)u(t).

V0(s) V0(s)

1 1
s

1
82

s s

1
8

1
8

s 1
s

1
s

1
8

s
13

+3

3

13

Figure S4.4-9

Solution 4.4-10

The capacitor voltage at t = 0 is 10 volts. The inductor current is zero. The transformed circuit
with initial condition generators is shown for t > 0 in Fig. S4.4-10. To determine the current Y (s),
we determine Zab(s), the impedance seen across terminals ab:

Zab(s) =
1

1 +

(
1

2+ s+2
s+3

) =
3s+ 8

4s+ 11
.

Also,

Y (s) =
90
s

5
s + ( 3s+8

4s+11 )
=

90(4s+ 11)

3s2 + 28s+ 55

=
30(4s+ 11)

s2 + 28
3 s+ 55

3

=
30(4s+ 11)

(s+ 2.8)(s+ 6.53)

= − 1.61

s+ 2.8
+

121.61

s+ 6.53
.

Inverting, we obtain
y(t) = [121.61e−6.53t − 1.61e−2.8t]u(t).
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+
–

+ –

100
s

10
s

5

Y(s) 2 2

1 1 s

a

b

s

Figure S4.4-10

Solution 4.4-11

(a) Designate i(t) as the clockwise loop current of the circuit. Applying KVL in the transform
domain, we obtain

X(s) = 2RI(s) + Y (s).

Also,
Y (s) = I(s) [R+ Ls] .

Thus,

X(s) =
2R

R+ Ls
Y (s) + Y (s) ⇒ (Ls+ 3R)Y (s) = (Ls+R)X(s).

Solving for the transfer function, we obtain

H(s) =
Y (s)

X(s)
=

s+ R
L

s+ 3R
L

.

(b) Since x(t) = e−2e−2(t−1)u(t− 1), we see that

X(s) = e−2e−s 1

s+ 2
.

Using L = R = 1, the transform of the zero-state response is

Yzsr(s) = X(s)H(s) = e−2e−s 1

s+ 2

(
s+ 1

s+ 3

)
= e−2e−s

[ −1

s+ 2
+

2

s+ 3

]
.

Inverting, we obtain

yzsr(t) = −e−2e−2(t−1)u(t− 1) + 2e−2e−3(t−1)u(t− 1)

or
yzsr(t) =

[
2e1e−3t − e−2t

]
u(t− 1).

(c) again, x(t) = e−2e−2(t−1)u(t− 1) and

X(s) = e−2e−s 1

s+ 2
.

Using R = 2L = 1, the transform of the zero-state response is

Yzsr(s) = X(s)H(s) = e−2e−s 1

s+ 2

(
s+ 2

s+ 6

)
= e−2e−s 1

s+ 6
.

Inverting, we obtain

yzsr(t) = e−2e−6(t−1)u(t− 1) = e4e−6tu(t− 1).
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Solution 4.4-12

(a) Figure S4.4-12a shows the transformed circuit with its noninverting op amp replaced by its
equivalent according to Fig. 4.16. From KVL, we know that X(s) = I(s)R + Vc(s). Since

I(s) = CsVc(s), we know X(s) = (RCs+ 1)Vc(s). Thus, Vc(s) =
1

RC

s+ 1
RC

X(s). The op-amp

output V0(s) is just K times the capacitor (input) voltage Vc(s). That is,

V0(s) = KVc(s) = K
1

RC

s+ 1
RC

X(s), where K = 1 + Rb

Ra
.

Since H(s) = V0(s)
X(s) , we see that

H(s) =
Ka

s+ a
, where a = 1

RC and K = 1 + Rb

Ra
.

(b) Figure S4.4-12b shows the transformed circuit with its noninverting op amp replaced by its
equivalent according to Fig. 4.16. From KVL, we know that X(s) = I(s) 1

Cs + V1(s). Since
I(s) = 1

RV1(s), we know X(s) =
(

1
RCs + 1

)
V1(s). Thus, V1(s) = s

s+ 1
RC

X(s). The op-amp

output V0(s) is just K times the resistor (input) voltage V1(s). That is,

V0(s) = KV1(s) = K
s

s+ 1
RC

X(s), where K = 1 + Rb

Ra
.

Since H(s) = V0(s)
X(s) , we see that

H(s) =
Ks

s+ a
, where a = 1

RC and K = 1 + Rb

Ra
.

+

R

–
+
–

+
–

+
–1

Cs

V0(s) V1(s) KV1(s)X(s)

(a) (b)

X(s)

R

+

–

1

Cs

Figure S4.4-12

Solution 4.4-13

Figure S4.4-13 shows the transformed circuit. The op amp input voltage is Vx(s) ≃ 0. The loop
equations are

I1(s) + (
6

s
+ 1)[I1(s)− I2(s)] = X(s)

−3

s
I2(s) + (

6

s
+

3

2
)[I1(s)− I2(s)] = 0.

Cramer’s rule yields

I1(s) =
s(s+ 6)

s2 + 8s+ 12
X(s) and I2(s) =

s(s+ 4)

s2 + 8s+ 12
.

Thus,

Y (s) = −1

2
[I1(s)− I2(s)] =

−s

s2 + 8s+ 12
X(s).

The transfer function is therefore

H(s) =
−s

s2 + 8s+ 12
.
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+
–

X(s)

1 1

I1(s)
I2(s)

I1– I2

Vx(s) Y(s)

+

–

+

–

6
s

3
s

1
2

Figure S4.4-13

Solution 4.4-14

(a) Working from left to right, designate the op amp outputs as y1(t), y2(t), and y3(t). Now,

y3(t) = − 1
3y(t) and y1(t) = −2

∫ t

−∞ y3(τ)dτ − 1
2

∫ t

−∞ x(τ)dτ . Thus, y1 = 2
3

∫ t

−∞ y(τ)dτ −
1
2

∫ t

−∞ x(τ)dτ . Further,

y(t) = y2(t) = −4x(t)− 6y1(t) = −4x(t)− 4

∫ t

−∞
y(τ)dτ + 3

∫ t

−∞
x(τ)dτ.

or

y(t) + 4

∫ t

−∞
y(τ)dτ = −4x(t) + 3

∫ t

−∞
x(τ)dτ.

Taking the Laplace transform we obtain

Y (s) + 4
1

s
Y (s) = −4X(s) + 3

1

s
X(s).

Solving for H(s), we obtain

H(s) =
Y (s)

X(s)
=

−4s+ 3

s+ 4
.

(b) From part (a), we know that

y(t) + 4

∫ t

−∞
y(τ)dτ = −4x(t) + 3

∫ t

−∞
x(τ)dτ.

Differentiating, we obtain
ẏ(t) + 4y(t) = −4ẋ(t) + 3x(t).

(c) Since x(t) = e−2e2(t+1)u(t+ 1), we see that

X(s) = e−2es
1

s− 2
.

The transform of the zero-state response is

Yzsr(s) = X(s)H(s) = e−2es
1

s− 2

(−4s+ 3

s+ 4

)
= e−2es

[ − 5
6

s− 2
+

− 19
6

s+ 4

]
.

Inverting, we obtain

yzsr(t) = e−2

[
−5

6
e2(t+1) − 19

6
e−4(t+1)

]
u(t+ 1)

or

yzsr(t) =

[
−5

6
e2t − 19

6
e−6e−4t

]
u(t+ 1).
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(d) Since y1(0
−) = 3, we know that y(0−) = 6y1(0

−) = 18. Setting x(t) = 0 in part (b), we obtain

ẏzir(t) + 4yzir(t) = 0.

Taking the unilateral Laplace transform produces

sYzir(s)− y(0−) + 4Yzir(s) = 0.

Thus,

Yzir(s) =
18

s+ 4
.

Inverting, we obtain
yzir(t) = 18e−4tu(t).

Solution 4.4-15

(a) Labeling the output voltage of the first op amp as vc(t), we see that

vc(t) = − 1

R1C

∫ t

−∞
x(τ)dτ − 1

R2C

∫ t

−∞
y(τ)dτ.

From the second op amp output, we see that

y(t) = −R3

R2
x(t)− R3

R1
vc(t).

Combining yields

y(t) = −R3

R2
x(t) − R3

R1

(
− 1

R1C

∫ t

−∞
x(τ)dτ − 1

R2C

∫ t

−∞
y(τ)dτ

)
.

Differentiating and expressing in standard form, we have

ẏ(t)− R3

R1R2C
y(t) = −R3

R2
ẋ(t) +

R3

R2
1C

x(t).

The desired differential equation is ẏ(t)−1.5y(t) = −3ẋ(t)+0.75x(t). From the ẋ(t) coefficient
we see that

−R3

R2
= −3.

Using this with the y(t) coefficient and C = 100 µF yields

−3

R110−4
= −3

2
⇒ R1 = 20 kΩ.

Similarly using the x(t) coefficient we obtain

R3

(2× 104)210−4
=

3

4
⇒ R3 = 30 kΩ.

Substituting the R3 value into the ẋ(t) coefficient we obtain

−30× 103

R2
= −3 ⇒ R2 = 10 kΩ.

Summarizing,
R1 = 20 kΩ, R2 = 10 kΩ, R3 = 30 kΩ.
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(b) From the second op amp output, we see that

y(t) = −R3

R2
x(t)− R3

R1
vc(t).

Setting x(t) = 0 and using vc(0
−) = 2, we see that

yzir(0
−) = −3

2
vc(0

−) = −3.

Setting x(t) = 0 and taking the unilateral Laplace transform of the system’s differential equa-
tion yield

sYzir(s)− yzir(0
−)− 3

2
Yzir(s) = 0.

Thus,

Yzir(s) =
−3

s− 3
2

and
yzir(t) = −3e3t/2u(t).

(c) Taking the Laplace transform of the differential equation yields

sY (s)− 3

2
Y (s0 = −3sX(s) +

3

4
X(s).

Solving for the transfer function, we obtain

H(s) =
Y (s)

X(s)
=

−3s+ 3
4

s− 3
2

= −3 +
− 15

4

s− 3
2

.

Inverting, the impulse response is

h(t) = −3δ(t)− 15

4
e3t/2u(t).

(d) Since x(t) = u(t− 2), we see that

X(s) = e−2s 1

s
.

The transform of the zero-state response is

Yzsr(s) = X(s)H(s) = e−2s 1

s

(−3s+ 3
4

s− 3
2

)
= e−2s

[− 1
2

s
+

− 5
2

s− 3
2

]
.

Inverting, we obtain

yzsr(t) = −1

2
u(t− 2)− 5

2
e3(t−2)/2u(t− 2).

Solution 4.4-16

(a) Referring to the circuit diagram:

Coefficient on
∫
x(t) is −5 = − 1

R110−4 ⇒ R1 = 104

5 = 2000 Ω.

Coefficient on
∫ ∫

x(t) is 5 = (−2)
(
− 1

R210−4

)
⇒ R2 = 2 104

5 = 4000 Ω.

Coefficient on
∫
y(t) is −2 = − 1

R310−4 ⇒ R3 = 104

2 = 5000 Ω.

As a check, the coefficient on
∫ ∫

y(t) is computed from the circuit as (−1)(−2)
(
− 1

4000×10−4

)
=

− 20
4 = −5, which matches the desired integral equation coefficient. Thus,

R1 = 2000, R2 = 4000, R3 = 5000.
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(b) First, we determine ICs y(0−) and ẏ(0−). From the second op amp output, y(0−) = 1. The
current through the second capacitor is

10−4ẏ(0−) =
0

R1
+

−1

R2
+

−1

R3
⇒ ẏ(0−) = −104

(
1

4000
+

1

5000

)
= −10

4
− 10

5
= −9

2
.

Setting x(t) = 0 and taking the unilateral Laplace transform of the differential equation yields

s2Yzir(s)− sy(0−)− ẏ(0−) + 2
(
sYzir(s)− y(0−)

)
+ 5Yzir(s) = 0.

Thus,
(
s2 + 2s+ 5

)
Yzir(s) = s− 9

2
+ 2 = s− 5

2
.

Solving for Yzir(s) yields

Yzir(s) =
s− 5

2

s2 + 2s+ 5
=

s− 5
2

(s+ 1)2 + 22
=

s+ 1

(s+ 1)2 + 22
+

− 7
4 (2)

(s+ 1)2 + 22
.

Using Table 4.1 to invert, we obtain

yzir(t) = e−t cos(2t)u(t)− 7

4
e−t sin(2t)u(t).

Solution 4.4-17

(a)

Y (s) =
6s2 + 3s+ 10

s(2s2 + 6s+ 5)

y(0+) = lim
s→∞

sY (s) = 3

y(∞) = lim
s→0

sY (s) = 2

(b)

Y (s) =
6s2 + 3s+ 10

(s+ 1)(2s2 + 6s+ 5)

y(0+) = lim
s→∞

sY (s) = 3

y(∞) = lim
s→0

sY (s) = 0

(c)

Y (s) =
s2 + 5s+ 6

s2 + 3s+ 2

This Y (s) is not strictly proper. We can express it as

Y (s) = 1 +
2s+ 4

s2 + 3s+ 2
.

Hence,

y(0+) = lim
s→∞

s(2s+ 4)

s2 + 3s+ 2
= 2

and

y(∞) = lim
s→0

sY (s) = lim
s→0

s3 + 5s2 + 6s

s2 + 3s+ 2
= 0.
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(d)

Y (s) =
s3 + 4s2 + 10s+ 7

s2 + 2s+ 3

Because Y (s) is improper, we find its strictly proper component from

Y (s) = (s+ 2) +
3s+ 1

s2 + 2s+ 3
.

Hence,

y(0+) = lim
s→∞

s

(
3s+ 1

s2 + 2s+ 3

)
= 3

and

y(∞) = lim
s→0

s

(
s3 + 4s2 + 10s+ 7

s2 + 2s+ 3

)
= 0.

Solution 4.5-1

(a) For a series connection,

Hs(s) = H1(s)H2(s) =

(
2s

s+ 1

)(
1

se3(s−1)

)
= 2e3e−3s 1

s+ 1
.

Inverting, the impulse response is

hs(t) = 2e3e−(t−3)u(t− 3).

(b) For a parallel connection,

Hp(s) = H1(s) +H2(s) =
2s

s+ 1
+

1

se3(s−1)
= 2 +

−2

s+ 1
+ e3e−3s 1

s
.

Inverting, the impulse response is

hp(t) = 2δ(t)− 2e−tu(t) + e3u(t− 3).

Solution 4.5-2

(a) At first glance, we are tempted to answer the question in affirmative. Let us verify the reality.

(b) The loop equations are

4I1 − 2I2 = X(s)

−2I1 + 4I2 = 0.

Cramer’s rule yields

I2(s) =
1

6
X(s)

and

Y (s) = I2(s) =
1

6
X(s).

Therefore, H(s) = 1
6 not 1

4 .
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(c) In this case R3 = R4 = 20000 and

4I1 − 2I2 = X(s)

−2I1 + 40002I2 = 0.

Cramer’s rule yields

I2(s) =
1

80002
X(s)

Y (s) = 20000I2(s) =
20000

80002
X(s) = 0.249994X(s).

In this case, H(s) is very close to 1/4. This is because the second ladder section causes a
negligible load on the first. Let R3 = R4 = R. In this case, as R → ∞, we observe that
H(s) → 1/4. The second ladder causes no loading in this case. The cascade rule applies only
when the successive subsystems do not load the preceding subsystems.

Solution 4.5-3

The transfer function of the two paths are e−st and ae−s(T+τ). The two paths are in parallel. Hence
the transfer function of this communication channel is

H(s) = e−sT + ae−s(T+τ)

= e−sT (1 + ae−sτ ).

For distortionless transmission, it is adequate to undo only the term (1 + ae−sτ ) in H(s) because
e−sT represents pure delay. Clearly, we need an equalizer with transfer function

Heq(s) =
1

1 + ae−sT
.

Comparing this form with the transfer function of the feedback system in Eq. (4.35) or Fig. 4.18d,
it is immediately obvious that such an equalizer can be realized by the system of Fig. S4.5-3.

Σ

Delay τ

–

Figure S4.5-3

When this equalizer is placed in cascade with the communication channel, the effective transfer
function is given by

Hc(s) =
e−sT (1 + ae−sτ )

1 + ae−sτ
= e−sT .

The effective system represents a pure delay of T seconds, which makes it distortionless. Moreover,
the equalizer is realizable.

Solution 4.5-4

The first system transfer function is

H(s) =
1

s−1

1 + 2
s−1

=
1

s+ 1
.

With a single left halfplane pole, the system is BIBO stable.
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The second system transfer function is

H(s) =

K
s(s+2)(s+4)

1 + K
s(s+2)(s+4)

=
1

s3 + 6s2 + 8s+K
.

We consider BIBO stability of this system for three cases: (a) K = 10, (b) K = 50, and (c) K = 48.

(a) We can verify that for K = 10, all the roots are in LHP and hence the system is BIBO stable.

>> K = 10; poles = roots([1 6 8 K])

poles = -4.7608 + 0.0000i

-0.6196 + 1.3102i

-0.6196 - 1.3102i

(b) For K = 50, we can verify that two roots are in RHP and on LHP. Hence the system is BIBO
unstable.

>> K = 50; poles = roots([1 6 8 K])

poles = -6.0449 + 0.0000i

0.0225 + 2.8759i

0.0225 - 2.8759i

(c) For K = 48, we verify that two roots are on imaginary axis at ±j
√
8 and one is in the LHP.

Hence the system is BIBO unstable (but marginally stable).

>> K = 48; poles = roots([1 6 8 K])

poles = -6.0000 + 0.0000i

0.0000 + 2.8284i

0.0000 - 2.8284i

Solution 4.6-1

H(s) =
s2 + 2s

s3 + 8s2 + 19s+ 12
=

(
s

s+ 1

)(
s+ 2

s+ 3

)(
1

s+ 4

)
=

−1/6

s+ 1
− 3/2

s+ 3
+

8/3

s+ 4

Figures S4.6-1a, S4.6-1b, and S4.6-1c show the canonical, series and parallel realizations. Some
variations in structures are possible. For example, different series realizations occur by making
different pairings of poles and zeros.

Σ

Σ

Σ

Σ
Y(s)

X(s)

Canonic direct

–8

–19

–12

2

1
s

1
s

1
s

Figure S4.6-1a
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Σ Σ Σ Σ
X(s)

–1 –3 –4 Y(s)

Series

2

1
s

1
s

1
s

-1

Figure S4.6-1b

Σ

Σ

Σ

Σ

Σ

X(s)

Y(s)

Parallel

–1 ⁄ 6

–3 ⁄ 2

8 ⁄ 3

1
s

1
s

1
s

-1

-3

-4

Figure S4.6-1c

Solution 4.6-2

Transposed versions of the canonic direct, series, and parallel realizations for the transfer function
in Prob. 4.6-1 are shown in Figs. S4.6-2a, S4.6-2b, and S4.6-2c. Here, we transpose component sub
block diagrams separately; it is also possible to transpose the entire block diagram, which produces
slightly different (but mathematically equivalent) results.

Σ

Σ

X(s)

Canonic direct

Y(s)

–1

–19

–12

2

1
S

1
S

1
S

-8

Figure S4.6-2a

Σ Σ

Σ Σ

X(s)

–1

2 –3 –4

Series

Y(s)

1
S

1
S

1
S

Figure S4.6-2b
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Σ

Σ

Σ

Σ

Σ

X(s) Y(s)

Parallel

1
S

1
S

1
S

–1 ⁄ 5

–3 ⁄ 2

8 ⁄ 3

-1/6

-3/2

8/3

-1

-3

-4

Figure S4.6-2c

Solution 4.6-3

(a)

H(s) =
3s(s+ 2)

(s+ 1)(s2 + 2s+ 2)
=

3s2 + 6s

s3 + 3s2 + 4s+ 2

=

(
3s

s+ 1

)(
s+ 2

s2 + 2s+ 2

)
= − 3

s+ 1
+

6s+ 6

s2 + 2s+ 2

Figures S4.6-3a, S4.6-3b, and S4.6-3c show the canonical, series and parallel realizations. Some
variations in structures are possible. For example, different series realizations occur by making
different pairings of poles and zeros.

Σ

Σ Σ

Σ

X(s)

Y(s)

Canonic direct

–

–3 3

–4

–2

6

1
s

1
s

1
s

-1

-3

Figure S4.6-3a

Σ Σ

Σ Σ

X(s)

Y(s)

Series

3

–2

–2 2

1
s

1
s

1
s

-1

-3

Figure S4.6-3b
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Σ

Σ

Σ

Σ Σ

X(s)

Y(s)

Parallel

–1 3

–2 6

–2 6

1
s

1
s

1
s

-3

Figure S4.6-3c

(b)

H(s) =
2s− 4

(s+ 2)(s2 + 4)
=

2s− 4

s3 + 2s2 + 4s+ 8

=

(
s− 2

s+ 2

)(
2

s2 + 4

)
= − 1

s+ 2
+

s

s2 + 4

Figures S4.6-3d, S4.6-3e, and S4.6-3f show the canonical, series and parallel realizations. Some
variations in structures are possible. For example, different series realizations occur by making
different pairings of poles and zeros.

X(s)

Y(s)

Canonic direct–2

–4 2

–8 –4

Σ

Σ

Σ Σ
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1
s

1
s

-

Figure S4.6-3d

X(s)

Y(s)

Series
–2 –2

–4 2

Σ Σ Σ

1
s

1
s

1
s

-

Figure S4.6-3e

X(s) Y(s)

Parallel

–2

–4

1
Σ

Σ

Σ
1
s

1
s

1
s

-

Figure S4.6-3f
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Solution 4.6-4

(a) Transposed versions of the canonic direct, series, and parallel realizations for the transfer
function in Prob. 4.6-3a are shown in Figs. S4.6-4a, S4.6-4b, and S4.6-4c. Here, we transpose
component sub block diagrams separately; it is also possible to transpose the entire block
diagram, which produces slightly different (but mathematically equivalent) results.

1
s

Σ

Σ

X(s) Y(s)

3

Canonic direct

–3

6 –4

–2

1
s

1
s

3

Figure S4.6-4a

Σ

Σ

Σ

X(s)

–1

2 –2

–2
Series

3
Y(s)

1
s

1
s

1
s

3

Figure S4.6-4b

Σ

Σ

Σ

Σ
X(s)

Y(s)–3

–1

–2

–2

6

6

Parallel

1
s

1
s

1
s

3

-3

Figure S4.6-4c
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(b) Transposed versions of the canonic direct, series, and parallel realizations for the transfer
function in Prob. 4.6-3b are shown in Figs. S4.6-4d, S4.6-4e, and S4.6-4f. Here, we transpose
component sub block diagrams separately; it is also possible to transpose the entire block
diagram, which produces slightly different (but mathematically equivalent) results.

Σ

Σ

Σ

X(s) Y(s)

–2

Canonic direct

–4

–8

2

–4

1
s

1
s

1
s

Figure S4.6-4d

Σ

Σ

Σ

X(s) Y(s)

Series
–2 –2

2 –4

1
s

1
s

1
s

Figure S4.6-4e

Σ

Σ

Σ

X(s) Y(s)

Parallel

–4

1
s

1
s

1
s

-2

Σ
-1

Figure S4.6-4f



Student use and/or distribution of solutions is prohibited 273

Solution 4.6-5

H(s) = 7
2s+ 3

5(s4 + 7s3 + 16s2 + 12s)
=

0.4s+ 0.6

s4 + 7s3 + 16s2 + 12s

=

(
1

s

)(
1

s+ 2

)(
1

s+ 2

)(
0.4s+ 0.6

s+ 3

)
=

1
20

s
−

1
4

s+ 2
+

1
10

(s+ 2)2
+

1
5

s+ 3

Figures S4.6-5a, S4.6-5b, and S4.6-5c show the canonical, series and parallel realizations. Some
variations in structures are possible. For example, different series realizations occur by making
different pairings of poles and zeros.

1
s

Σ

Σ

Σ

Σ

X(s)

Y(s)

Canonic direct

–7

–16

–12 0.4

0.6

1
s

1
s

1
s

Figure S4.6-5a

Σ Σ Σ Σ
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0.4
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s

1
s

1
s

Figure S4.6-5b

Σ

Σ

Σ

Σ

Σ

Σ

1

S

1

S

1

S

1

S

X(s) Y(s)1/20

Parallel1/5

–3

–2

–2

–1/4 1/10

Figure S4.6-5c
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Solution 4.6-6

Transposed versions of the canonic direct, series, and parallel realizations for the transfer function
in Prob. 4.6-5 are shown in Figs. S4.6-6a, S4.6-6b, and S4.6-6c. Here, we transpose component sub
block diagrams separately; it is also possible to transpose the entire block diagram, which produces
slightly different (but mathematically equivalent) results.

X(s) Y(s)

–7

–16

–120.4

0.6

Canonic direct

Σ

Σ

Σ

Σ

1
s

1
s

1
s

1
s
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1/5

Figure S4.6-6a
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1
s

1
s
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1/5

Figure S4.6-6c
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Solution 4.6-7

H(s) =
s(s+ 1)(s+ 2)

(s+ 5)(s+ 6)(s+ 8)
=

s3 + 3s2 + 2s

s3 + 19s2 + 118s+ 240
= 1− 20

s+ 5
+

60

s+ 6
− 56

s+ 8

Figures S4.6-7a, S4.6-7b, and S4.6-7c show the canonical, series and parallel realizations. Some
variations in structures are possible. For example, different series realizations occur by making
different pairings of poles and zeros.
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Σ
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Figure S4.6-7c
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Solution 4.6-8

Transposed versions of the canonic direct, series, and parallel realizations for the transfer function
in Prob. 4.6-7 are shown in Figs. S4.6-8a, S4.6-8b, and S4.6-8c. Here, we transpose component sub
block diagrams separately; it is also possible to transpose the entire block diagram, which produces
slightly different (but mathematically equivalent) results.

Σ

Σ

Σ

X(s)

3 –19

2

Canonic direct

–118

–240

Y(s)

1
s
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s

1
s

-20
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Solution 4.6-9

H(s) =
s3

(s+ 1)2(s+ 2)(s+ 3)
=

s3

s4 + 7s3 + 17s2 + 17s+ 6

=

(
s

s+ 1

)(
s

s+ 1

)(
s

s+ 2

)(
1

s+ 3

)
= − 8

s+ 2
+

27
4

s+ 3
+

9
4

s+ 1
−

1
2

(s+ 1)2

Figures S4.6-9a, S4.6-9b, and S4.6-9c show the canonical, series and parallel realizations. Some
variations in structures are possible. For example, different series realizations occur by making
different pairings of poles and zeros.

Σ

Σ

Σ

Σ

X(s)

Y(s)
–7

–17

–17

Canonic direct

–16

1
s

1
s

1
s

1
s

Figure S4.6-9a

Σ Σ Σ Σ

X(s)

Y(s)–1 –1 –2 –3

Series

1
s

1
s

1
s

1
s

Figure S4.6-9b

Σ

Σ

Σ

Σ

Σ

Σ

Σ

X(s)

Y(s)–2

–8

–3

–1

–1

–1/2

27/4
Parallel

9/4

1
s

1
s

1
s

1
s

Figure S4.6-9c



278 Student use and/or distribution of solutions is prohibited

Solution 4.6-10

Transposed versions of the canonic direct, series, and parallel realizations for the transfer function
in Prob. 4.6-9 are shown in Figs. S4.6-10a, S4.6-10b, and S4.6-10c. Here, we transpose component
sub block diagrams separately; it is also possible to transpose the entire block diagram, which
produces slightly different (but mathematically equivalent) results.

Σ

Σ

Σ

Σ

X(s) Y(s)

Canonic direct
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–17

–17
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1
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1
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Figure S4.6-10a
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Solution 4.6-11

H(s) =
s3

(s+ 1)(s2 + 4s+ 13)
=

s3

s3 + 5s2 + 17s+ 13

=

(
s

s+ 1

)(
s2

s2 + 4s+ 13

)
= − 0.1

s+ 1
+

s2 − 0.9s+ 1.3

s2 + 4s+ 13
= 1− 0.1

s+ 1
− 4.9s+ 11.7

s2 + 4s+ 13

Figures S4.6-11a, S4.6-11b, and S4.6-11c show the canonical, series and parallel realizations. Some
variations in structures are possible. For example, different series realizations occur by making
different pairings of poles and zeros.
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Solution 4.6-12

Transposed versions of the canonic direct, series, and parallel realizations for the transfer function
in Prob. 4.6-11 are shown in Figs. S4.6-12a, S4.6-12b, and S4.6-12c. Here, we transpose component
sub block diagrams separately; it is also possible to transpose the entire block diagram, which
produces slightly different (but mathematically equivalent) results.
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Σ

Σ
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Solution 4.6-13

Here,

H(s) =
(s− 2j)(s+ 2j)

(s− j)(s+ j)(s+ 2)
=

s2 + 4

s3 + 2s2 + s+ 2
.

A TDFII realization of H(s) is shown in Fig. S4.6-13. Of course, the paths shown with a scalar
multiplier of 0 can be eliminated completely.

There are two primary reasons that TDFII tends to be a good structure:

• TDFII is canonical, which ensures a realization with the fewest number of (expensive) inte-
grators

• TDFII places system zeros before system poles, which helps avoid overflow/saturation errors

X(s)
Σ

0

Σ
1

Σ
0

Σ
4

∫

∫

∫

−2

−1

−2

Y (s)

Figure S4.6-13

Solution 4.6-14

(a) To determine a single-stage structure, we express the transfer function as

H(s) =
(s− 2j)(s+ 2j)(s− 3j)(s+ 3j)

9(s+ 1)(s+ 2)(s+ 1− j)(s+ 1 + j)
=

1
9s

4 + 13
9 s

2 + 4

s4 + 5s3 + 10s2 + 10s+ 4
.

Figure S4.6-14a shows a single fourth-order real TDFII realization of H(s). While block
realizations of H(s) are rarely unique, Fig. S4.6-14a is essentially unique given the constraints
of being single-stage and TDFII.

(b) To determine a cascade structure, we express the transfer function as

H(s) =
(s− 2j)(s+ 2j)(s− 3j)(s+ 3j)

9(s+ 1)(s+ 2)(s+ 1− j)(s+ 1 + j)
=

(
s2 + 4

s2 + 3s+ 2

)( 1
9s

2 + 1

s2 + 2s+ 2

)
.

Figure S4.6-14b shows a block realization of H(s) using a cascade of second-order real DFII
structures. Since different pole/zero pairings and gain distributions are possible, this realiza-
tion is not unique, even given the constraint that the realization be a cascade of second-order
real DFII structures.
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X(s)
Σ

1

9

Σ
0

Σ

13

9

Σ
0

Σ
4

∫

∫

∫

∫

−5

−10

−10

−4

Y (s)

Figure S4.6-14a

Σ
X(s)

∫

Σ
−3

Σ
1

Σ
0

∫

−2 4

Σ

∫

Σ
−2

Σ

1

9 Y (s)

Σ
0

∫

−2 1

Figure S4.6-14b

(c) To determine a parallel structure, we compute the partial fraction expansion of H(s) as

H(s) =
(s− 2j)(s+ 2j)(s− 3j)(s+ 3j)

9(s+ 1)(s+ 2)(s+ 1− j)(s+ 1 + j)
=

1

9
+

− 52
9

s+ 2
+

50
9

s+ 1
+

− 1
6 + 29j

18

s+ 1− j
+

− 1
6 − 29j

18

s+ 1 + j
.

Next, we combine the first three terms (which includes the 1
9 direct term) into a second-order

real rational function and the last two terms into another second-order real rational function.
This yields

H(s) =
1
9s

2 + 1
9s+

50
9

s2 + 3s+ 2
+

− 1
3s− 32

9

s2 + 2s+ 2
.

Figure S4.6-14c shows a block realization of H(s) using a parallel connection of second-order
real DFI structures. We could also have combined the direct term with the last two terms and
obtained a different sum of two second-order real transfer functions. Clearly, the realization
of Fig. S4.6-14c is therefore not unique, even given the constraint that the realization be a
parallel connection of second-order real DFI structures.
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X(s)

Σ

1

9

∫

Σ
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9

∫

50

9

Σ

∫

Σ
−3

∫
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Σ
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∫

Σ

−
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∫

−
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Σ
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∫
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Σ
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Figure S4.6-14c

Solution 4.6-15

(a) Application of Eq. (4.35) to Fig. P4.6-15a yields

Ha(s) =

1
(s+a)2

1 + b2

(s+a)2

=
1

(s+ a)2 + b2
.

(b) Figure P4.6-15b is also a feedback loop with forward gain G(s) = 1
s+a and the loop gain b2

(s+a)2 .

Therefore,

Hb(s) =
1

s+a

1 + b2

(s+a)2

=
s+ a

(s+ a)2 + b2
.

(c) The output in Fig. P4.6-15c is the same of B − aA times the output of Fig. P4.6-15a and A
times the output of Fig. P4.6-15b. Therefore, its transfer function is

Hc(s) = (B − aA)H1(s) +AH2(s)

=
B − aA

(s+ a)2 + b2
+

A(s+ a)

(s+ a)2 + b2

=
As+B

(s+ a)2 + b2
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Solution 4.6-16

These transfer functions are readily realized by using the arrangement in Fig. 4.28 by a proper
choice of Zf(s) and Z(s). While we present component values that produce the desired transfer
functions, other choices are possible as long as the resulting gains are correct.

(a) In Fig. S4.6-16a, Zf (s) =

Rf
Cf s

Rf+
1

Cf s

= 1
Cf (s+a) where a = 1

RfCf
, Z(s) = R, and

Ha(s) = −Zf (s)
Z(s) = − k

s+a , where k = 1
RCf

and a = 1
RfCf

.

Choose R = 10, 000, Rf = 20, 000 and Cf = 10−5. This yields k = 10 and a = 5. Therefore,
the transfer function for Fig. S4.6-16a is

Ha(s) =
−10
s+5 .

(b) This is same as (a) followed by an amplifier of gain −1 as shown in Fig. S4.6-16b. Therefore,
the transfer function for Fig. S4.6-16b is

Hb(s) =
10
s+5 .

(c) For the first stage in Fig. S4.6-16c (see Fig. 4.32b of Drill 4.14), Zf(s) = 1
Cf (s+a) , where

a = 1
RfCf

, Z(s) = 1
C(s+b) , where b = 1

RC , and

H(s) = −Zf (s)
Z(s) = − C

Cf
( s+b
s+a ).

Choose C = Cf = 10−4, R = 5000, Rf = 2000. This yields a transfer function H(s) = −( s+2
s+5 ).

This is followed by an op amp of gain −1 as shown in Fig. S4.6-16c. This yields

Hc(s) =
s+2
s+5

–
+

–
+

–
+

10–5

10–4

10–4

5K 5K

5K

2

10–5

10K

(a)

(c)

(b)

10K20K 20K

10K

10K

–
+

–
+

Κ

Figure S4.6-16
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Solution 4.6-17

One realization, derived in the previous problem, is shown in Fig. S4.6-17a.

10–4

10–4

5K 5K

5K

2

(c)

–
+

–
+

Κ

Figure S4.6-17a

For the second realization, we express H(s) as

H(s) =
s+ 2

s+ 5
= 1− 3

s+ 5
.

We realize H(s) as a parallel combination of H1(s) = 1 and H2(s) = −3/(s + 5) as shown in
Fig. S4.6-17b. The second stage serves as a summer for which the inputs are the input and output
of the first stage. Because the summer has a gain −1, we need a third stage of gain −1 to obtain
the desired transfer function.

10–5

20K 10K

10K

10K

10K

10K33.3K

–
+

–
+

–
+

Figure S4.6-17b

Solution 4.6-18

A canonical realization of H(s) is shown in Fig. S4.6-18. Observe that this is identical to H(s)
in Ex. 4.25 with minor differences. Hence, the op-amp circuit in Fig. 4.31c can be used for our
purpose with appropriate changes in the element values. The last summer input resistors now are
100
3 kΩ and 100

7 kΩ instead of 50 kΩ and 20 kΩ.
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2
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1

2
1
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1
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1

2

33.3

14.29

Figure S4.6-18

Solution 4.6-19

We follow the procedure in Ex. 4.25 with appropriate modifications. In this case, a2 = 13, a1 = 4,
b2 = 2, b1 = 5, and b0 = 1 (Ex. 4.25 has a2 = 10, a1 = 4, b2 = 5, b1 = 2, and b0 = 0). Because b0 is
nonzero here, we have one more feedforward connection. Figure S4.6-19 shows the development of
the suitable realization.
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(c)
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100kΩ
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100kΩ

100kΩ
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Solution 4.6-20

From Fig. 4.28, we can construct an integrator (with gain −R
L ) by using an inductor L

at the input and a resistor R in the feedback. With this in mind, we express the system
d
dty(t) + 2y(t) = x(t)− 3 d

dtx(t) in integral form as

y(t) + 2

∫
y(t) = −3x(t) +

∫
x(t).

Thus,

y(t) = −3x(t)−
[
−
∫

x(t)

]
− 2(−1)

[
−
∫

y(t)

]
.

From this expression, we draw the op-amp realization shown in Fig. S4.6-20, using various (mostly)
realistic component values to obtain the needed gains.

x(t) 1 mH
−

+

1 mΩ

−

∫
x

6 kΩ
−

+

2 kΩ

6 kΩ

y = −3x− (−
∫
x)− 2(−1)(−

∫
y)

1 mH
−

+

1 mΩ

−

∫
y

1 kΩ
−

+

1 kΩ

∫
y

3 kΩ

Figure S4.6-20

Using inductors rather than capacitors in a circuit can be problematic. Compared with
capacitors, inductors are generally more expensive and usually have worse tolerance. Furthermore,
it can be difficult to obtain gains near 1 with realistic R and L values. As seen in Fig. S4.6-20, an
inductor value of 1 mH is realistic but the corresponding resistor of 1 mΩ is problematic.

Solution 4.7-1

(a) In this case,

H(jω) =
ωc

jω + ωc
=⇒ |H(jω)| = ωc√

ω2 + ω2
c

.

The dc gain is H(0) = 1 and the gain at ω = ωc is 1/
√
2, which is −3 dB below the dc

gain. Hence, the 3-dB bandwidth is ωc. Also the dc gain is unity. Hence, the gain-bandwidth
product is ωc.

We could derive this result indirectly as follows. The system is a lowpass filter with a single
pole at ω = ωc. The dc gain is H(0) = 1 (0 dB). Because, there is a single pole at ωc (and
no zeros), there is only one asymptote starting at ω = ωc (at a rate -20 dB/dec.). The break
point is ωc, where there is a correction of −3 dB. Hence, the amplitude response at ωc is 3 dB
below 0 dB (the dc gain). Thus, the 3-dB bandwidth of this filter is ωc.
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(b) The transfer function of this system is

H(s) =
G(s)

1 +G(s)H(s)
=

ωc

s+ωc

1 + 9ωc

s+ωc

=
ωc

s+ 10ωc
.

We use the same argument as in part (a) to deduce that the dc gain is 0.1 and the 3-dB
bandwidth is 10ωc. Hence, the gain-bandwidth product is ωc.

(c) The transfer function of this system is

H(s) =
G(s)

1−G(s)H(s)
=

ωc

s+ωc

1− 0.9ωc

s+ωc

=
ωc

s+ 0.1ωc
.

We use the same argument as in part (a) to deduce that the dc gain is 10 and the 3-dB
bandwidth is 0.1ωc. Hence, the gain-bandwidth product is ωc.

(d) Included in previous parts.

Solution 4.8-1

In this problem, we consider a controllable, observable LTIC with transfer function H(s) = s2+4
2s2+4s+4 .

(a) We use MATLAB to direct calculate the magnitude response at ω = 0, 1, 2, 3, 5, 10, and ∞.

>> H = @(s) (s.^2+4)./(2*s.^2+4*s+4); omega = [0, 1, 2, 3, 5, 10, 10^10];

>> Hmag = abs(H(1j*omega))

Hmag = 1.0000 0.6708 0 0.2712 0.4187 0.4799 0.5000

Figure S4.8-1 uses these values to plot the magnitude response |H(jω)| over 0 ≤ ω ≤ 10.

0 1 2 3 5 10

ω

0

0.2712

0.4187
0.4799

0.6708

1

|H
(j
ω

)|

Figure S4.8-1

(b) Frequency (including both magnitude and phase) response reflects a system’s sinusoidal steady
state behavior. Therefore, it is appropriate for the test engineer to apply sinusoids to measure
the system’s magnitude response. To measure magnitude response, the engineer could apply
the following simple procedure:

• Select some frequency of interest ω.

• Apply a sinusoidal input x(t) = Ain cos(ωt+θin) to the system. The amplitude Ain should
be known and fixed, but the phase θin is unimportant.
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• Since the system is LTIC, the output will take the form y(t) = Aout cos(ωt+ θout). Using
the oscilloscope, measure the peak amplitude Aout.

• The magnitude response at frequency ω is simply the ratio Aout/Ain. That is, |H(jω)| =
Aout/Ain.

• Repeat the previous steps for an appropriate selection of frequencies, such as ω = 0, 1, 2,
3, 5, and 10.

(c) If the engineer accidentally constructs the inverse system H−1(s) = 1
H(s) = 2s2+4s+4

s2+4 , the

measured magnitude response will be the inverse of the desired magnitude response. That is,

|Hmeasured(jω)| =
1

|Hdesired(jω)|
.

In this case, however, tests using inputs at or near ω = 2 will behave quite badly. This is
because H−1(s) has roots on the ω-axis at ω = ±2, causing an input at ω = ±2 to produce
unbounded output (at least until the system saturates or breaks). Considered another way,
although H(s) is a BIBO (and asymptotically) stable system, H−1(s) is a BIBO unstable
(marginally stable) system. Magnitude response is always problematic (or meaningless) for
BIBO unstable systems.

Solution 4.8-2

H(jω) =
jω + 2

(jω)2 + 5jω + 4
=

jω + 2

(4− ω2) + j5ω

|H(jω)| =
√

ω2 + 4

(4− ω2)2 + (5ω)2
=

√
ω2 + 4

ω4 + 17ω2 + 16

∠H(jω) = tan−1(
ω

2
)− tan−1(

5ω

4− ω2
)

(a) For x(t) = 5 cos(2t+ 30◦), ω = 2 and

|H(j2)| =
√

2

25
=

√
2

5

∠H(j2) = tan−1 − tan−1(∞) = 45◦ − 90◦ = −45◦.

Thus,

y(t) = 5

√
2

5
cos(2t+ 30◦ − 45◦) =

√
2 cos(2t− 15◦).

(b) Using the results from part (a), input x(t) = 10 sin(2t+ 45◦) produces output

y(t) = 10(

√
2

5
) sin(2t+ 45◦ − 45◦) = 2

√
2 sin 2t

(c) For x(t) = 10 cos(3t+ 40◦), ω = 3 and

|H(jω)| =
√

13

250
= 0.228 and ∠H(j3) = 56.31◦ − 108.43◦ = −52.12◦

Therefore,

y(t) = 10(0.228) cos(3t+ 40◦ − 52.12◦) = 2.28 cos(3t− 12.12◦).
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Solution 4.8-3

H(jω) =
jω + 3

(jω + 2)2

|H(jω)| =
√
ω2 + 9

ω2 + 4
and ∠H(jω) = tan−1(

ω

3
)− tan−1(

ω

2
)

(a) For x(t) = 10u(t) = 10ej0tu(t), ω = 0 and H(j0) = 0.75. Therefore, the steady-state response
is

yss(t) = 0.75× 10ej0tu(t) = 7.5u(t).

(b) For x(t) = cos(2t+ 60◦)u(t), ω = 2, and

|H(j2)| =
√
13

8
and ∠H(j2) = 33.69◦ − 90◦ = −56.31◦.

Therefore, the steady-state response is

yss(t) =

√
13

8
cos(2t+ 60◦ − 56.31◦)u(t) =

√
13

8
cos(2t+ 3.69◦)u(t).

(c) For x(t) = sin(3t− 45◦)u(t), ω = 3, and

|H(j3)| =
√
18

13
and ∠H(j3) = 45◦ − 112.62◦ = −67.62◦.

Therefore, the steady-state response is

yss(t) =

√
18

13
sin(3t− 45◦ − 67.62◦)u(t) =

√
18

13
sin(3t− 112.62◦)u(t).

(d) For x(t) = ej3tu(t), ω = 3. Using the results of part (c), the steady-state response is

yss(t) = H(j3)ej3t = |H(j3)|ej[3t+∠H(j3)]u(t) =

√
18

13
ej[3t−67.62◦]u(t).

Solution 4.8-4

H(jω) =
−(jω − 10)

jω + 10
=

10− jω

10 + jω
, |H(jω)| =

√
ω2 + 100

ω2 + 100
= 1

∠H(jω) = tan−1(− ω

10
)− tan−1(

ω

10
) = −2 tan−1(

ω

10
)

(a) For x(t) = ejωt,

y(t) = H(jω)ejωt = |H(jω)|ej[ωt+∠H(jω)] = ej[ωt−2 tan−1(ω/10)].

(b) For x(t) = cos(ωt+ θ),

y(t) = cos[ωt+ θ − 2 tan−1(
ω

10
)].

(c) For x(t) = cos t, ω = 1 and

|H(j1)| = 1 and ∠H(jω) = −2 tan−1(
1

10
) = −11.42◦.

Thus,
y(t) = cos(t− 11.42◦).
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(d) For x(t) = sin 2t, ω = 2 and

|H(j2)| = 1 and ∠H(j2) = −2 tan−1(
2

10
) = −22.62◦.

Thus,
y(t) = sin(2t− 22.62◦).

(e) For x(t) = cos 10t, ω = 10 and

|H(j10)| = 1 and ∠H(j10) = −2 tan−1(
10

10
) = −90◦.

Thus,
y(t) = cos(10t− 90◦) = sin 10t.

(f) For x(t) = cos 100t, ω = 100 and

|H(j100)| = 1 and ∠H(j100) = −2 tan−1(
100

10
) = −168.58◦.

Thus,
y(t) = cos(100t− 168.58◦).

Since the magnitude response is unity for all frequencies, this is an allpass filter. Consequently, the
filter only impacts the phase characteristics of the input, not the magnitude characteristics.

Solution 4.8-5

(a) From the graph, the two system zeros are at s = ±j1.5. Thus, s2 + b1s+ b2 = (s+ j1.5)(s−
j1.5) = s2 + 2.25. The two system poles are at s = −1 ± j0.5. Thus, s2 + a1s + a2 =
(s + 1 + j0.5)(s + 1 − j0.5) = s2 + 2s + 1.25. At DC, the system function is H(j0) = −1 =
k b2
a2

= k 2.25
1.25 = k 9

5 . Therefore,

k = − 5
9 , b1 = 0, b2 = 9

4 , a1 = 2, and a2 = 5
4 .

(b) The DC gain is given as S(j0) = −1. Thus, the input of 4 just becomes −4. To compute the

output to cos(t/2 + π/3), H(j0.5) is required. Graphically, |H(j0.5)| = |k| (1)(2)

(1)(
√
2)

= 10
9
√
2
and

∠H(j0.5) = π − π/2 + π/2 − (0 + π/4) = 3π/4. Thus, the output to cos(t/2 + π/3) is just
10
9
√
2
cos(t/2 + π/3 + 3π/4), and the output to x(t) = 4 + cos(t/2 + π/3) is

y(t) = −4 +
10

9
√
2
cos(t/2 + 13π/12) ≈ −4 + 0.7857 cos(t/2 + 3.4034).

Solution 4.8-6

For the CT system described by (D+1)(D+2){y(t)} = x(t−1), let us define x′(t) = x(t−1). Thus,
we can describe the system in terms of the modified input x′(t) as (D + 1)(D + 2){y(t)} = x′(t)
and solve it in the standard way. Using input x′(t) and output y(t), the system transfer function is

H(s) =
Y (s)

X ′(s)
=

1

s2 + 3s+ 2
.

(a) Here, x(t) = 1, so ω = 0 and x(t− 1) = 1 = x′(t). Since H(0) = 1
2 , we see that

y(t) = H(0)x′(t) =
1

2
.
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(b) Here, x(t) = cos(t), so ω = 1 and x(t− 1) = cos(t− 1) = x′(t). Now,

|H(j1)| = 1√
10

and ∠H(j1) = tan−1(−3) = −1.2490.

Thus,

y(t) = |H(j1)| cos (t− 1 + ∠H(j1)) =
1√
10

cos (t− 2.2490) .

Solution 4.8-7

The frequency of x(t) = 1
3e

j(6t+π/3)u(6t+ π/3) is ω = 6. To determine the steady-state response,
we thus need to compute |H(6j)| and ∠H(6j).

|H(6j)| =
∣∣∣∣

4(6j)

(6j + 1+ 6j)(6j + 1− 6j)

∣∣∣∣ = 4
6

1
√
122 + 12

=
24√
145

≈ 1.9931

∠H(6j) = ∠
4(6j)

(6j + 1 + 6j)(6j + 1− 6j)
=

π

2
− tan−1(12) ≈ 0.0831

Thus, the steady-state response to x(t) = 1
3e

j(6t+π/3)u(6t+ π/3) is

yss(t) = |H(6j)|1
3
ej(6t+π/3+∠H(6j))u(6t+ π/3) ≈ 0.6644ej(6t+1.1303)u(6t+ 1.0472).

Solution 4.9-1

Based on the problem description, we know that the system transfer function takes the form

H(s) = K
s− sz
s− 2

,

where constant K is a gain factor and constant sz designates the location of the system zero. Since
the system is real, we know that K and sz are real. Since the system is lowpass, we know that
|sz| > 2. We make the further assumption that sz is positive (resulting in a so-called minimum-
phase system).

(a) We know the passband gain is one, or 0 dB. To achieve 40 dB of stopband attenuation requires

−40 = 20log10H(j∞) = 20log10K ⇒ K = 10−2 = 0.01.

The maximum passband gain of unity occurs at ω = 0. Thus,

H(0) = 1 = K
sz
2

⇒ sz = 200.

Taken together, the transfer function is

H(s) = 0.01
s− 200

s− 2
.

Figure S4.9-1a shows the straight-line Bode approximation (solid) and true magnitude response
(dashed). Since the system pole causes a -20 dB/decade drop in gain after ω = 2, it is sensible
that the desired -40 dB of attenuation is reached two decades later at ω = 200, at which point
the system zero flattens the response and holds the stopband attenuation at -40 dB.

(b) With less stopband attenuation that (a), we expect the zero to be closer to the pole than 200.
To achieve 30 dB of stopband attenuation requires

−30 = 20log10H(j∞) = 20log10K ⇒ K = 0.0316.
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Figure S4.9-1a

The maximum passband gain of unity occurs at ω = 0. Thus,

H(0) = 1 = K
sz
2

⇒ sz = 63.2456.

Taken together, the transfer function is

H(s) = 0.0316
s− 63.2456

s− 2
.

Figure S4.9-1b shows the straight-line Bode approximation (solid) and true magnitude response
(dashed). As in (a), the system pole causes a -20 dB/decade drop in gain after ω = 2. The
gain hits -30 dB at ω = 63.2456, at which point the system zero flattens the response and
holds the stopband attenuation at -30 dB.
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Figure S4.9-1b

Solution 4.9-2

Based on the problem description, we know that the system transfer function takes the form

H(s) = K
s− sz
s− 2

,

where constant K is a gain factor and constant sz designates the location of the system zero. Since
the system is real, we know that K and sz are real. Since the system is highpass, we know that
|sz| < 2. We make the further assumption that sz is positive (resulting in a so-called minimum-phase
system).

(a) To achieve a passband gain of 1 requires

1 = H(j∞) = lim)ω → ∞K
jω − sz
jω − 2

⇒ K = 1.

To achieve 40 dB of stopband attenuation requires

−40 = 20log10H(0) = 20log10

(sz
2

)
⇒ sz = 0.02.
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Taken together, the transfer function is

H(s) =
s− 0.02

s− 2
.

Figure S4.9-2a shows the straight-line Bode approximation (solid) and true magnitude response
(dashed). The response starts at -40 dB and, upon reaching the zero at ω = 0.02 increases
at 20 dB/decade. Two decades later, at ω = 2, the gain has reach 0 dB, at which point the
system pole flattens the response and holds the passband at 0 dB.
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Figure S4.9-2a

(b) With less stopband attenuation that (a), we expect the zero to be closer to the pole that 0.02.
To achieve a passband gain of 1 requires

1 = H(j∞) = lim)ω → ∞K
jω − sz
jω − 2

⇒ K = 1.

To achieve 30 dB of stopband attenuation requires

−30 = 20log10H(0) = 20log10

(sz
2

)
⇒ sz = 0.0632.

Taken together, the transfer function is

H(s) =
s− 0.0632

s− 2
.

Figure S4.9-2b shows the straight-line Bode approximation (solid) and true magnitude response
(dashed). The response starts at -30 dB and, upon reaching the zero at ω = 0.0632 increases
at 20 dB/decade. At ω = 2, the gain has reach 0 dB, at which point the system pole flattens
the response and holds the passband at 0 dB.
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Solution 4.9-3

Based on the problem description, we know that the system transfer function takes the form

H(s) = K
(s− sz)

2

(s− 2)2
,
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where constant K is a gain factor and constant sz designates the location of the system zero. Since
the system is real, we know that K and sz are real. Since the system is lowpass, we know that
|sz| > 2. We make the further assumption that sz is positive (resulting in a so-called minimum-
phase system).

(a) We know the passband gain is one, or 0 dB. To achieve 40 dB of stopband attenuation requires

−40 = 20log10H(j∞) = 20log10K ⇒ K = 10−2 = 0.01.

The maximum passband gain of unity occurs at ω = 0. Thus,

H(0) = 1 = K
s2z
22

⇒ sz = 20.

Taken together, the transfer function is

H(s) = 0.01
(s− 20)2

(s− 2)2
.

Figure S4.9-3a shows the straight-line Bode approximation (solid) and true magnitude response
(dashed). Since the repeated system pole causes a -40 dB/decade drop in gain after ω = 2,
it is sensible that the desired -40 dB of attenuation is reached one decade later at ω = 20, at
which point the repeated system zero flattens the response and holds the stopband attenuation
at -40 dB.
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Figure S4.9-3a

(b) With less stopband attenuation that (a), we expect the zero to be closer to the pole than 20.
To achieve 30 dB of stopband attenuation requires

−30 = 20log10H(j∞) = 20log10K ⇒ K = 0.0316.

The maximum passband gain of unity occurs at ω = 0. Thus,

H(0) = 1 = K
s2z
22

⇒ sz = 11.2468.

Taken together, the transfer function is

H(s) = 0.0316
(s− 11.2468)2

(s− 2)2
.

Figure S4.9-3b shows the straight-line Bode approximation (solid) and true magnitude response
(dashed). As in (a), the repeated system pole causes a -40 dB/decade drop in gain after ω = 2.
The gain hits -30 dB at ω = 11.2468, at which point the repeated system zero flattens the
response and holds the stopband attenuation at -30 dB.
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Solution 4.9-4

(a) The transfer function can be expressed as

H(s) =
100

2× 20

s( s
100 + 1)

( s2 + 1)( s
20 + 1)

= 2.5
s( s

100 + 1)

( s2 + 1)( s
20 + 1)

.

The amplitude response: The zero at 0 causes a continuous 20 dB/decade gain increase, in-
tersecting 20log102.5 = 7.95 dB at ω = 1. We incorporate the additional asymptotes at 2 (-20
dB/dec.), 20 (-20 dB/dec.), and 100 (20 dB/dec.) to produce the straight-line Bode approxi-
mation shown in Fig. S4.9-4a (solid line). The true magnitude response (dashed line) can be
obtained by computer or by applying the corrections to the straight-line Bode approximation,
as described in the text. A similar procedure is followed for the phase response, which is also
shown in Fig. S4.9-4a.
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(b) The transfer function can be expressed as

H(s) =
10× 20

100

( s
10 + 1)( s

20 + 1)

s2( s
100 + 1)

= 2
( s
10 + 1)( s

20 + 1)

s2( s
100 + 1)

.

The amplitude response: The two poles at 0 causes a continuous -40 dB/decade gain decrease,
intersecting 20log102 = 6.02 dB at ω = 1. We incorporate the additional asymptotes at
ω = 10 (20 dB/dec.), 20 (20 dB/dec.), and 100 (-20 dB/dec.) to produce the straight-line
Bode approximation shown in Fig. S4.9-4b (solid line). The true magnitude response (dashed
line) can be obtained by computer or by applying the corrections to the straight-line Bode
approximation, as described in the text. A similar procedure is followed for the phase response,
which is also shown in Fig. S4.9-4b.
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Figure S4.9-4b

(c) The transfer function can be expressed as

H(s) =
10× 200

400× 1000

( s
10 + 1)( s

200 + 1)

( s
20 + 1)2( s

1000 + 1)
=

1

200

( s
10 + 1)( s

200 + 1)

( s
20 + 1)2( s

1000 + 1)
.

The amplitude response: We use a dc gain of 20log10
1

200 = −46.02 dB and then incorporate
the asymptotes at ω = 10 (20 dB/dec.), 20 (-40 dB/dec.), 200 (20 dB/dec.), and 1000 (-
20 dB/dec.) to produce the straight-line Bode approximation shown in Fig. S4.9-4c (solid
line). The true magnitude response (dashed line) can be obtained by computer or by applying
the corrections to the straight-line Bode approximation, as described in the text. A similar
procedure is followed for the phase response, which is also shown in Fig. S4.9-4c. Clearly,
the interactions between nearby poles and zeros make the straight-line Bode approximation of
phase only a rough estimate of the true phase response.
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Solution 4.9-5

(a) The transfer function can be expressed as

H(s) =
1

16

s2

( s1 + 1)( s
2

16 + s
4 + 1)

.

The amplitude response: The two zeros at 0 causes a continuous 40 dB/decade gain increase,
intersecting 20log10

1
16 = −24.08 dB at ω = 1. We incorporate the additional asymptotes at ω =

1 (-20 dB/dec.) and 4 (-40 dB/dec.) to produce the straight-line Bode approximation shown
in Fig. S4.9-5a (solid line). The true magnitude response (dashed line) can be obtained by
computer or by applying the corrections to the straight-line Bode approximation, as described
in the text. A similar procedure is followed for the phase response, which is also shown in
Fig. S4.9-5a. Error is somewhat large near ω = 4 due to the nature of the straight-line phase
approximation for complex-conjugate roots.
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(b) The transfer function can be expressed as

H(s) =
1

100

s

( s1 + 1)( s2

100 + 0.1414s+ 1)
.

The amplitude response: The zero at 0 causes a continuous 20 dB/decade gain increase,
intersecting 20log10

1
100 = −40 dB at ω = 1. We incorporate the additional asymptotes at ω = 1

(-20 dB/dec.) and 10 (-40 dB/dec.) to produce the straight-line Bode approximation shown
in Fig. S4.9-5b (solid line). The true magnitude response (dashed line) can be obtained by
computer or by applying the corrections to the straight-line Bode approximation, as described
in the text. A similar procedure is followed for the phase response, which is also shown in
Fig. S4.9-5b. Error is somewhat large near ω = 10 due to the nature of the straight-line phase
approximation for complex-conjugate roots.

(c) The transfer function can be expressed as

H(s) =
10

100

s
10 + 1

s( s2

100 + 0.1414s+ 1)
.

The amplitude response: The pole at 0 causes a continuous -20 dB/decade gain decrease,
intersecting 20log10

1
10 = −20 dB at ω = 1. We incorporate the additional asymptotes at ω = 10

(20 dB/dec.) and 10 (-40 dB/dec.) to produce the straight-line Bode approximation shown
in Fig. S4.9-5c (solid line). The true magnitude response (dashed line) can be obtained by
computer or by applying the corrections to the straight-line Bode approximation, as described
in the text. A similar procedure is followed for the phase response, which is also shown in
Fig. S4.9-5c. Error is somewhat large near ω = 10 due to the nature of the straight-line phase
approximation for complex-conjugate roots.
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Solution 4.9-6

To rise at 20 dB per decade, a zero must be present before ω = 0.1. At ω = 30, the magnitude
response begins to fall at -20 dB per decade. This requires two poles at that frequency: one pole to
counteract the previous zero and another pole to cause the -20 dB per decade slope. The magnitude
response levels out at ω = 500, which requires the action of a zero. Thus, a second order system
should be sufficient.

H(s) = k
s(s+ 500)

(s+ 30)2
.

To determine the constant k, notice that 20 log(|H(j1)|) = 10 or |H(j1)| =
√
10 ≈ k 1

50030
2 = k 5

9 .

Thus, k = 9
√
10
4 should work well. Combining yields

H(s) =
9
√
10

5

s(s+ 500)

(s+ 30)2
.

MATLAB is used to verify the result (solid).

>> H = @(s) 9*sqrt(10)/5*s.*(s+500)./((s+30).^2);

>> w = logspace(-1,4,10001); semilogx(w,20*log10(abs(H(1j*w))),’k-’);

>> grid on; axis([.1 1e4 -10 40]);

>> xlabel(’\omega’); ylabel(’20log_{10} |H(j\omega)| [dB]’);

The resulting plot of Fig. S4.9-6, with a straight-line Bode approximation (dashed) added for clarity,
closely matches the original plot of Fig. P4.9-6, thereby confirming H(s).
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Solution 4.9-7

(a) Call the voltage across the first capacitor vC1(t). KCL thus yields x(t) = C1v̇C1(t)+C2v̇C2(t) =
C1v̇C1(t) + C2ẏ(t). In the transform domain, this becomes X(s) = C1sVC1(s) + C2sY (s) or

VC1(s) = X(s)−C2sY (s)
C1s

. KVL yields y(t) = RC1v̇C1(t) + vC1(t). In the transform domain,

this becomes Y (S) = VC1(s) (1 +RC1s) or VC1(s) =
Y (s)

1+RC1s
. Combining the KCL and KVL

equations yields X(s)−C2sY (s)
C1s

= Y (s)
1+RC1s

. Simplifying yields Y (s)
(
RC1C2s

2 + C1s+ C2s
)
=

X(s) (RC1s+ 1). Thus,

H(s) =
Y (s)

X(s)
=

RC1s+ 1

RC1C2s2 + (C1 + C2)s
.
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(b) Notice, H(s) has two poles, one at zero and another at a negative, real number. It also has
two zeros, one at infinity and another at a negative, real number. Only plots B and D show
evidence of a finite zero as well as a finite pole. Of these, only plot B can have the necessary
pole at zero. Thus,

Plot B is the only plot consistent with the system.

(c) At low frequencies, H(jω) ≈ 1
(C1+C2)jω

. Thus, R doesn’t affect |H(jω) at very low frequencies.

(d) At high frequencies, H(jω) ≈ RC−1jω
−RC−1C2ω2 = −j

C2ω
. Thus, R doesn’t affect |H(jω) at very high

frequencies.

Solution 4.10-1

(a) Using the graphical method of Sec. 4.10.1, we compute the magnitude response |H(jω)| for ω
= 0, 2, 4, and 10.

|H(j0)| = 2
4(4)√
5
√
5
=

32

5
= 6.4

|H(j2)| = 2
2(6)

1
√
17

=
24

4.1
= 5.8

|H(j4)| = 0

|H(j10)| = 2
6(14)

8(12)
=

7

4
= 1.75

Since the system is real, |H(jω)| = |H(−jω)|. Using these calculations, Fig. S4.10-1 shows the
magnitude response |H(jω)| over −10 ≤ ω ≤ 10.

(b) Using the graphical method of Sec. 4.10.1, we compute the phase response ∠H(jω) for ω = 0,
2, 4, and 10.

∠H(j0) = 0 + (90◦ − 90◦)−
(
tan−1(2)− tan−1(2)

)
= 0◦

∠H(j2) = 0 + (90◦ − 90◦)−
(
tan−1(0) + tan−1(4)

)
= −76◦

∠H(j4−) = 0 + (90◦ − 90◦)−
(
tan−1(2) + tan−1(6)

)
= −143.9◦

∠H(j4+) = 0 + (90◦ + 90◦)−
(
tan−1(2) + tan−1(6)

)
= 36.1◦

∠H(j10) = 0 + (90◦ + 90◦)−
(
tan−1(8) + tan−1(12)

)
= 11.9◦

Since the system is real, ∠H(jω) = −∠H(−jω). Using these calculations, Fig. S4.10-1 shows
the phase response ∠H(jω) over −10 ≤ ω ≤ 10.

(c) The input x(t) = −1+2 cos(2t)−3 sin(4t+π/3)+4 cos(10t) is comprised of frequencies ω = 0,
2, 4, and 10. Using |H(jω)| and ∠H(jω) from parts (a) and (b), the output is

y(t) = −6.4 + 11.6 cos(2t− 76◦) + 7 cos(10t+ 11.9◦).
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Figure S4.10-1

Solution 4.10-2

(a) With zeros at ±j4, we know that, within constant k, the numerator of H(s) is

(s+ j4)(s− j4) = s2 + 16 = s2 + b1s+ b2.

With zeros at −1± j3, we know that the denominator of H(s) is

(s+ 1 + j3)(s+ 1− j3) = s2 + 2s+ 10 = s2 + a1s+ a2.

Since H(j0) = −2 = k b2
a2

= k 16
10 , we know that k = − 20

16 = − 5
4 . Thus,

k = − 5
4 , b1 = 0, b2 = 16, a1 = 2, and a2 = 10.

(b) Using the graphical method of Sec. 4.10.1, we compute the magnitude response |H(jω)| for ω
= 0, 3, 4, and 10.

|H(j0)| = | − 2| = 2

|H(j3)| = 5

4

1(7)

1
√
37

= 1.44

|H(j4)| = 0

|H(j10)| = 5

4

14(6)√
50
√
170

= 1.14

|H(j∞)| = 5

4
= 1.25

Since the system is real, |H(jω)| = |H(−jω)|. We use MATLAB to plot these points as well
as |H(jω)| over −10 ≤ ω ≤ 10 (see Fig. S4.10-2).

>> H = @(s) -5/4*(s.^2+16)./(s.^2+2*s+10);

>> Xm = 10; w = linspace(-Xm,Xm,1000);

>> subplot(121); plot(w,abs(H(1j*w)),’k-’,...

>> [-10 -4 -3 0 3 4 10],[1.14 0 1.44 2 1.44 0 1.14],’k.’);

>> xlabel(’\omega’); ylabel(’|H(j\omega)|’); axis([-Xm Xm 0 2.5]); grid
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(c) Using the graphical method of Sec. 4.10.1, we compute the phase response ∠H(jω) for ω = 0,
3, 4, and 10.

∠H(j0) = ±180 + (90◦ − 90◦)−
(
tan−1(3)− tan−1(3)

)
= ±180◦

∠H(j3) = ±180 + (90◦ − 90◦)−
(
0 + tan−1(6)

)
= 99.5◦

∠H(j4−) = ±180 + (90◦ − 90◦)−
(
tan−1(1) + tan−1(7)

)
= 53.1◦

∠H(j4+) = ±180 + (90◦ + 90◦)−
(
tan−1(1) + tan−1(7)

)
= −126.9◦

∠H(j10) = ±180 + (90◦ + 90◦)−
(
tan−1(7) + tan−1(13)

)
= −167.5◦

Since the system is real, ∠H(jω) = −∠H(−jω). We use MATLAB to plot these points as well
as ∠H(jω) over −10 ≤ ω ≤ 10 (see Fig. S4.10-2).

>> H = @(s) -5/4*(s.^2+16)./(s.^2+2*s+10);

>> Xm = 10; w = linspace(-Xm,Xm,1000);

>> P = angle(H(1j*w))*180/pi

>> subplot(122); plot(w,P,’k-’,[-10 -4 -4 -3 0 0 3 4 4 10],...

>> [167.5 126.9 -53.1 -99.5 -180 180 99.5 53.1 -126.9 -167.5],’k.’);

>> xlabel(’\omega’); ylabel(’\angle H(j\omega) [deg]’);

>> axis([-10 10 -190 190]); grid

(d) The input x(t) = −3 + cos(3t+π/3)− sin(4t−π/8) is comprised of frequencies ω = 0, 3, and
4. Using |H(jω)| and ∠H(jω) from parts (a) and (b), the output is

y(t) = 6 + 1.44 cos(3t+ 159.5◦).
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Figure S4.10-2

Solution 4.10-3

We plot the poles −1±j7 and 1±j7 in the s-plane. To find response at some frequency ω, we connect
all the poles and zeros to the point jω (see Fig. S4.10-3). Note that the product of the distances
from the zeros is equal to the product of the distances from the poles for all values of ω. Therefore
|H(jω)| = 1. Graphical argument shows that ∠H(jω) (sum of the angles from the zeros − sum of
the angles from poles) starts at zero for ω = 0 and then reduces continuously (becomes negative)
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as ω increases, with fastest rate of decrease near ω = 7. As ω → ∞, ∠H(ω) → −2π. Because
the system is real, magnitude and phase responses have even and odd symmetry, respectively.
Figure S4.10-3 shows rough sketches and accurate plots of the magnitude and phase responses.
Clearly, this is an allpass filter.
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Figure S4.10-3

Solution 4.10-4

In this problem, the transfer function takes the general form H(s) = k s−z
s−p , where z designates the

location of the system zero, p designates the location of the system pole, and k is a gain term.
For simplicity and because it is unspecified in the problem, we take k = 1. Magnitude and phase
response sketches are easily adjusted for cases when k 6= 1.

(a) If r and d are the distances of the zero and pole, respectively, from jω, then the amplitude
response |H(jω)| is the ratio r/d. This ratio is 0.5 for ω = 0. Therefore, the dc gain is 0.5.
The ratio r/d = 1 for ω = ∞. Thus, the gain is unity at ω = ∞. Also, the angles of the line
segments connecting the zero and pole to the point jω are both zero for ω = 0, and are both
π/2 for ω = ∞. Therefore, ∠H(jω) = 0 at ω = 0 and ω = ∞. In between, the angle is positive
as shown in Fig. S4.10-4a.

(b) In this case the ratio r/d is 2 for ω = 0. Therefore, the dc gain is 2. Also the ratio r/d = 1
for ω = ∞. Thus, the gain is unity at ω = ∞. The angles of the line segments connecting the
zero and pole to the point jω are both zero for ω = 0, and are both π/2 for ω = ∞. Therefore,
∠H(jω) = 0 at ω = 0 and ω = ∞. In between, the angle is negative as shown in Fig. S4.10-4b.
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Solution 4.10-5

(a) Using the graphical method of Sec. 4.10.1, we compute the magnitude response |H(jω)| for ω
= 0, 1, 3, 10, 100, and ∞.

|H(j0)| = 3(3)

3
√
5
√
5
=

3

5
= 0.6

|H(j1)| = 2(4)

3(2)
√
8
=

√
2

3
= 0.4714

|H(j3)| = 0

|H(j10)| = 7(13)

3
√
85
√
125

= 0.2943

|H(j100)| = 97(103)

3
√
9805

√
10205

= 0.3329

|H(j∞)| = 1

3
= 0.3333

Since the system is real, |H(jω)| = |H(−jω)|. Using these calculations, Fig. S4.10-5 shows the
magnitude response |H(jω)| over −10 ≤ ω ≤ 10.

(b) The input x(t) = cos(t) + sin(3t+ π/3) + cos(100t) is comprised of frequencies ω = 1, 3, and
100. We calculate the phase response at ω = 1 and ω = 100 as

∠H(j) = −45◦ and ∠H(100j) = 2.29◦.

Using these values and |H(jω)| from part (a), the output to x(t) is

y(t) = 0.4714 cos(t− 45◦) + 0.3329 cos(100t+ 2.29◦).

(c) The pole/zero plot of H2(s) = H(−s) is shown in Fig. S4.10-5. Compared with system H(s),
system H(−s) has the same zeros but the poles are swapped from the left half-plane to the
right half-plane. Since H2(s) is a causal system with right half-plane poles, it is asymptotically
unstable, and frequency response has no meaning. Thus, the output y2(t) of system H2(s) in
response to x(t) is unstable (∞, grows without bound) and can’t be determined.
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Solution 4.10-6

The poles are at −a± j10. Moreover zero gain at ω = 0 and ω = ∞ requires that there be a single
zero at s = 0. This clearly causes the gain to be zero at ω = 0. Also because there is one excess
pole over zero, the gain for large values of ω is 1/ω, which approaches 0 as ω → ∞. Therefore, the
suitable transfer function is

H(s) =
s

(s+ a+ j10)(s+ a− j10)
=

s

s2 + 2as+ (100 + a2)
.

The amplitude response is high in the vicinity of ω = 10 provided a is small. Smaller the a, more
pronounced the gain in the vicinity of ω = 10. For a = 0, the gain at ω = 10 is ∞.

Solution 4.10-7

Cynthia is correct. Although the system is all-pass and has |H(jω)| = 1, the phase response is not
zero. Thus, the output generally has different phase than the input. Furthermore, the output can
also include transient components that would not be present in the original input.

Solution 4.10-8

Both Amy and Jeff are correct. By definition, a zero is any value s that forces H(s) = 0 and a pole
is any value s that forces H(s) = ∞. Thus, the system H(s) = s = 1

s−1 has both a zero at s = 0
and a pole at s = ∞. Remember, a rational system function always has the same number of poles
and zeros; if H(s) = s has an obvious zero at s = 0 there must be a matching pole somewhere, even
if it is not finite. By similar argument, the system H(s) = 1

s has a pole at s = 0 and a zero at s = ∞.

Solution 4.10-9

At high frequencies, the highest powers of s dominate both the numerator and denominator of

H(s). That is, lims→∞ H(s) = lims→∞
b0s

M

sN .
Lowpass and bandpass filters both require lims→∞ H(s) = 0, which ensures a response of zero at

high frequencies. Only H(s) that are strictly proper (M < N) yield the required lims→∞ H(s) = 0.
Highpass and bandstop filters both require lims→∞ H(s) = k, where k is some finite, non-zero

constant. Only H(s) that are proper (M = N) yield the required lims→∞ H(s) = b0 = k.
The case M > N is not considered, since such systems are not physically practical.

Solution 4.10-10

At high frequencies, the highest powers of s dominate both the numerator and denominator of

H(s). That is, lims→∞ H(s) = lims→∞
b0s

M

sN . Thus, the log magnitude response at high frequencies
is given by limω→∞ log |H(jω)| = log(b0) + M log(ω) − N log(ω). The fastest attenuation as a
function of frequency requires M to be as small as possible. Thus, for a given N , the attenuation
rate of an all-pole lowpass filter (M = 0) is faster than the attenuation rate of any filter with a
finite number of zeros (M 6= 0).

Solution 4.10-11

No, it is not possible for such a system to function as a lowpass filter. For any choice of

([k, b1, b2, a1, a2] ∈ R), the system function H(s) = k s2+b1s+b2
s2+a1s+a2

is proper. Thus, the system function
always has high-frequency gain of k. For k 6= 0, the system cannot be lowpass. Furthermore, for
k = 0 the system becomes a useless “nopass filter” (again, not lowpass).

Solution 4.10-12

Nick is more correct than his professor. A cascade of two identical filters, each with system response
H(jω), gives a total response of H2(jω). Since realizable filters, such as Butterworth filters, are
not ideal, the cascade system will tend to have a faster transition band and greater stopband
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attenuation. In a sense, the resulting fourth-order system really does provide “twice the filtering”
of the original second-order system.

Unfortunately, there are also problems with Nick’s approach. Simply cascading a designed
lowpass filter twice has negative consequences. For example, the cutoff frequency shifts to a
lower frequency than desired. As the cascaded RC example in Sec. 4.12 suggests, a cascade of
low-order filters is inferior to a carefully designed, equivalent-order filter. In general, a fourth-order
Butterworth filter performs better than a cascade of two second-order Butterworth filters.

Solution 4.10-13

(a) Using tables,

H(s) =
1

s
− 1

s
e−s = e−s/2 es/2 − e−s/2

s
.

Substituting s = jω yields the frequency response

H(jω) = e−jω/2 ejω/2 − e−jω/2

jω
= e−jω/2 sin(ω/2)

ω/2
= e−jω/2 sinc

(ω
2

)
.

The sinc type of frequency response (with a linear phase shift of −ω/2) represents a lowpass
system.

(b) Since h(t) is finite duration, the system has no finite poles. There are, however, an infinite
number of finite zeros for sinc(ω/2) at ω = 2πk or s = j2πk, where k is any non-zero integer.

(c) In transform-domain, the inverse system is given by the reciprocal of Hc(s). Thus,

H−1
c (s) =

1

Hc(s)
= es/2

s
j2

sin
(

s
j2

) .

The inverse system has no finite zeros and an infinite number of finite poles. Since poles lie
on the ω-axis, the inverse system cannot be asymptotically stable.
The same approach does not work in the time-domain. That is, h−1

c (t) 6= 1
h(t) . The impulse

response needs to be obtained from an inverse Laplace transform of H−1
c (s). Unfortunately, it

is difficult to take the inverse Laplace transform of H−1
c (s); no closed form solution for h−1

c (t)
is known to exist.
It is possible to approximate h−1

c (t). Consider the following idea. Replace the denominator

sin
(

s
j2

)
with a truncated Taylor series expansion. The result is a rational approximation to

H−1
c (s) that can be inverted using partial fraction expansion techniques. Although not perfect,

the result can perform reasonably for many low-frequency inputs.

Solution 4.10-14

No, the suggested lowpass to highpass transformation HHP(s) = 1 − HLP(s) does not
work in general. Although it is possible to relate the ideal magnitude responses according
to |HHP(jω)| = 1 − |HLP(jω)|, the phase information contained in H(s) generally makes
HHP(s) 6= 1−HLP(s).

As an example, consider an ideal lowpass filter described by

HLP(jω) =

{
−1 |ω| ≤ ωc

0 |ω| > ωc
.

The transformation 1−HLP(s) is clearly not highpass.

1−HLP(s) =

{
2 |ω| ≤ ωc

1 |ω| > ωc
.
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Solution 4.10-15

(a) Yes, it is possible for the system to output y(t) = sin(100πt)u(t) in response to x(t) =
cos(100πt)u(t). Noting Y (s) = 100π

s2+(100π)2 and X(s) = s
s2+(100π)2 , one way to obtain y(t)

from x(t) is using the system H(s) = Y (s)/X(s) = 100π
s2+(100π)2

s2+(100π)2

s = 100π
s .

(b) Yes, it is possible for the system to output y(t) = sin(100πt)u(t) in response to x(t) =
sin(50πt)u(t). Noting Y (s) = 100π

s2+(100π)2 and X(s) = s
s2+(50π)2 , one way to obtain y(t) from

x(t) is using the system H(s) = Y (s)/X(s) = 100π
s2+(100π)2

s2+(50π)2

s =
100π(s2+(50π)2)
s(s2+(100π)2) .

(c) Yes, it is possible for the system to output y(t) = sin(100πt) in response to x(t) = cos(100πt).
To do this, the system must have H(j100π) = e−jπ/2. That is, the magnitude response at
ω = 100π must be unity, and the phase response at ω = 100π must be −π/2.

(d) No, it is not possible for the system to output y(t) = sin(100πt) in response to x(t) = sin(50πt).
In an LTI system, an everlasting sinusoidal input of frequency 50π cannot produce a different
frequency output.

Solution 4.11-1

(a) Let x1(t) = x(t)u(t) = etu(t) and x2(t) = x(t)u(−t) = u(−t). Then X1(s) has a region of
convergence Re(s) > 1. And X2(s) has a region Re(s) < 0. Hence, there is no common region
of convergence for X(s) = X1(s) +X2(s).

(b) x1(t) = e−tu(t), and X1(s) = 1
s+1 converges for Re(s) > −1. Also, x2(t) = u(−t), and

X2(s) = − 1
s converges for Re(s) < 0. Therefore, the region of convergence is the strip

−1 < Re(s) < 0

(c)

1
t2+1e

−st → 0
} as t → ∞ if Re(s) ≥ 0

as t → −∞ if Re(s) ≤ 0
.

Thus, convergence occurs at Re(s) = 0 (ω-axis)

(d)

x(t) =
1

1 + et

1
1+et e

−st → 0
} as t → ∞ if Re(s) > −1

as t → −∞ if Re(s) < 0
.

Hence the region of convergence is −1 < Re(s) < 0.

(e)

x(t) = e−kt2

e−kt2e−st → 0
}

as t → ∞ for any value of s
as t → −∞ for any value of s

Hence the region of convergence is the entire s-plane.
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Solution 4.11-2

(a)

Xa(s) =

∫ ∞

−∞
e(−1−j)tu(1− t)e−st dt =

∫ 1

−∞
et(−s−1−j) dt

=
et(−s−1−j)

−s− 1− j

∣∣∣∣
1

−∞

For −Re(s)− 1 > 0, Xa(s) converges as

Xa(s) =
e−s−1−j

−s− 1− j
, ROC: Re(s) < −1.

(b)

Xb(s) =

∫ ∞

−∞
ej(t+1)π/2u(−t− 1)e−st dt = ejπ/2

∫ −1

−∞
et(−s+jπ/2) dt

= ejπ/2
et(−s+jπ/2)

−s+ j π
2

∣∣∣∣
−1

−∞

For Re(s) < 0, Xb(s) converges as

Xb(s) =
−es

s− j π
2

, ROC: Re(s) < 0.

(c)

Xc(s) =

∫ ∞

−∞
ejπ/3u(2− t)e−st dt+

∫ ∞

−∞
jδ(t− 5)e−st dt = ejπ/3

∫ 2

−∞
e−st dt+ je−5s

= ejπ/3
e−st

−s

∣∣∣∣
2

−∞
+ je−5s

For Re(s) < 0, Xc(s) converges as

Xc(s) = −ejπ/2e−2s 1

s
+ je−5s, ROC: Re(s) < 0.

(d) Here we note that xd(t) = 1 + 1 = 2 = 2u(t) + 2u(−t). The bilateral Laplace transform of
2u(t) is 2

s with ROC Re(s) > 0. The bilaterial Lapalce transform of 2u(−t) is − 2
s with ROC

Re(s) < 0. Since the two ROCs do not overlap,

the bilateral Laplace transform of xd(t) = 2 does not exist.

(e)

Xe(s) =

∫ ∞

−∞
3u(−t)e−st dt+

∫ ∞

−∞
e−2t[u(t)− u(t− 10)]e−st dt

=

∫ 0

−∞
3e−st dt+

∫ 10

0

e−t(s+2) dt

=
3e−st

−s

∣∣∣∣
0

−∞
+

e−t(s+2)

−(s+ 2)

∣∣∣∣
10

0
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For Re(s) < 0, Xe(s) converges as

Xe(s) =
1− e−20−10s

s+ 2
− 3

s
, ROC: Re(s) < 0.

(f) To begin, let us express xf(t) as

xf(t) = et−2u(1− t)︸ ︷︷ ︸
x1(t)

+ e−2tu(t+ 1)︸ ︷︷ ︸
x2(t)

.

Due to linearity, the Laplace transform of xf(t) is just the sum of the Laplace transform of
x1(t) and x2(t) (assuming there is a common ROC). Now, for x1(t), we see that

X1(s) =

∫ 1

−∞
et−2e−st dt = e−2

∫ 1

−∞
et(1−s) dt = e−2 e

t(1−s)

1− s

∣∣∣∣
1

−∞
= e−2 e

1−s

1− s
, ROC: Re(s) < 1.

For x2(t), we see that

X2(s) =

∫ ∞

−1

e−2te−st dt =

∫ ∞

−1

e−t(s+2) dt =
e−t(s+2)

−(s+ 2)

∣∣∣∣
∞

−1

= − es+2

−(s+ 2)
, ROC: Re(s) > −2.

Combining these results, we see that

Xf(s) = X1(s) +X2(s) =
e−s−1

−s+ 1
+

es+2

s+ 2
, ROC: −2 < Re(s) < 1.

Solution 4.11-3

From Table 4.1, we know that

e−tu(t) ⇒ 1

s+ 1
, ROC: Re(s) > −1

cos(2t)u(t) ⇒ s

s2 + 4
, ROC: Re(s) > 0

Using the time-reversal and frequency differentiation properties of the bilateral Laplace transform,
we see that

etu(−t) ⇒ −1

s− 1
, ROC: Re(s) < 1

t cos(2t)u(t) ⇒ − d

ds

(
s

s2 + 4

)
= −

(
1

s2 + 4
− s(2s)

(s2 + 4)2

)
= −s2 + 4− 2s2

(s2 + 4)2
, ROC: Re(s) > 0

Using the time-convolution property, we see that

X(s) =

(
− 1

s− 1

)(
− −s2 + 4

s4 + 8s2 + 16

)
,ROC: 0 < Re(s) < 1.

Simplifying, we obtain

X(s) = − −s2 + 4

s5 − s4 + 8s3 − 8s2 + 16s− 16
,ROC: 0 < Re(s) < 1.

Solution 4.11-4

The roots of X(s) are 2 and 3, corresponding to modes e2t and e3t. There are three possible ROC
options for X(s): Re(s) < 2, 2 < Re(s) < 3, and Re(s) > 3. Only ROC Re(s) < 2 ensures that
both modes are decaying and bounded. Thus,

the ROC Re(s) < 2 results in the smallest maximum amplitude of x(t).
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Solution 4.11-5

(a)
x(t) = e−|t| = e−tu(t) + etu(−t) = x1(t) + x2(t)

X1(s) =
1

s+ 1
Re(s) > −1

x2(−t) = e−tu(t) and X2(−s) =
1

s+ 1

and X2(s) =
1

−s+ 1
Re(s) < 1

Hence, X(s) = X1(s) +X2(s) =
1

s+ 1
+

1

−s+ 1
=

−2

s2 − 1
− 1 < Re(s) < 1

(b)
x(t) = e−|t| cos t = e−t cos t u(t) + et cos t u(−t) = x1(t) + x2(t)

Hence, X1(s) =
s+ 1

(s+ 1)2 + 1
and X2(−s) =

s+ 1

(s+ 1)2 + 1
Re(s) < 1

X(s) = X1(s) +X2(s) =
s+ 1

(s+ 1)2 + 1
− s− 1

(s− 1)2 + 1
=

4− 2s2

s4 − 4
− 1 < Re(s) < 1

(c)

x(t) = etu(t) + e2tu(−t); X1(s) =
1

s− 1
Re(s) > 1 and X2(−s) =

1

s+ 2

X2(s) =
1

−s+ 2
Re(s) < 2.

Hence, X(s) = X1(s) +X2(s) =
−1

(s− 1)(s− 2)
1 < Re(s) < 2

(d)

x(t) = e−tu(t) =

{
e−t for t > 0
1 for t < 0

x1(t) = e−tu(t), x2(t) = u(−t). Hence, X1(s) =
1

s+ 1
Re(s) > −1

and X2(−s) =
1

s
, X2(s) =

−1

s
Re(s) < 0

and hence: X(s) =
1

s+ 1
− 1

s
=

−1

s(s+ 1)
− 1 < Re(s) < 0

(e)

x(t) = etu(−t) =

{
x1(t) = 1 for t > 0
x2(t) = et for t < 0

X1(s) =
1

s
Re(s) > 0

X2(−s) =
1

s+ 1
X2(s) =

1

−s+ 1
Re(s) < 1

and hence: X(s) =
1

s
− 1

s− 1
=

−1

s(s− 1)
0 < Re(s) < 1
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(f)
x(t) = cosω0t u(t) + etu(−t) = x1(t) + x2(t)

X1(s) =
s

s2 + ω2
0

Re(s) > 0

and X2(−s) =
1

s+ 1
, X2(s) =

1

1− s
Re(s) < 1

X(s) = X1(s) +X2(s) =
−(s+ ω2

0)

(s− 1)(s2 + ω2
0)

0 < Re(s) < 1

Solution 4.11-6

(a)

X(s) =
2s+ 5

(s+ 2)(s+ 3)
− 3 < Re(s) < −2

=
1

s+ 2
+

1

s+ 3
− 3 < Re(s) < −2

The pole −2 lies to the right, and the pole −3 lies to the left of the region of convergence;
hence the first term represents causal and the second term represents anticausal signal:

x(t) = e−3tu(t)− e−2tu(−t)

(b)

X(s) =
2s− 5

(s− 2)(s− 3)
2 < Re(s) < 3

=
1

s− 2
+

1

s− 3
2 < Re(s) < 3

The pole at −2 lies to the left and that at 3 lies to the right of the region of convergence; hence

x(t) = e2tu(t)− e3tu(−t)

(c)

X(s) =
2s+ 3

(s+ 1)(s+ 2)
Re(s) > −1

=
1

s+ 1
+

1

s+ 2
Re(s) > −1

Both poles lie to the left of the region of convergence, and

x(t) = (e−t + e−2t)u(t)

(d)

X(s) =
2s+ 3

(s+ 1)(s+ 2)
Re(s) < −2

=
1

s+ 1
+

1

s+ 2
Re(s) < −2

Both poles lie to the right of the region of convergence. Hence,

x(t) = −(e−t + e−2t)u(−t)
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(e)

X(s) =
3s2 − 2s− 17

(s+ 1)(s+ 3)(s− 5)
− 1 < Re(s) < 5

=
1

s+ 1
+

1

s+ 3
+

1

s− 5

The poles −1 and −3 lie to the left of the region of convergence, whereas the pole 5 lies to the
right:

x(t) = (e−t + e−3t)u(t)− e5tu(−t)

Solution 4.11-7

2s2 − 2s− 6

(s+ 1)(s− 1)(s+ 2)
=

1

s+ 1
− 1

s− 1
+

2

s+ 2

(a) Re(s) > 1: All poles to the left of the region of convergence. Therefore

x(t) = (e−t − et + 2e−2t)u(t).

(b) Re(s) < −2: All poles to the right of the region of convergence. Therefore

x(t) = (−e−t + et − 2e−2t)u(−t).

(c) −1 < Re(s) < 1: Poles −1 and −2 to the left and pole 1 to the right of the region of
convergence. Therefore

x(t) = (e−t + 2e−2t)u(t) + etu(−t).

(d) −2 < Re(s) < −1: Poles −1 and 1 are to the right and pole −2 is to the left of the region of
convergence. Therefore

x(t) = 2e−2tu(t) + [−e−t + et]u(−t).

Solution 4.11-8

(a)

x(t) = e−
|t|
2 , H(s) =

1

s+ 1
Re(s) > −1

and X(s) =
1

s+ 0.5
− 1

s− 0.5
− 1

2
< Re(s) <

1

2

Hence, Y (s) = H(s)X(s) =
1

s+ 1

[
1

s+ 0.5
− 1

s− 0.5

]
− 1

2
< Re(s) <

1

2

Y (s) =
−2

s+ 1
+

2

s+ 0.5
+

2
3

s+ 1
−

2
3

s− 0.5

=
− 4

3

s+ 1
+

2

s+ 0.5
−

2
3

s− 0.5
− 1

2
< Re(s) <

1

2

The poles −1 and −0.5, which are to the left of the strip of convergence, yield the causal signal,
and the pole 0.5, which is to the right of the strip of convergence, yields the anticausal signal.
Hence,

y(t) =

(
−4

3
e−t + 2e−t/2

)
u(t) +

2

3
et/2u(−t)
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(b)
x(t) = etu(t) + e2tu(−t)

X(s) =
1

s− 1
− 1

s− 2
1 < Re(s) < 2

=
−1

(s− 1)(s− 2)

and H(s) =
1

s+ 1
Re(s) > −1

Hence, Y (s) = H(s)X(s) =
−1

(s+ 1)(s− 1)(s− 2)
1 < Re(s) < 2

Y (s) =
−1/6

s+ 1
+

1/2

s− 1
− 1/3

s− 2
1 < Re(s) < 2

Hence, y(t) =

(
−1

6
e−t +

1

2
et
)
u(t) +

1

3
e2tu(−t)

(c)
x(t) = e−t/2u(t) + e−t/4u(−t)

X(s) =
1

s+ 0.5
− 1

s+ 0.25
=

− 1
4

(s+ 0.5)(s+ 0.25)
− 1

2
< Re(s) <

1

4

Also H(s) =
1

s+ 1
Re(s) > −1

Hence, Y (s) = H(s)X(s) =
− 1

4

(s+ 1)(s+ 0.5)(s+ 0.25)
− 1

2
< Re(s) <

1

4

=
− 2

3

s+ 1
+

2

s+ 0.5
−

4
3

s+ 0.25
− 1

2
< Re(s) <

1

4

and y(t) =

(
−2

3
e−t + 2e−

t
2

)
u(t) +

4

3
e−

t
4 u(−t)

(d)
x(t) = e2tu(t) + etu(−t) = x1(t) + x2(t)

X1(s) =
1

s− 2
Re(s) > 2

X2(s) =
−1

s− 1
Re(s) < 1

and H(s) =
1

s+ 1
Re(s) > −1

In this case, there is no region of convergence that is common to X1(s) and X2(s). However,
each of X1(s) and X2(s) have a region of convergence that is common to H(s). Hence the
output can be computed by finding the system response to x1(t) and x2(t) separately, and
then adding these two components. This means we need not worry about the common region
of convergence for X1(s) and X2(s). Thus,

Y (s) = Y1(s) + Y2(s) where
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Y1(s) = X1(s)H(s) =
1

(s+ 1)(s− 2)
Re(s) > 2

=
− 1

3

s+ 1
+

1
3

s− 2
Re(s) > 2

Observe that both the poles (−1 and 2) are to the left of the region of convergence, hence both
terms are causal, and

y1(t) =

(
−1

3
e−t +

1

3
e2t
)
u(t)

Y2(s) = X2(s)H(s) =
−1

(s+ 1)(s− 1)
− 1 < Re(s) < 1

=
1
2

s+ 1
−

1
2

s− 1
− 1 < Re(s) < 1

The poles −1 and 1 are to the left and the right, respectively, of the strip of convergence.
Hence the first term yields causal signal and the second yields anticausal signal. Hence,

y2(t) = −1

2
e−tu(t) +

1

2
etu(−t)

Therefore, y(t) = y1(t) + y2(t) =

(
1

6
e−t +

1

3
e2t
)
u(t) +

1

2
etu(−t)

(e)

x(t) = e−
t
4 u(t) + e−

t
2u(−t) = x1(t) + x2(t)

X(s) = X1(s) +X2(s)

where X1(s) =
1

s+ 0.25
Re(s) > −1

4

X2(s) =
−1

s+ 0.5
Re(s) < −1

2

H(s) =
1

s+ 1
Re(s) > −1

Here also, we have no common region of convergence, for X1(s) and X2(s) as in part d. Let
Y (s) = Y1(s) + Y2(s) where

Y1(s) =
1

(s+ 1)(s+ 0.25)
Re(s) > −1

4

=
− 4

3

s+ 1
+

4
3

s+ 0.25
Re(s) > −1

4

y1(t) =

(
−4

3
e−t +

4

3
e−

t
4

)
u(t)

Y2(s) =
−1

(s+ 1)(s+ 0.5)
− 1 < Re(s) < −1

2

=
2

s+ 1
− 2

s+ 0.5
− 1 < Re(s) < −1

2

and y2(t) = 2e−tu(t) + 2e−
t
2 u(−t)

Hence, y(t) = y1(t) + y2(t) =

(
2

3
e−t +

4

3
e−

t
4

)
u(t) + 2e−

t
2u(−t)
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(f)
x(t) = e−3tu(t) + e−2tu(−t) = x1(t) + x2(t)

X(s) = X1(s) +X2(s)

where X1(s) =
1

s+ 3
Re(s) > −3

X2(s) =
−1

s+ 2
Re(s) < −2

H(s) =
1

s+ 1
Re(s) > −1

In this case, there is a common region of convergence for X1(s) and H(s), but there is no
region of convergence common to X2(s) and H(s). Hence the output y1(t) will be finite but
y2(t) will be ∞.

Solution 4.11-9

L (rxx(t)) =
∫∞
−∞ rxx(t)e

−stdt

=
∫∞
−∞

(∫∞
−∞ x(τ)x(τ + t)dτ

)
e−stdt

=
∫∞
−∞ x(τ)

(∫∞
−∞ x(τ + t)e−stdt

)
dτ

=
∫∞
−∞ x(τ)esτX(s)dτ

= X(s)
∫∞
−∞ x(τ)e−τ(−s)dτ

Rxx(s) = X(s)X(−s)

.

Solution 4.11-10

For Re(s) < 0, we know that L−1
[
2
s

]
= −2u(−t). Additionally, L−1 [1/2] = δ/2. Using properties,

L−1 [s(1/2)] = d
dt (δ(t)/2). Thus,

x(t) = −2u(−t) +
d

dt
(δ(t)/2) .

The function d
dt (δ(t)/2) is called the “unit doublet”. Like δ(t), the unit doublet is not a physically

realizable signal. It is a mathematical construction that is useful, among other things, in finding
function derivatives. Refer to the topic of generalized derivatives.

Solution 4.11-11

(a) Yes, x(t) can be left-sided. To be left-sided and absolutely integrable, the signal’s region
of convergence must: 1) be left-sided, 2) include the ω-axis, and 3) not include any poles.
With a pole at s = π, it is possible to achieve all three necessary conditions. For example,
x(t) = eπtu(−t) has a pole at s = π, is absolutely integrable, and is left-sided.

(b) No, x(t) cannot be right-sided. To be right-sided and absolutely integrable, the signal’s region
of convergence must: 1) be right-sided, 2) include the ω-axis, and 3) not include any poles.
The ω-axis cannot be included in a region of convergence that is to the right of the known
pole at s = π.

(c) Yes, x(t) can be two-sided. To be two-sided and absolutely integrable, the signal must: 1) have
at least one pole in the right-half plane, 2) have at least one pole in the left-half plane, and 3)
have a region of convergence that includes the ω-axis. With a pole at s = π, these conditions
are possible. For example, x(t) = eπtu(−t) + e−πtu(t) has a pole at s = π (and another at
s = −π), is absolutely integrable, and is two-sided.
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(d) No, x(t) cannot be finite duration. To be finite duration, the signal’s region of convergence
must include all finite values of s. However, since a pole is present at s = π, this point cannot
be included in the region of convergence. Thought of another way, a pole at s = π implies a
signal component of either eπtu(t) or eπtu(−t), both of which are infinite in duration.

Solution 4.11-12

Using properties, we establish that

1
s ⇐⇒ −u(−t) (starting fact, Re(s) < 0)

e−2s 1
s ⇐⇒ −u(−(t− 2)) = −u(−t+ 2) (time shift property)

d
ds

(
e−2s 1

s

)
⇐⇒ −t[−u(−t+ 2)] = tu(−t+ 2) (frequency differentiation property)

s
[

d
ds

(
e−2s 1

s

)]
⇐⇒ d

dt {tu(−t+ 2)} (time differentiation property)

Since d
dt {tu(−t+ 2)} = u(−t+ 2) + t[δ(−t+ 2)](−1), we conclude that

x(t) = u(−t+ 2)− 2δ(−t+ 2).

Solution 4.11-13

To begin, we note that

X(s) =
2

es
+

1

s

[
es

4
s
3 + 2

]
= 2e−s + es

[
12

s(s+ 6)

]
= 2e−s + es

[
2

s
+

−2

s+ 6

]
.

Using the time shift property and the fact that δ(t) ⇐⇒ 1, we see that

2e−s ⇐⇒ 2δ(t− 1).

Since Re(s) < 0, we see that

2

s
⇐⇒ −2u(−t) and es

2

s
⇐⇒ −2u(−(t+ 1)).

Since Re(s) > −6, we see that

−2

s+ 6
⇐⇒ −2e−6tu(t) and es

−2

s+ 6
⇐⇒ −2e−6(t+1)u(t+ 1).

Combining, we obtain

x(t) = 2δ(t− 1)− 2u(−t− 1)− 2e−6t−6u(t+ 1).

Solution 4.11-14

In this case, we see that

X(s) =
d7

ds7

[
e−4s

(s+ 2)(s+ 3)

]
=

d7

ds7

[
e−4s

(
1

s+ 2
+

−1

s+ 3

)]
.

Since Re(s) < −2, the 1
s+2 term inverts to a left-sided signal. Since Re(s) > −3, the −1

s+3 term inverts
to a right-sided signal. Combined with the time-shift and s-domain differentiation properties, we
see that

x(t) = −t7
[
−e−2(t−4)u(−(t− 4))− e−3(t−4)u(t− 4)

]

or
x(t) = t7

[
e8−2tu(4− t) + e12−3tu(t− 4)

]
.
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Solution 4.11-15

(a)

X1(s) =

∫ ∞

−∞
x1(t)e

−stdt =

∫ ∞

−∞
(j + ejt)u(t)e−stdt

=

∫ ∞

0

je−st + et(j−s)dt =

(
j

−s
e−st +

et(j−s)

j − s

)∣∣∣∣
∞

t=0

.

For Re(s) > 0, this simplifies to X1(s) =
j
−s (0 − e0) + 0−e0

j−s . Thus,

X1(s) =
j

s
+

1

s− j
for Re(s) > 0.

(b)

X2(s) =

∫ ∞

−∞
x2(t)e

−stdt =

∫ ∞

−∞
j cosh(t)u(−t)e−stdt

=

∫ 0

−∞
j
et + e−t

2
e−stdt =

∫ 0

−∞
j
et(1−s) + et(−1−s)

2
dt =

(
jet(1−s)

2(1− s)
+

jet(−1−s)

2(−1− s)

)∣∣∣∣
0

t=−∞
.

For Re(s) < −1, this simplifies to X2(s) =
j(e0−0)
2(1−s) + j(e0−0)

2(−1−s) =
−0.5j
s−1 + −0.5j

s+1 . Thus,

X2(s) =
−js

s2 − 1
for Re(s) < −1.

(c)

X3(s) =

∫ ∞

−∞
x3(t)e

−stdt =

∫ ∞

−∞

(
ej(

π
4 )u(−t+ 1) + jδ(t− 5)

)
e−stdt

=

∫ 1

−∞
ej(

π
4 )e−stdt+

∫ ∞

−∞
jδ(t− 5)e−stdt = ej(

π
4 ) e

−st

−s

∣∣∣∣
1

t=−∞
+ je−5s.

For Re(s) < 0, this simplifies to X3(s) = ej(
π
4 ) e−s−0

−s + je−5s. Thus,

X3(s) = −ej(
π
4 ) e

−s

s
+ je−5s for Re(s) < 0.

(d)

X4(s) =

∫ ∞

−∞
x4(t)e

−stdt =

∫ ∞

−∞

(
jtu(−t) + δ(t− π)

)
e−stdt

=

∫ 0

−∞
etjπ/2e−stdt+

∫ ∞

−∞
δ(t− π)e−stdt =

et(jπ/2−s)

jπ/2− s

∣∣∣∣
0

t=−∞
+ je−sπ.

For Re(s) < 0, this simplifies to X4(s) =
1−0

jπ/2−s + e−sπ. Thus,

X4(s) = e−sπ − 1

s− jπ/2
for Re(s) < 0.
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Solution 4.11-16

(a) To be bounded amplitude, the region of convergence must include the ω-axis. The transfer
function has two poles, at s = ±1, that must be excluded from the region of convergence.
Thus, the region of convergence must be

−1 < Re(s) < 1.

(b) Rewrite H(s) as 2s s
(s−1)(s+1) = eln(s)

(
0.5
s−1 + 0.5

s+1

)
. Using −1 < Re(s) < 1, the time-shifting

property, and a table of Laplace transform pairs, the inverse transform is found to be

h(t) = 0.5e−(t+ln(2))u(t+ ln(2))− 0.5et+ln(2)u(−(t+ ln(2))).

Solution 4.12-1

Using program CH4MP3:

>> CH4MP3(20)

ans = 524288 0 -2621440 0 5570560 0

-6553600 0 4659200 0 -2050048 0

549120 0 -84480 0 6600 0

-200 0 1

Thus,

C20(x) = 524288x20 − 2621440x18 + 5570560x16 − 6553600x14 + 4659200x12+
−2050048x10 + 549120x8 − 84480x6 + 6600x4 − 200x2 + 1

Solution 4.12-2

(a), (b) MATLAB makes it easy to compute magnitude and phase response plots, as well as high-
light behavior at the frequencies of interest ω = [−2, 0, 2].

>> H = @(s) 1./(s.^3+4*s.^2+8*s+8);

>> Xm = 10; w = linspace(-Xm,Xm,1000); wpts = [-2 0 2];

>> subplot(121); plot(w,abs(H(j*w)),’k-’,...

>> wpts,abs(H(j*wpts)),’k.’);

>> xlabel(’\omega’); ylabel(’|H(j\omega)|’); axis([-Xm Xm 0 1/7]); grid

>> set(gca,’ytick’,unique([0,abs(H(1j*wpts))]),’xtick’,[-Xm wpts Xm]);

>> P = angle(H(j*w))*180/pi;

>> subplot(122); plot(w,P,’k-’,wpts,angle(H(1j*wpts))*180/pi,’k.’);

>> xlabel(’\omega’); ylabel(’\angle H(j\omega) [deg]’);

>> axis([-Xm Xm -190 190]); grid

>> set(gca,’ytick’,unique([-180,0,180,angle(H(1j*wpts))*180/pi]),...

>> ’xtick’,[-Xm wpts Xm]);

Figures S4.12-2a and S4.12-2b show the resulting magnitude and phase response plots.

(c) The input x(t) = 2 − sin(2t + π/3) is comprised of frequencies ω = [−2, 0, 2]. Using |H(jω)|
and ∠H(jω) from parts (a) and (b), the output is

y(t) = 2 (0.125)− 0.0884 sin(2t+ π/3− 3π/4).

The maximum value of this output signal is

ymax = 0.25 + 0.0884 = 0.3384.
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ω
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ω
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-180

-135
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135

180

 H
(j
ω

) 
[d

eg
]

Figures S4.12-2a and S4.12-2b

(d) The transfer function of this system is

H(s) =
1

(s2 + 2s+ 4)(s+ 2)
=

0.25

s+ 2
+

−.25s

s2 + 2s+ 4
.

A corresponding parallel representation of the system using real DFI structures is shown in
Fig. S4.12-2d.

x(t)

∫

1

4

Σ

∫

−2

∫

−
1

4

Σ

∫

Σ
−2

∫

−4

Σ
y(t)

Figure S4.12-2d

Solution 4.12-3

(a) By observation and following signal paths, we see that

Y (s) =(−1)

(
− 2

RC2s

)
(−Y (s)) + (−1)

(
− 10

RC2s

)
X(s)+

(−1)

(
− 1

RC2s

)(
− 1

RC1s

)
X(s) + (−1)

(
− 1

RC2s

)(
− 26

RC1s

)
Y (s).

Rearranging, we obtain

(
1 +

2

RC2s
+

26

RC1RC2s2

)
Y (s) =

(
10

RC2s
− 1

RC1RC2s2

)
X(s).
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or (
s2 +

2

RC2
s+

26

RC1RC2

)
Y (s) =

(
10

RC2
s− 1

RC1RC2

)
X(s).

Thus, the transfer function is

H(s) =
Y (s)

X(s)
=

10
RC2

s− 1
RC1RC2

s2 + 2
RC2

s+ 26
RC1RC2

.

For RC perfectly equal to unity, we obtain

H(s) =
10s− 1

s2 + 2s+ 26
.

(b) Next, we use MATLAB to accurately plot |H(jω)| over −10 ≤ ω ≤ 10.

>> H = @(s,RC1,RC2) (10*s/RC2-1/(RC1*RC2))./(s.^2+2/RC2*s+26/(RC1*RC2));

>> wMx = 10; dw = .005; w = -wMx:dw:wMx; Hm = abs(H(1j*w,1,1));

>> plot(w,Hm,’k-’); xlabel(’\omega’); ylabel(’|H(j\omega)|’);

>> set(gca,’ytick’,[0 abs(H(10j,1,1)) 5],’xtick’,[-wMx:2*wMx/4:wMx]);

>> grid on; axis([-wMx wMx 0 5.5]);

Figures S4.12-3 shows the resulting magnitude response plot.

-10 -5 0 5 10

ω

0

1.3046

5

|H
(j
ω

)|

Figure S4.12-3

(c) To determine the response to x(t) = cos(10t)− 1, we compute the appropriate magnitude and
phase values.

>> w = [0 10]; Hm = abs(H(1j*w,1,1))

Hm = 0.0385 1.3046

>> Ha = angle(H(1j*w,1,1))

Ha = 3.1416 -1.2968

Thus, the output is

y(t) = 1.3046 cos(10t− 1.2968)− 0.0385ej3.1416 = 1.3046 cos(10t− 1.2968) + 0.0385.

(d) We can place the 10% capacitor first (and the 25% capacitor second) or we can place the
25% capacitor first (and the 10% capacitor second). To determine which order is best, we
run many (N = 104) MATLAB simulations for each case and see which, on average, provides
lower mean squared error (MSE) in |H(jω)| over a suitable frequency range (0 ≤ ω ≤ 50) that
should comfortably contain the system passband. To simulate a 10% tolerance component, we
add a normal random number with a standard deviation of 0.1/2 = 0.05 to the nominal unity
value; this produces a component that is 1 ± 0.1 roughly 95% of the time. A 25% tolerance
component is obtained in the same way but using a standard deviation of 0.25/2 = 0.125.
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>> wMx = 50; dw = .005; w = 0:dw:wMx; Hm = abs(H(1j*w,1,1));

>> Ntrials = 10^4; rng(0); E10First = 0; E25First = 0;

>> for trial = 1:Ntrials;

>> RC10 = 1+randn(1)*(.1/2); RC25 = 1+randn(1)*(.25/2);

>> E10First(trial) = sum((Hm-abs(H(1j*w,RC10,RC25))).^2);

>> E25First(trial) = sum((Hm-abs(H(1j*w,RC25,RC10))).^2);

>> end

>> sum(E10First)/sum(E25First)

ans = 1.2802

From this simulation, we see that putting the 10% capacitor first produces nearly 30% greater
MSE than putting the 25% capacitor first. Thus, to preserve the desired |H(jω)|

it is best to place the 25% capacitor first and the 10% capacitor second.

Solution 4.12-4

(a) MATLAB is used for the design. To evaluate filter performance, the magnitude response is
plotted over the frequency range (0 ≤ f ≤ 10kHz).

>> N = 12; omega_c = 2*pi*5000;

>> poles = roots([(j*omega_c)^(-2*N),zeros(1,2*N-1),1]);

>> B_poles = poles(find(real(poles)<0));

>> subplot(1,3,1), plot(real(B_poles),imag(B_poles),’xk’);

>> xlabel(’Real’); ylabel(’Imag’);

>> axis([-4e4 0 -4e4 4e4]); axis equal;

>> A = poly(B_poles); A = A/A(end); B = 1;

>> f = linspace(0,10000,1001);

>> Hmag_B = abs(polyval(B,j*2*pi*f)./polyval(A,j*2*pi*f));

>> subplot(1,3,[2,3]), plot(f,Hmag_B,’k’);

>> xlabel(’f [Hz]’); ylabel(’|H_{LP}(j2\pi f)|’);
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Figure S4.12-4a

The resulting figures are consistent with a Butterworth design; the poles lie on a semicircle in
the left-half s-plane, and the magnitude response exhibits smooth monotonic roll-off.

(b) Modifying program CH4MP2, the Sallen-Key component values and magnitude response plots
are easily found.
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>> omega_0 = 5000*2*pi; f = linspace(0,10000,200);

>> psi = [7.5:15:90]*pi/180; Hmag_SK = zeros(6,200);

>> for stage = 1:6,

>> Q = 1/(2*cos(psi(stage)));

>> disp([’Stage ’,num2str(stage),...

>> ’ (Q = ’,num2str(Q),...

>> ’): R1 = R2 = ’,num2str(100000)]);

>> disp([’ C1 = ’,num2str(2*Q/(omega_0*100000)),...

>> ’, C2 = ’,num2str(1/(2*Q*omega_0*100000))]);

>> B = omega_0^2; A = [1 omega_0/Q omega_0^2];

>> Hmag_SK(stage,:) = abs(polyval(B,j*2*pi*f)./polyval(A,j*2*pi*f));

>> end

>> plot(f,Hmag_SK,’k’,f,prod(Hmag_SK),’k:’)

>> xlabel(’f [Hz]’); ylabel(’Magnitude Responses’)

Stage 1 (Q = 0.50431): R1 = R2 = 100000

C1 = 3.2106e-10, C2 = 3.1559e-10

Stage 2 (Q = 0.5412): R1 = R2 = 100000

C1 = 3.4454e-10, C2 = 2.9408e-10

Stage 3 (Q = 0.63024): R1 = R2 = 100000

C1 = 4.0122e-10, C2 = 2.5253e-10

Stage 4 (Q = 0.82134): R1 = R2 = 100000

C1 = 5.2288e-10, C2 = 1.9377e-10

Stage 5 (Q = 1.3066): R1 = R2 = 100000

C1 = 8.3178e-10, C2 = 1.2181e-10

Stage 6 (Q = 3.8306): R1 = R2 = 100000

C1 = 2.4387e-09, C2 = 4.1548e-11

The resulting resistor and capacitor values are realistic.
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Figure S4.12-4b

Each Sallen-Key stage implements a complex-conjugate pair of poles. The flattest magnitude
response corresponds to the pair of poles that are furthest from the ω-axis, or Stage 1. The
most peaked magnitude response corresponds to the pair of poles that are closest to the ω-
axis, or Stage 6. The remaining stages are ordered in between. The dashed curve is the total
magnitude response, and it is exactly the same as the one shown in Fig. S4.12-4a.

Solution 4.12-5

(a) MATLAB is used for the design. To evaluate filter performance, the magnitude response is
plotted over the frequency range (0 ≤ f ≤ 10kHz).
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>> omega_c = 2*pi*5000; R = 3; N = 12;

>> epsilon = sqrt(10^(R/10)-1);

>> k = [1:N]; xi = 1/N*asinh(1/epsilon); phi = (k*2-1)/(2*N)*pi;

>> C_poles = omega_c*(-sinh(xi)*sin(phi)+j*cosh(xi)*cos(phi));

>> subplot(121), plot(real(C_poles),imag(C_poles),’xk’);

>> xlabel(’Real’); ylabel(’Imag’);

>> axis([-4e4 0 -4e4 4e4]); axis equal;

>> A = poly(C_poles);

>> B = A(end)/sqrt(1+epsilon^2);

>> f = linspace(0,10000,2001);

>> Hmag_C = abs(polyval(B,1j*2*pi*f)./polyval(A,1j*2*pi*f));

>> subplot(122); plot(omega/2/pi,abs(Hmag_C),’k’); grid

>> xlabel(’f [Hz]’); ylabel(’|H_{LP}(j2\pi f)|’);
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Figure S4.12-5a

The resulting figures are consistent with a Chebyshev design; the poles lie on an ellipse in the
left-half s-plane, passband ripples are equal in height and never exceed R = 3dB, there are a
total of N = 12 maxima and minima in the passband, and the gain rapidly and monotonically
decreases after the cutoff frequency of fc = 5kHz.

(b) Modifying program CH4MP2, the Sallen-Key component values and magnitude response plots
are easily found. Due to the extreme peakedness and high gain of some stages, magnitude
responses are shown using a dB scale.

>> omega_c = 2*pi*5000; R = 3; N = 12;

>> epsilon = sqrt(10^(R/10)-1);

>> k = [1:N]; xi = 1/N*asinh(1/epsilon); phi = (k*2-1)/(2*N)*pi;

>> C_poles = omega_c*(-sinh(xi)*sin(phi)+j*cosh(xi)*cos(phi));

>> C_poles = C_poles(find(imag(C_poles)>0)); % Quadrant 2 poles

>> f = linspace(0,10000,501); Hmag_SK = zeros(6,501);

>> for stage = 1:6,

>> omega_0 = abs(C_poles(stage));

>> psi = pi-angle(C_poles(stage));

>> Q = 1/(2*cos(psi));

>> disp([’Stage ’,num2str(stage),...

>> ’ (Q = ’,num2str(Q),...

>> ’): R1 = R2 = ’,num2str(100000)]);

>> disp([’ C1 = ’,num2str(2*Q/(omega_0*100000)),...

>> ’, C2 = ’,num2str(1/(2*Q*omega_0*100000))]);
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>> B = omega_0^2; A = [1 omega_0/Q omega_0^2];

>> Hmag_SK(stage,:) = abs(polyval(B,j*2*pi*f)./polyval(A,j*2*pi*f));

>> end

>> plot(f,20*log10(Hmag_SK),’k’,f,20*log10(prod(Hmag_SK)),’k:’)

>> xlabel(’f [Hz]’); ylabel(’Magnitude Responses [dB]’)

>> axis([0 10000 -40 40]);

Stage 1 (Q = 51.7057): R1 = R2 = 100000

C1 = 3.311e-08, C2 = 3.0961e-12

Stage 2 (Q = 16.4408): R1 = R2 = 100000

C1 = 1.1293e-08, C2 = 1.0445e-11

Stage 3 (Q = 8.885): R1 = R2 = 100000

C1 = 7.0991e-09, C2 = 2.2482e-11

Stage 4 (Q = 5.247): R1 = R2 = 100000

C1 = 5.4474e-09, C2 = 4.9466e-11

Stage 5 (Q = 2.8635): R1 = R2 = 100000

C1 = 4.6778e-09, C2 = 1.4262e-10

Stage 6 (Q = 1.0262): R1 = R2 = 100000

C1 = 4.359e-09, C2 = 1.0348e-09

The resulting resistor and capacitor values are realistic.
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Figure S4.12-5b

Each Sallen-Key stage implements a complex-conjugate pair of poles. The most peaked mag-
nitude response corresponds to the pair of poles that are closest to the ω-axis, or Stage 1. The
least peaked magnitude response corresponds to the pair of poles that are furthest from the
ω-axis, or Stage 6. The remaining stages are ordered in between. The dashed curve is the
total magnitude response, and within a gain error of 3dB is exactly the same as the one shown
in Fig. S4.12-5a. The gain error occurs since the Salley-Key stages are constrained to unity
gain at dc, yet the Chebyshev filter requires gain 1√

1+ǫ2
at dc. This error is easily corrected

by adding a gain stage to the circuit.

Solution 4.12-6

(a) Using MATLAB, the Sallen-Key component values are easily found.

>> omega_0 = 4000*2*pi; NS = 4;

>> psi = [90/(2*NS):90/NS:90]*pi/180;

>> Q = 1./(2*cos(psi));
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>> R1 = 1e9/omega_0*ones(1,NS); R2 = R1;

>> C1 = 2*Q./(omega_0*R1); C2 = 1./(2*omega_0*Q.*R2);

>> for stage = 1:NS,

>> disp([’Stage ’,num2str(stage),...

>> ’ (Q = ’,num2str(Q(stage)),...

>> ’): R1 = R2 = ’,num2str(R1(stage))]);

>> disp([’ C1 = ’,num2str(C1(stage)),...

>> ’, C2 = ’,num2str(C2(stage))]);

>> end

Stage 1 (Q = 0.5098): R1 = R2 = 39788.7358

C1 = 1.0196e-09, C2 = 9.8079e-10

Stage 2 (Q = 0.60134): R1 = R2 = 39788.7358

C1 = 1.2027e-09, C2 = 8.3147e-10

Stage 3 (Q = 0.89998): R1 = R2 = 39788.7358

C1 = 1.8e-09, C2 = 5.5557e-10

Stage 4 (Q = 2.5629): R1 = R2 = 39788.7358

C1 = 5.1258e-09, C2 = 1.9509e-10

The resulting resistor and capacitor values are realistic.

(b) The transformed Sallen-Key circuit is shown in Fig. S4.12-6b. Name the node between capac-
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Figure S4.12-6b

itors v(t). In transform domain, KCL at the positive terminal of the op-amp yields

Y (s)− V (s)
1

sC′
2

= −Y (s)− 0

R′
2

.

Solving for V (s) yields

V (s) = Y (s)
1 +R′

2C
′
2s

R′
2C

′
2s

.

KCL at node V (s) yields

X(s)− V (s)
1

C′
1s

+
Y (s)− V (s)

R′
1

+
Y (s)− V (s)

1
C′

2s

= 0.

Rearranging yields

V (s) [C′
1s+ 1/R′

1 + C′
2s] = C′

1sX(s) + Y (s) [C′
2s+ 1/R′

1] .

Substituting the previous expression for V (s) yields

Y (s)
1 +R′

2C
′
2s

R′
2C

′
2s

[C′
1s+ 1/R′

1 + C′
2s] = C′

1sX(s) + Y (s) [C′
2s+ 1/R′

1] .
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Rearranging yields

Y (s)

[
1 +R′

2C
′
2s

R′
2C

′
2s

1 +R′
1C

′
1s+R′

1C
′
2s

R′
1

− 1 +R′
1C

′
2s

R′
1

]
= X(s) [C′

1s] .

Following simplification, we get

H(s) =
Y (s)

X(s)
=

s2

s2 + s
(

1
R′

2C
′
2
+ 1

R′
2C

′
1

)
+ 1

R′
1R

′
2C

′
1C

′
2

.

(c) MATLAB is used to transform the Butterworth LPF from part (a).

>> R1p = 1./(C1*omega_0); R2p = 1./(C2*omega_0);

>> C1p = 1./(R1*omega_0); C2p = 1./(R2*omega_0);

>> for stage = 1:NS,

>> disp([’Stage ’,num2str(stage),...

>> ’ (Q = ’,num2str(Q(stage)),...

>> ’): C1’’ = C2’’ = ’,num2str(C1p(stage))]);

>> disp([’ R1’’ = ’,num2str(R1p(stage)),...

>> ’, R2’’ = ’,num2str(R2p(stage))]);

>> end

Stage 1 (Q = 0.5098): C1’ = C2’ = 1e-09

R1’ = 39024.2064, R2’ = 40568.2432

Stage 2 (Q = 0.60134): C1’ = C2’ = 1e-09

R1’ = 33083.1247, R2’ = 47853.5056

Stage 3 (Q = 0.89998): C1’ = C2’ = 1e-09

R1’ = 22105.4372, R2’ = 71617.8323

Stage 4 (Q = 2.5629): C1’ = C2’ = 1e-09

R1’ = 7762.3973, R2’ = 203950.3311

The resulting resistor and capacitor values are realistic.

MATLAB also conveniently computes magnitude responses and pole locations. From H(s), it
is clear that all zeros are at zero.

>> Hmag_SK = zeros(NS,200); Poles = zeros(NS,2);

>> f = linspace(0,omega_0/pi,200);

>> for stage = 1:NS,

>> B = [1 0 0];

>> A = [1,(1/(R2p(stage)*C2p(stage))+1/(R2p(stage)*C1p(stage))),...

>> 1/(R1p(stage)*R2p(stage)*C1p(stage)*C2p(stage))];

>> Poles(stage,:) = (roots(A)).’;

>> Hmag_SK(stage,:) = abs(polyval(B,j*2*pi*f)./polyval(A,j*2*pi*f));

>> end

>> subplot(121), plot(real(Poles(:)),imag(Poles(:)),’kx’,0,0,’ko’);

>> axis(omega_0*[-1.1, .1 -1.1 1.1]); axis equal;

>> xlabel(’Re(s) = \sigma’); ylabel(’Im(s) = \omega’);

>> subplot(122), plot(f,Hmag_SK,’k’,f,prod(Hmag_SK),’k:’);

>> xlabel(’f [Hz]’); ylabel(’Magnitude Responses’);

The overall magnitude response plot looks like a highpass Butterworth filter; the cutoff is cor-
rectly located at ωc and the response is smooth and monotonic. Interestingly, the Butterworth
HPF poles look identical to the Butterworth LPF poles. The only difference is seen in the
zeros; all the zeros of the LPF are infinite, and all the zeros of the HPF are located at s = 0.
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Figure S4.12-6c

Solution 4.12-7

(a) Using MATLAB, the Sallen-Key component values are easily found.

>> omega_0 = 1500*2*pi; NS = 8; psi = [90/(2*NS):90/NS:90]*pi/180;

>> Q = 1./(2*cos(psi)); R1 = 1e9/omega_0*ones(1,NS); R2 = R1;

>> C1 = 2*Q./(omega_0*R1); C2 = 1./(2*omega_0*Q.*R2);

>> for stage = 1:NS,

>> disp([’Stage ’,num2str(stage),...

>> ’ (Q = ’,num2str(Q(stage)),...

>> ’): R1 = R2 = ’,num2str(R1(stage))]);

>> disp([’ C1 = ’,num2str(C1(stage)),...

>> ’, C2 = ’,num2str(C2(stage))]);

>> end

Stage 1 (Q = 0.50242): R1 = R2 = 106103.2954

C1 = 1.0048e-09, C2 = 9.9518e-10

Stage 2 (Q = 0.5225): R1 = R2 = 106103.2954

C1 = 1.045e-09, C2 = 9.5694e-10

Stage 3 (Q = 0.56694): R1 = R2 = 106103.2954

C1 = 1.1339e-09, C2 = 8.8192e-10

Stage 4 (Q = 0.64682): R1 = R2 = 106103.2954

C1 = 1.2936e-09, C2 = 7.7301e-10

Stage 5 (Q = 0.78815): R1 = R2 = 106103.2954

C1 = 1.5763e-09, C2 = 6.3439e-10

Stage 6 (Q = 1.0607): R1 = R2 = 106103.2954

C1 = 2.1214e-09, C2 = 4.714e-10

Stage 7 (Q = 1.7224): R1 = R2 = 106103.2954

C1 = 3.4449e-09, C2 = 2.9028e-10

Stage 8 (Q = 5.1011): R1 = R2 = 106103.2954

C1 = 1.0202e-08, C2 = 9.8017e-11

The resulting resistor and capacitor values are realistic.

(b) The transformed Sallen-Key circuit is shown in Fig. S4.12-7b. Name the node between capac-
itors v(t). In transform domain, KCL at the positive terminal of the op-amp yields

Y (s)− V (s)
1

sC′
2

= −Y (s)− 0

R′
2

.
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Solving for V (s) yields

V (s) = Y (s)
1 +R′

2C
′
2s

R′
2C

′
2s

.

KCL at node V (s) yields

X(s)− V (s)
1

C′
1s

+
Y (s)− V (s)

R′
1

+
Y (s)− V (s)

1
C′

2s

= 0.

Rearranging yields

V (s) [C′
1s+ 1/R′

1 + C′
2s] = C′

1sX(s) + Y (s) [C′
2s+ 1/R′

1] .

Substituting the previous expression for V (s) yields

Y (s)
1 +R′

2C
′
2s

R′
2C

′
2s

[C′
1s+ 1/R′

1 + C′
2s] = C′

1sX(s) + Y (s) [C′
2s+ 1/R′

1] .

Rearranging yields

Y (s)

[
1 +R′

2C
′
2s

R′
2C

′
2s

1 +R′
1C

′
1s+R′

1C
′
2s

R′
1

− 1 +R′
1C

′
2s

R′
1

]
= X(s) [C′

1s] .

Following simplification, we get

H(s) =
Y (s)

X(s)
=

s2

s2 + s
(

1
R′

2C
′
2
+ 1

R′
2C

′
1

)
+ 1

R′
1R

′
2C

′
1C

′
2

.

(c) MATLAB is used to transform the Butterworth LPF from part (a).

>> R1p = 1./(C1*omega_0); R2p = 1./(C2*omega_0);

>> C1p = 1./(R1*omega_0); C2p = 1./(R2*omega_0);

>> for stage = 1:NS,

>> disp([’Stage ’,num2str(stage),...

>> ’ (Q = ’,num2str(Q(stage)),...

>> ’): C1’’ = C2’’ = ’,num2str(C1p(stage))]);

>> disp([’ R1’’ = ’,num2str(R1p(stage)),...

>> ’, R2’’ = ’,num2str(R2p(stage))]);

>> end

Stage 1 (Q = 0.50242): C1’ = C2’ = 1e-09
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R1’ = 105592.379, R2’ = 106616.6839

Stage 2 (Q = 0.5225): C1’ = C2’ = 1e-09

R1’ = 101534.5231, R2’ = 110877.6498

Stage 3 (Q = 0.56694): C1’ = C2’ = 1e-09

R1’ = 93574.7524, R2’ = 120309.2608

Stage 4 (Q = 0.64682): C1’ = C2’ = 1e-09

R1’ = 82018.9565, R2’ = 137259.8455

Stage 5 (Q = 0.78815): C1’ = C2’ = 1e-09

R1’ = 67311.218, R2’ = 167251.6057

Stage 6 (Q = 1.0607): C1’ = C2’ = 1e-09

R1’ = 50016.7472, R2’ = 225082.7957

Stage 7 (Q = 1.7224): C1’ = C2’ = 1e-09

R1’ = 30800.1609, R2’ = 365514.6265

Stage 8 (Q = 5.1011): C1’ = C2’ = 1e-09

R1’ = 10399.9416, R2’ = 1082497.3575

The resulting resistor and capacitor values are reasonably realistic.

MATLAB also conveniently computes magnitude responses and pole locations. From H(s), it
is clear that all zeros are at zero.

>> Hmag_SK = zeros(NS,200); Poles = zeros(NS,2);

>> f = linspace(0,omega_0/pi,200);

>> for stage = 1:NS,

>> B = [1 0 0];

>> A = [1,(1/(R2p(stage)*C2p(stage))+1/(R2p(stage)*C1p(stage))),...

>> 1/(R1p(stage)*R2p(stage)*C1p(stage)*C2p(stage))];

>> Poles(stage,:) = (roots(A)).’;

>> Hmag_SK(stage,:) = abs(polyval(B,j*2*pi*f)./polyval(A,j*2*pi*f));

>> end

>> subplot(121), plot(real(Poles(:)),imag(Poles(:)),’kx’,0,0,’ko’);

>> axis(omega_0*[-1.1, .1 -1.1 1.1]); axis equal;

>> xlabel(’Re(s) = \sigma’); ylabel(’Im(s) = \omega’);

>> subplot(122), plot(f,Hmag_SK,’k’,f,prod(Hmag_SK),’k:’);

>> xlabel(’f [Hz]’); ylabel(’Magnitude Responses’);
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Figure S4.12-7c

The overall magnitude response plot looks like a highpass Butterworth filter; the cutoff is cor-
rectly located at ωc and the response is smooth and monotonic. Interestingly, the Butterworth
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HPF poles look identical to the Butterworth LPF poles. The only difference is seen in the
zeros; all the zeros of the LPF are infinite, and all the zeros of the HPF are located at s = 0.

Solution 4.12-8

(a) Using MATLAB, the Sallen-Key component values are easily found.

>> omega_c = 2*pi*4000; R = 3; N = 8;

>> epsilon = sqrt(10^(R/10)-1);

>> k = [1:N]; xi = 1/N*asinh(1/epsilon); phi = (k*2-1)/(2*N)*pi;

>> C_poles = omega_c*(-sinh(xi)*sin(phi)+j*cosh(xi)*cos(phi));

>> C_poles = C_poles(find(imag(C_poles)>0)); % Quadrant 2 poles

>> f = linspace(0,10000,501); Hmag_SK = zeros(6,501);

>> R1 = zeros(N/2,1); R2 = R1; C1 = R1; C2 = R1; Q = R1; omega_0 = R1;

>> for stage = 1:N/2,

>> omega_0(stage) = abs(C_poles(stage));

>> psi = pi-angle(C_poles(stage));

>> Q(stage) = 1/(2*cos(psi));

>> R1(stage) = 1e9/omega_c; R2(stage) = R1(stage);

>> C1(stage) = 2*Q(stage)./(omega_0(stage)*R1(stage));

>> C2(stage) = 1./(2*omega_0(stage)*Q(stage).*R2(stage));

>> disp([’Stage ’,num2str(stage),...

>> ’ (Q = ’,num2str(Q(stage)),...

>> ’): R1 = R2 = ’,num2str(R1(stage))]);

>> disp([’ C1 = ’,num2str(C1(stage)),...

>> ’, C2 = ’,num2str(C2(stage))]);

>> B = omega_0(stage)^2; A = [1 omega_0(stage)/Q omega_0(stage)^2];

>> Hmag_SK(stage,:) = abs(polyval(B,j*2*pi*f)./polyval(A,j*2*pi*f));

>> end

Stage 1 (Q = 22.8704): R1 = R2 = 39788.7358

C1 = 4.6343e-08, C2 = 2.215e-11

Stage 2 (Q = 6.8251): R1 = R2 = 39788.7358

C1 = 1.6274e-08, C2 = 8.7339e-11

Stage 3 (Q = 3.0798): R1 = R2 = 39788.7358

C1 = 1.0874e-08, C2 = 2.8659e-10

Stage 4 (Q = 1.0337): R1 = R2 = 39788.7358

C1 = 9.2182e-09, C2 = 2.1569e-09

The resulting resistor and capacitor values are realistic.

(b) The transformed Sallen-Key circuit is shown in Fig. S4.12-8b. Name the node between capac-
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Figure S4.12-8b
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itors v(t). In transform domain, KCL at the positive terminal of the op-amp yields

Y (s)− V (s)
1

sC′
2

= −Y (s)− 0

R′
2

.

Solving for V (s) yields

V (s) = Y (s)
1 +R′

2C
′
2s

R′
2C

′
2s

.

KCL at node V (s) yields

X(s)− V (s)
1

C′
1s

+
Y (s)− V (s)

R′
1

+
Y (s)− V (s)

1
C′

2s

= 0.

Rearranging yields

V (s) [C′
1s+ 1/R′

1 + C′
2s] = C′

1sX(s) + Y (s) [C′
2s+ 1/R′

1] .

Substituting the previous expression for V (s) yields

Y (s)
1 +R′

2C
′
2s

R′
2C

′
2s

[C′
1s+ 1/R′

1 + C′
2s] = C′

1sX(s) + Y (s) [C′
2s+ 1/R′

1] .

Rearranging yields

Y (s)

[
1 +R′

2C
′
2s

R′
2C

′
2s

1 +R′
1C

′
1s+R′

1C
′
2s

R′
1

− 1 +R′
1C

′
2s

R′
1

]
= X(s) [C′

1s] .

Following simplification, we get

H(s) =
Y (s)

X(s)
=

s2

s2 + s
(

1
R′

2C
′
2
+ 1

R′
2C

′
1

)
+ 1

R′
1R

′
2C

′
1C

′
2

.

(c) MATLAB is used to transform the Chebyshev LPF from part (a).

>> R1p = 1./(C1*omega_c); R2p = 1./(C2*omega_c);

>> C1p = 1./(R1*omega_c); C2p = 1./(R2*omega_c);

>> for stage = 1:N/2,

>> disp([’Stage ’,num2str(stage),...

>> ’ (Q = ’,num2str(Q(stage)),...

>> ’): C1’’ = C2’’ = ’,num2str(C1p(stage))]);

>> disp([’ R1’’ = ’,num2str(R1p(stage)),...

>> ’, R2’’ = ’,num2str(R2p(stage))]);

>> end

Stage 1 (Q = 22.8704): C1’ = C2’ = 1e-09

R1’ = 858.5676, R2’ = 1796313.2499

Stage 2 (Q = 6.8251): C1’ = C2’ = 1e-09

R1’ = 2444.9937, R2’ = 455567.9755

Stage 3 (Q = 3.0798): C1’ = C2’ = 1e-09

R1’ = 3659.1916, R2’ = 138833.4048

Stage 4 (Q = 1.0337): C1’ = C2’ = 1e-09

R1’ = 4316.3108, R2’ = 18446.8849

The resulting resistor and capacitor values possibly realistic; however, there is a fairly large
dynamic range between the largest and smallest resistors.

MATLAB also conveniently computes magnitude responses and pole locations. By necessity,
the transformation really stretches out the passband; it is therefore important to plot the
magnitude response over a broad range of frequencies. To facilitate a reasonable plot, the
magnitude response is plotted using both log-magnitude and log-frequency scales. From H(s),
it is clear that all zeros are at zero.
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>> Hmag_SK = zeros(N/2,5001); Poles = zeros(N/2,2);

>> f = logspace(2,5,5001);

>> for stage = 1:N/2,

>> B = [1 0 0];

>> A = [1,(1/(R2p(stage)*C2p(stage))+1/(R2p(stage)*C1p(stage))),...

>> 1/(R1p(stage)*R2p(stage)*C1p(stage)*C2p(stage))];

>> Poles(stage,:) = (roots(A)).’;

>> Hmag_SK(stage,:) = abs(polyval(B,j*2*pi*f)./polyval(A,j*2*pi*f));

>> end

>> subplot(121), plot(real(Poles(:)),imag(Poles(:)),’kx’,0,0,’ko’);

>> axis equal; ax = axis; axis([1.1*ax]);

>> xlabel(’Re(s) = \sigma’); ylabel(’Im(s) = \omega’);

>> subplot(122),

>> semilogx(f,20*log10(Hmag_SK),’k’,f,20*log10(prod(Hmag_SK)),’k:’)

>> xlabel(’f [Hz]’); ylabel(’Magnitude Responses [dB]’); axis tight

>> axis([100 1e5 -40 40]);

-8 -6 -4 -2 0 2

Re(s) = σ×104

-1

-0.5

0

0.5

1

Im
(s

) 
=

 ω

×105

102 103 104 105

f [Hz]

-40

-20

0

20

40

M
ag

ni
tu

de
 R

es
po

ns
es

 [d
B

]

Figure S4.12-8c

The pole locations of the transformed Chebyshev filter are dramatically different than the pole
locations of the original LPF. The zeros, as expected, are all concentrated at s = 0. The
overall magnitude response plot looks like a highpass Chebyshev filter; passband ripples are
equal in height and never exceed R = 3dB, there are a total of N = 8 maxima and minima in
the passband, and the cutoff is correctly located at ωc = 2π4000.

Solution 4.12-9

Factored form is used to plot roots, and standard transfer function form is used to compute magni-
tude response plots.

(a) Order-6 Butterworth LPF with ωc = 2π3500.

>> omega_c = 2*pi*3500;

>> [z,p,k] = butter(6,omega_c,’s’);

>> subplot(121),plot(real(p),imag(p),’kx’,real(z),imag(z),’ko’);

>> axis(omega_c*[-1.1 0.1 -1.1 1.1]); axis equal;

>> xlabel(’Re(s) = \sigma’); ylabel(’Im(s) = \omega’);

>> f = linspace(0,7000,501);

>> [B,A] = butter(6,omega_c,’s’);

>> HLP = polyval(B,j*2*pi*f)./polyval(A,j*2*pi*f);
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>> subplot(122),plot(f,20*log10(abs(HLP)),’k’);

>> axis([0 7000 -40 2])

>> xlabel(’f [Hz]’); ylabel(’|H_{LP}(j\omega)|’);
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Figure S4.12-9a

(b) Order-6 Butterworth HPF with ωc = 2π3500.

>> omega_c = 2*pi*3500;

>> [z,p,k] = butter(6,omega_c,’high’,’s’);

>> subplot(121),plot(real(p),imag(p),’kx’,real(z),imag(z),’ko’);

>> axis(omega_c*[-1.1 0.1 -1.1 1.1]); axis equal;

>> xlabel(’Re(s) = \sigma’); ylabel(’Im(s) = \omega’);

>> f = linspace(0,7000,501);

>> [B,A] = butter(6,omega_c,’high’,’s’);

>> HHP = polyval(B,j*2*pi*f)./polyval(A,j*2*pi*f);

>> subplot(122),plot(f,20*log10(abs(HHP)),’k’);

>> axis([0 7000 -40 2])

>> xlabel(’f [Hz]’); ylabel(’|H_{HP}(j\omega)|’);
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(c) Order-6 Butterworth BPF with passband between 2kHz and 4kHz. Notice that the command
butter requires the parameter N = 3 to be used to obtain a (2N = 6)-order bandpass filter.

>> omega_c = [2*pi*2000,2*pi*4000];

>> [z,p,k] = butter(3,omega_c,’s’);

>> subplot(121),plot(real(p),imag(p),’kx’,real(z),imag(z),’ko’);

>> axis(omega_c(2)*[-1.1 0.1 -1.1 1.1]); axis equal;

>> xlabel(’Re(s) = \sigma’); ylabel(’Im(s) = \omega’);

>> f = linspace(0,7000,501);

>> [B,A] = butter(3,omega_c,’s’);

>> HBP = polyval(B,j*2*pi*f)./polyval(A,j*2*pi*f);

>> subplot(122),plot(f,20*log10(abs(HBP)),’k’);

>> axis([0 7000 -40 2])

>> xlabel(’f [Hz]’); ylabel(’|H_{BP}(j\omega)|’);
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Figure S4.12-9c

(d) Order-6 Butterworth BSF with stopband between 2kHz and 4kHz. Notice that the command
butter requires the parameter N = 3 to be used to obtain a (2N = 6)-order bandstop filter.

>> omega_c = [2*pi*2000,2*pi*4000];

>> [z,p,k] = butter(3,omega_c,’stop’,’s’);

>> subplot(121),plot(real(p),imag(p),’kx’,real(z),imag(z),’ko’);

>> axis(omega_c(2)*[-1.1 0.1 -1.1 1.1]); axis equal;

>> xlabel(’Re(s) = \sigma’); ylabel(’Im(s) = \omega’);

>> f = linspace(0,7000,501);

>> [B,A] = butter(3,omega_c,’stop’,’s’);

>> HBS = polyval(B,j*2*pi*f)./polyval(A,j*2*pi*f);

>> subplot(122),plot(f,20*log10(abs(HBS)),’k’);

>> axis([0 7000 -40 2])

>> xlabel(’f [Hz]’); ylabel(’|H_{BS}(j\omega)|’);
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Figure S4.12-9d

Solution 4.12-10

Factored form is used to plot roots, and standard transfer function form is used to compute magni-
tude response plots.

(a) Order-6 Chebyshev Type I LPF with ωc = 2π3500.

>> omega_c = 2*pi*3500;

>> [z,p,k] = cheby1(6,3,omega_c,’s’);

>> subplot(121),plot(real(p),imag(p),’kx’,real(z),imag(z),’ko’);

>> axis equal; axis(1.1*axis);

>> xlabel(’Re(s) = \sigma’); ylabel(’Im(s) = \omega’);

>> f = linspace(0,7000,501);

>> [B,A] = cheby1(6,3,omega_c,’s’);

>> HLP = polyval(B,j*2*pi*f)./polyval(A,j*2*pi*f);

>> subplot(122),plot(f,20*log10(abs(HLP)),’k’);

>> axis([0 7000 -40 2])

>> xlabel(’f [Hz]’); ylabel(’|H_{LP}(j\omega)|’);
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Figure S4.12-10a
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(b) Order-6 Chebyshev Type I HPF with ωc = 2π3500.

>> omega_c = 2*pi*3500;

>> [z,p,k] = cheby1(6,3,omega_c,’high’,’s’);

>> subplot(121),plot(real(p),imag(p),’kx’,real(z),imag(z),’ko’);

>> axis equal; axis(1.1*axis);

>> xlabel(’Re(s) = \sigma’); ylabel(’Im(s) = \omega’);

>> f = linspace(0,7000,501);

>> [B,A] = cheby1(6,3,omega_c,’high’,’s’);

>> HHP = polyval(B,j*2*pi*f)./polyval(A,j*2*pi*f);

>> subplot(122),plot(f,20*log10(abs(HHP)),’k’);

>> axis([0 7000 -40 2])

>> xlabel(’f [Hz]’); ylabel(’|H_{HP}(j\omega)|’);
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(c) Order-6 Chebyshev Type I BPF with passband between 2kHz and 4kHz. Notice that the
command cheby1 requires the parameter N = 3 to be used to obtain a (2N = 6)-order
bandpass filter.

>> omega_c = [2*pi*2000,2*pi*4000];

>> [z,p,k] = cheby1(3,3,omega_c,’s’);

>> subplot(121),plot(real(p),imag(p),’kx’,real(z),imag(z),’ko’);

>> axis equal; axis(1.1*axis);

>> xlabel(’Re(s) = \sigma’); ylabel(’Im(s) = \omega’);

>> f = linspace(0,7000,501);

>> [B,A] = cheby1(3,3,omega_c,’s’);

>> HBP = polyval(B,j*2*pi*f)./polyval(A,j*2*pi*f);

>> subplot(122),plot(f,20*log10(abs(HBP)),’k’);

>> axis([0 7000 -40 2])

>> xlabel(’f [Hz]’); ylabel(’|H_{BP}(j\omega)|’);

(d) Order-6 Chebyshev Type I BSF with stopband between 2kHz and 4kHz. Notice that the
command cheby1 requires the parameter N = 3 to be used to obtain a (2N = 6)-order
bandstop filter.

>> omega_c = [2*pi*2000,2*pi*4000];

>> [z,p,k] = cheby1(3,3,omega_c,’stop’,’s’);

>> subplot(121),plot(real(p),imag(p),’kx’,real(z),imag(z),’ko’);
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Figure S4.12-10c

>> axis equal; axis(1.1*axis);

>> xlabel(’Re(s) = \sigma’); ylabel(’Im(s) = \omega’);

>> f = linspace(0,7000,501);

>> [B,A] = cheby1(3,3,omega_c,’stop’,’s’);

>> HBS = polyval(B,j*2*pi*f)./polyval(A,j*2*pi*f);

>> subplot(122),plot(f,20*log10(abs(HBS)),’k’);

>> axis([0 7000 -40 2])

>> xlabel(’f [Hz]’); ylabel(’|H_{BS}(j\omega)|’);
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Figure S4.12-10d

(e) To demonstrate the effect of decreasing the passband ripple, consider magnitude response plots
for Chebyshev Type I LPFs with Rp = {0.1, 1.0, 3.0}.

>> omega_c = 2*pi*3500; f = linspace(0,7000,501);

>> [B,A] = cheby1(6,.1,omega_c,’s’);

>> HLP1 = polyval(B,j*2*pi*f)./polyval(A,j*2*pi*f);

>> [B,A] = cheby1(6,1,omega_c,’s’);

>> HLP2 = polyval(B,j*2*pi*f)./polyval(A,j*2*pi*f);

>> [B,A] = cheby1(6,3,omega_c,’s’);
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>> HLP3 = polyval(B,j*2*pi*f)./polyval(A,j*2*pi*f);

>> plot(f,20*log10(abs(HLP1)),’k-’,...

f,20*log10(abs(HLP2)),’k--’,...

f,20*log10(abs(HLP3)),’k:’);

>> axis([0 7000 -40 2])

>> xlabel(’f [Hz]’); ylabel(’|H_{LP}(j\omega)|’);

>> legend(’R_p = 0.1’,’R_p = 1.0’,’R_p = 3.0’,’Location’,’Best’);
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Thus, reducing the allowable passband ripple Rp tends to broaden the transition bands of the
filter.

Solution 4.12-11

Factored form is used to plot roots, and standard transfer function form is used to compute magni-
tude response plots.

(a) Order-6 Chebyshev Type II LPF with ωc = 2π3500.

>> omega_c = 2*pi*3500;

>> [z,p,k] = cheby2(6,20,omega_c,’s’);

>> subplot(121),plot(real(p),imag(p),’kx’,real(z),imag(z),’ko’);

>> axis equal; axis(1.1*axis);

>> xlabel(’Re(s) = \sigma’); ylabel(’Im(s) = \omega’);

>> f = linspace(0,7000,501);

>> [B,A] = cheby2(6,20,omega_c,’s’);

>> HLP = polyval(B,j*2*pi*f)./polyval(A,j*2*pi*f);

>> subplot(122),plot(f,20*log10(abs(HLP)),’k’);

>> axis([0 7000 -40 2])

>> xlabel(’f [Hz]’); ylabel(’|H_{LP}(j\omega)|’);

(b) Order-6 Chebyshev Type II HPF with ωc = 2π3500.

>> omega_c = 2*pi*3500;

>> [z,p,k] = cheby2(6,20,omega_c,’high’,’s’);

>> subplot(121),plot(real(p),imag(p),’kx’,real(z),imag(z),’ko’);

>> axis equal; axis(1.1*axis);

>> xlabel(’Re(s) = \sigma’); ylabel(’Im(s) = \omega’);

>> f = linspace(0,7000,501);

>> [B,A] = cheby2(6,20,omega_c,’high’,’s’);



Student use and/or distribution of solutions is prohibited 341

-6 -4 -2 0 2

Re(s) = σ×104

-5

0

5
Im

(s
) 

=
 ω

×104

0 1000 2000 3000 4000 5000 6000 7000

f [Hz]

-40

-30

-20

-10

0

|H
LP

(j
ω

)|

Figure S4.12-11a

>> HHP = polyval(B,j*2*pi*f)./polyval(A,j*2*pi*f);

>> subplot(122),plot(f,20*log10(abs(HHP)),’k’);

>> axis([0 7000 -40 2])

>> xlabel(’f [Hz]’); ylabel(’|H_{HP}(j\omega)|’);
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Figure S4.12-11b

(c) Order-6 Chebyshev Type II BPF with passband between 2kHz and 4kHz. Notice that the
command cheby2 requires the parameter N = 3 to be used to obtain a (2N = 6)-order
bandpass filter.

>> omega_c = [2*pi*2000,2*pi*4000];

>> [z,p,k] = cheby2(3,20,omega_c,’s’);

>> subplot(121),plot(real(p),imag(p),’kx’,real(z),imag(z),’ko’);

>> axis equal; axis(1.1*axis);

>> xlabel(’Re(s) = \sigma’); ylabel(’Im(s) = \omega’);

>> f = linspace(0,7000,501);

>> [B,A] = cheby2(3,20,omega_c,’s’);

>> HBP = polyval(B,j*2*pi*f)./polyval(A,j*2*pi*f);

>> subplot(122),plot(f,20*log10(abs(HBP)),’k’);
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>> axis([0 7000 -40 2])

>> xlabel(’f [Hz]’); ylabel(’|H_{BP}(j\omega)|’);
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Figure S4.12-11c

(d) Order-6 Chebyshev Type II BSF with stopband between 2kHz and 4kHz. Notice that the
command cheby2 requires the parameter N = 3 to be used to obtain a (2N = 6)-order
bandstop filter.

>> omega_c = [2*pi*2000,2*pi*4000];

>> [z,p,k] = cheby2(3,20,omega_c,’stop’,’s’);

>> subplot(121),plot(real(p),imag(p),’kx’,real(z),imag(z),’ko’);

>> axis equal; axis(1.1*axis);

>> xlabel(’Re(s) = \sigma’); ylabel(’Im(s) = \omega’);

>> f = linspace(0,7000,501);

>> [B,A] = cheby2(3,20,omega_c,’stop’,’s’);

>> HBS = polyval(B,j*2*pi*f)./polyval(A,j*2*pi*f);

>> subplot(122),plot(f,20*log10(abs(HBS)),’k’);

>> axis([0 7000 -40 2])

>> xlabel(’f [Hz]’); ylabel(’|H_{BS}(j\omega)|’);

(e) To demonstrate the effect of increasing Rs, consider magnitude response plots for Chebyshev
Type II LPFs with Rs = {10, 20, 30}.

>> omega_c = 2*pi*3500; f = linspace(0,7000,501);

>> [B,A] = cheby2(6,10,omega_c,’s’);

>> HLP1 = polyval(B,j*2*pi*f)./polyval(A,j*2*pi*f);

>> [B,A] = cheby2(6,20,omega_c,’s’);

>> HLP2 = polyval(B,j*2*pi*f)./polyval(A,j*2*pi*f);

>> [B,A] = cheby2(6,30,omega_c,’s’);

>> HLP3 = polyval(B,j*2*pi*f)./polyval(A,j*2*pi*f);

>> plot(f,20*log10(abs(HLP1)),’k-’,...

f,20*log10(abs(HLP2)),’k--’,...

f,20*log10(abs(HLP3)),’k:’);

>> axis([0 7000 -40 2])

>> xlabel(’f [Hz]’); ylabel(’|H_{LP}(j\omega)|’);

>> legend(’R_s = 10’,’R_s = 20’,’R_s = 30’,’Location’,’Best’);

Thus, increasing Rs tends to broaden the transition bands of the filter.
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Figure S4.12-11e

Solution 4.12-12

Factored form is used to plot roots, and standard transfer function form is used to compute magni-
tude response plots.

(a) Order-6 Elliptic LPF with ωc = 2π3500.

>> omega_c = 2*pi*3500;

>> [z,p,k] = ellip(6,3,20,omega_c,’s’);

>> subplot(121),plot(real(p),imag(p),’kx’,real(z),imag(z),’ko’);

>> axis equal; axis(1.1*axis);

>> xlabel(’Re(s) = \sigma’); ylabel(’Im(s) = \omega’);

>> f = linspace(0,7000,2001);

>> [B,A] = ellip(6,3,20,omega_c,’s’);

>> HLP = polyval(B,j*2*pi*f)./polyval(A,j*2*pi*f);

>> subplot(122),plot(f,20*log10(abs(HLP)),’k’);

>> axis([0 7000 -40 2])

>> xlabel(’f [Hz]’); ylabel(’|H_{LP}(j\omega)|’);

(b) Order-6 Elliptic HPF with ωc = 2π3500.
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>> omega_c = 2*pi*3500;

>> [z,p,k] = ellip(6,3,20,omega_c,’high’,’s’);

>> subplot(121),plot(real(p),imag(p),’kx’,real(z),imag(z),’ko’);

>> axis equal; axis(1.1*axis);

>> xlabel(’Re(s) = \sigma’); ylabel(’Im(s) = \omega’);

>> f = linspace(0,7000,2001);

>> [B,A] = ellip(6,3,20,omega_c,’high’,’s’);

>> HHP = polyval(B,j*2*pi*f)./polyval(A,j*2*pi*f);

>> subplot(122),plot(f,20*log10(abs(HHP)),’k’);

>> axis([0 7000 -40 2])

>> xlabel(’f [Hz]’); ylabel(’|H_{HP}(j\omega)|’);
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Figure S4.12-12b

(c) Order-6 Elliptic BPF with passband between 2kHz and 4kHz. Notice that the command ellip
requires the parameter N = 3 to be used to obtain a (2N = 6)-order bandpass filter.

>> omega_c = [2*pi*2000,2*pi*4000];

>> [z,p,k] = ellip(3,3,20,omega_c,’s’);

>> subplot(121),plot(real(p),imag(p),’kx’,real(z),imag(z),’ko’);
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>> axis equal; axis(1.1*axis);

>> xlabel(’Re(s) = \sigma’); ylabel(’Im(s) = \omega’);

>> f = linspace(0,7000,2001);

>> [B,A] = ellip(3,3,20,omega_c,’s’);

>> HBP = polyval(B,j*2*pi*f)./polyval(A,j*2*pi*f);

>> subplot(122),plot(f,20*log10(abs(HBP)),’k’);

>> axis([0 7000 -40 2])

>> xlabel(’f [Hz]’); ylabel(’|H_{BP}(j\omega)|’);
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Figure S4.12-12c

(d) Order-6 Elliptic BSF with stopband between 2kHz and 4kHz. Notice that the command ellip
requires the parameter N = 3 to be used to obtain a (2N = 6)-order bandstop filter.

>> omega_c = [2*pi*2000,2*pi*4000];

>> [z,p,k] = ellip(3,3,20,omega_c,’stop’,’s’);

>> subplot(121),plot(real(p),imag(p),’kx’,real(z),imag(z),’ko’);

>> axis equal; axis(1.1*axis);

>> xlabel(’Re(s) = \sigma’); ylabel(’Im(s) = \omega’);

>> f = linspace(0,7000,2001);

>> [B,A] = ellip(3,3,20,omega_c,’stop’,’s’);

>> HBS = polyval(B,j*2*pi*f)./polyval(A,j*2*pi*f);

>> subplot(122),plot(f,20*log10(abs(HBS)),’k’);

>> axis([0 7000 -40 2])

>> xlabel(’f [Hz]’); ylabel(’|H_{BS}(j\omega)|’);
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Figure S4.12-12d

Solution 4.12-13

First, the recursion relation CN (x) = 2xCN−1(x) − CN−2(x) is rewritten as CN+1(x) =
2xCN (x) − CN−1(x) or CN+1 + CN−1 = 2xCN (x).

Letting γ = cosh−1(x) and using Euler’s formula, we know CN (x) = cosh
(
N cosh−1(x)

)
=

cosh (Nγ) = eNγ+e−Nγ

2 . Thus, CN+1 + CN−1 = e(N+1)γ+e−(N+1)γ

2 + e(N−1)γ+e−(N−1)γ

2 =
eNγ(eγ+e−γ )+e−Nγ(eγ+e−γ)

2 = 2 (eγ+e−γ )
2

(eNγ+e−Nγ)
2 = 2 cosh(γ) cosh(Nγ). Replacing γ yields

CN+1 + CN−1 = 2 cosh(cosh−1(x)) cosh(N cosh−1(x)) = 2xCN (x). Thus,

CN+1 + CN−1 = 2xCN (x) or CN (x) = 2xCN−1(x)− CN−2(x).

Solution 4.12-14

Note that pk = σk + jωk = ωc sinh(ξ) sin(φk) + jωc cosh(ξ) cos(φk). From the real portion, we
know σk = ωc sinh(ξ) sin(φk) or sin(φk) = σk

ωc sinh(ξ) . From the imaginary portion, we know

ωk = ωc cosh(ξ) cos(φk) or cos(φk) =
ωk

ωc cosh(ξ) . From trigonometry, we know 1 = cos2(φk)+sin2(φk).

Thus, (
ωk

ωc cosh(ξ)

)2

+

(
σk

ωc sinh(ξ)

)2

= 1.

This is the equation of an ellipse. Since the Chebyshev poles pk = σk + jωk satisfy the equation,
they must lie on the ellipse.



Chapter 5 Solutions

Solution 5.1-1

Given the fact that the time-domain signal is finite in duration, the region of con-
vergence should include the entire z-plane, except possibly z = 0 or z = ∞. Now,

X [z] =
∑∞

n=−∞ x[n]z−n =
∑7

n=0(−1)nz−n =
∑7

n=0(−1/z)n = 1−(−1/z)8

1−(−1/z) . Thus,

X [z] =
1− z−8

1 + z−1
; ROC |z| > 0.

In this form, X [z] appears to have eight finite zeros and one finite pole. The eight zeros are the
eight roots of unity, or z = e2πk/8 for k = (0, 1, . . . , 7). The apparent pole is at z = −1. However,
there is also a zero z = −1 (k = 4) that cancels this pole. Thus, there are actually no finite poles
and only seven finite zeros, z = e2πk/8 for k = (0, 1, 2, 3, 5, 6, 7). MATLAB is used to plot the zeros
in the complex plane; the unit circle is also plotted for reference.

>> k = [0:3,5:7]; zz = exp(j*2*pi*k/8); ang = linspace(0,2*pi,201);

>> plot(real(zz),imag(zz),’ko’,cos(ang),sin(ang),’k’); grid on;

>> xlabel(’Re(z)’); ylabel(’Im(z)’); axis([-1.1 1.1 -1.1 1.1]); axis equal;

-1 -0.5 0 0.5 1

Re(z)

-1

-0.5

0

0.5

1

Im
(z

)

Figure S5.1-1

Solution 5.1-2

From the figure that shows x[n], we see that

x[n] = 3δ[n− 3] + δ[n− 5]− δ[n− 7]− 3u[n− 9].

347
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Using Table 5.1, we see that

X [z] = 3z−3 + z−5 − z−7

︸ ︷︷ ︸
|z|>0

−3z−9 z

z − 1︸ ︷︷ ︸
|z|>1

.

Thus

X [z] = 3z−3 + z−5 − z−7 − 3z−8

z − 1
, ROC: |z| > 1.

Solution 5.1-3

(a) Since all three poles of X [z] lie on the unit circle and x[n] is known to be causal, we infer that

the ROC is |z| > 1.

Next, we obtain a series expansion of X [z] in powers of z−1 by dividing the numerator by the
denominator as follows:

z−1 + z−4 + z−7 + · · ·
z3 − 1

)
z2

z2 − z−1

z−1

z−1 − z−4

z−4

z−4 − z−7

z−7

...

.

Thus,

X [z] =
∞∑

i=0

z−(3i+1).

Inverting, we obtain

x[n] =

∞∑

i=0

δ[n− (3i+ 1)] = δ[n− 1] + δ[n− 4] + δ[n− 7] + . . . .

Figure S5.1-3 shows x[n] over −4 ≤ n ≤ 11.

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

n

0

1

x[
n]

Figure S5.1-3

(b) Referring to x[n] from part (a), we see that we can express y[n] as

y[n] = x[n+ 1] + 2x[n] + 3x[n− 1].
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Taking the z-transform, we obtain

Y [z] = zX [z] + 2X [z] + 3z−1X [z].

Substituting the expression X [z] = z2

z3−1 , we obtain

Y [z] =
z3 + 2z2 + 3z

z3 − 1
.

Solution 5.1-4

(a)

X [z] =
∞∑

n=m

z−n = z−m + z−(m+1) + z−(m+2) + · · ·

= z−m

[
1 +

1

z
+

1

z2
+ · · ·

]

= z−m

(
1

1− 1
z

)
=

z

zm(z − 1)
, |z| > 1.

(b) Notice that γn sinπnu[n] = 0 for all n. Hence,

X [z] = 0, all z.

(c) Since γn cosπnu[n] = (−γ)nu[n], we see that

X [z] =
z

z + γ
, |z| > |γ|.

(d) Here, γn sin πn
2 u[n] is a sequence

0, γ1, 0, −γ3, 0, γ5, 0, −γ7, . . . .

Hence,

X [z] =

(
γ

z
+

γ5

z5
+

γ9

z9
+ · · ·

)
−
(
γ3

z3
+

γ7

z7
+

γ11

z11
+ · · ·

)

=
γ

z

[
1 +

(γ
z

)4
+
(γ
z

)8
+ · · ·

]
−
(γ
z

)3 [
1 +

(γ
z

)4
+
(γ
z

)8
+ · · ·

]

=
γ

z

[
1

1−
(
γ
z

)4

]
−
(γ
z

)3
[

1

1−
(
γ
z

)4

] ∣∣∣γ
z

∣∣∣ < 1

=
γ

z

[
1−

(γ
z

)2]
[

1

1−
(
γ
z

)4

]

=
γz

z2 + γ2
, |z| > |γ|.

(e) In this case, γn cos πn
2 u[n] is a sequence

1, 0, −γ2, 0, γ4, 0, −γ6, 0, γ8, . . . .
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Hence,

X [z] = 1− γ2

z2
+

γ4

z4
− γ6

z6
+

γ8

z8
− · · ·

=

[
1 +

(γ
z

)4
+
(γ
z

)8
+ · · ·

]
−
(γ
z

)2 [
1 +

(γ
z

)4
+
(γ
z

)8
+ · · ·

]

=

(
1− γ2

z2

)(
1

1− γ4

z4

)

=
z2

z2 + γ2
|z| > |γ|.

(f)
∞∑

k=0

22kδ[n− 2k] = δ[n] + 4δ[n− 2] + 16δ[n− 4] + · · ·

X [z] = 1 +
4

z2
+

16

z4
+

64

z6
+ · · · .

This is a geometric progression with common ratio 4
z2 . Hence,

X [z] =
1

1− 4
z2

=
z2

z2 − 4
|z| > 2.

(g)

X [z] =

∞∑

n=1

γn−1z−n =
1

γ

∞∑

n=1

(γ
z

)n

=
1

γ

[
γ

z
+
(γ
z

)2
+
(γ
z

)3
+ · · ·

]

=
1

γ

[
−1 +

(
1 +

γ

z
+
(γ
z

)2
+
(γ
z

)3
+ · · ·

)]

=
1

γ

[
−1 +

1

1− γ
z

]
=

1

z − γ
, |z| > |γ|.

(h) Here, x[n] = nγnu[n] is a sequence

0, γ, 2γ2, 3γ3, . . . .

Hence,

X [z] =
γ

z
+ 2

(γ
z

)2
+ 3

(γ
z

)3
+ · · · .

Using the results in Sec. B.8.3 with n → ∞ and |z| > |γ|, we obtain

X [z] =
γ/z

[(γ/z)− 1]2
=

γz

(z − γ)2
|z| > |γ|.

(i)

x[n] = nu[n] and X [z] =

∞∑

n=0

nz−n.

Using the results in Sec. B.8.3 with |z| > 1, we obtain

X [z] =
(1/z)

[(1/z)− 1]2
=

z

(z − 1)2
|z| > 1.
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(j)

X [z] =
∞∑

n=0

γn

n!
z−n =

∞∑

n=0

1

n!

(γ
z

)n
.

Recall that

ex =
∞∑

n=0

1

n!
xn.

Therefore,

X [z] = eγ/z, |z| > 0.

(k)

x[n] =
[
2n−1 − (−2)n−1

]
u[n]

X [z] =
1

2

[ ∞∑

n=0

(
2

z

)n

+

∞∑

n=0

(−2

z

)n
]

=
1

2

[
1

1− 2
z

+
1

1 + 2
z

]

=
1

2

[
z

z − 2
+

z

z + 2

]

=
z2

z2 − 4
, |z| > |2|.

(l)

X [z] =

∞∑

n=0

1

n!
(lnα)nz−n =

∞∑

n=0

1

n!

(
lnα

z

)n

.

From the result in part (j) it follows that

X [z] = elnα/z = (elnα)1/z = α1/z , |z| > 0.

Solution 5.1-5

Note that the signal x[n] = nu[n] has z-transform X [z] =
∑∞

n=0 nz
−n = z

(z−1)2 . Thus,∑∞
n=0 n(−3/2)−n is easily found by evaluating the X [z]|z=−3/2. That is,

∑∞
n=0 n(−3/2)−n =

z
(z−1)2

∣∣∣
z=−3/2

= −3/2
(−3/2−1)2 = − 3/2

25/4 = − 12
50 = − 6

25 . Thus,

∞∑

n=0

n(−3/2)−n = − 6

25
= −0.24.

Solution 5.1-6

(a)

u[n]− u[n− 2] = δ[n] + δ[n− 1]

Hence,

u[n]− u[n− 2] ⇐⇒ 1 +
1

z
=

z + 1

z
.
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(b)

γn−2u[n− 2] =
1

γ2
{γnu[n]− δ[n]− γδ[n− 1]}

Hence,

γn−2u[n− 2] ⇐⇒ 1

γ2

[
z

z − γ
− 1− γ

z

]
=

1

z(z − γ)
.

(c)

x [n] = (2)n+1u [n− 1] + (e)n−1u [n] = 4(2)n−1u [n− 1] +
1

e
(e)nu [n]

Therefore,

X [z] =
4

z − 2
+

1

e

z

z − e
.

(d)

x [n] =
[
(2)−n cos

πn

3

]
u [n− 1] = (2)−n cos

πn

3
u [n]− δ [n]

Therefore,

X [z] =
z(z − 0.25)

z2 − 0.5z + 0.25
− 1 =

0.25(z − 1)

z2 − 0.5z + 0.25
.

(e)

x [n] = nγnu [n− 1] = nγnu [n]− 0 = nγnu [n]

Therefore,

X [z] =
γz

(z − γ)2
.

(f) Because n(n− 1)(n− 2) = 0 for n = 0, 1, and 2,

x [n] = n(n− 1)(n− 2)2n−3u [n−m] = n(n− 1)(n− 2)(2)n−3u [n] .

Therefore,

x [n] = (2)−3{n(n− 1)(n− 2)2nu [n]}

and

X [z] = (2)−3

[
3!(2)3z

(z − 2)4

]
=

6z

(z − 2)4
.

(g)

x[n] = (−1)nnu[n]

X [z] = 0− 1

z
+

2

z2
− 3

z3
+

4

z4
− 5

z5
+ · · ·

=

∞∑

n=0

2n

(
1

z2

)n

−
∞∑

n=0

(2n+ 1)

(
1

z2

)2n−1

= 2

∞∑

n=0

n

(
1

z2

)n

− 2

z

∞∑

n=0

n

(
1

z2

)n

− 1

z

∞∑

n=0

(
1

z2

)n
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Using the entries in Sec. B.8.3, we obtain

X [z] =
2z2

(z2 − 1)2
− 2

z

z2

(z2 − 1)2
− z

z2 − 1

=
−z3 + 2z2 − z

(z2 − 1)2

=
−z(z − 1)2

(z + 1)2(z − 1)2

=
−z

(z + 1)2
.

(h)

x[n] =

∞∑

k=0

kδ[n− 2k + 1]

X [z] =

∞∑

n=0

x[n]z−n =

∞∑

n=0

( ∞∑

k=0

kδ[n− 2k + 1]

)
z−n

Interchanging the order of summation and noting that

δ[n− 2k + 1] =

{
1 n = 2k − 1
0 n 6= 2k − 1

.

Thus,

X [z] =

∞∑

k=0

k

( ∞∑

n=0

δ[n− 2k + 1]z−n

)

=

∞∑

k=0

kz−(2k−1)

= z
∞∑

k=0

k

(
1

z2

)k

= z
1/z2

[(1/z)2 − 1]
2

=
z3

(z2 − 1)2
.

Solution 5.1-7

(a)

X [z]

z
=

z − 4

(z − 2)(z − 3)
=

2

z − 2
− 1

z − 3

X [z] = 2
z

z − 2
− z

z − 3

x [n] = [2(2)n − (3)n]u [n]
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(b)

X [z]

z
=

z − 4

z(z − 2)(z − 3)
=

−2/3

z
+

1

z − 2
− 1/3

z − 3

X [z] = −2

3
+

z

z − 2
− 1

3

z

z − 3

x [n] = −2

3
δ [n] +

[
(2)n − 1

3
(3)n

]
u [n]

(c)

X [z]

z
=

e−2 − 2

(z − e−2)(z − 2)
=

1

z − e−2
− 1

z − 2

X [z] =
z

z − e−2
− z

z − 2

x [n] =
[
e−2n − 2n

]
u [n]

(d)

X [z] =
(z − 1)2

z3
=

z2 − 2z + 1

z3
=

1

z
− 2

z2
+

1

z3

Hence,
x[n] = δ[n− 1]− 2δ[n− 2] + δ[n− 3].

(e)

X [z]

z
=

2z + 3

(z − 1)(z − 2)(z − 3)
=

5/2

z − 1
− 7

z − 2
+

9/2

z − 3

X [z] =
5

2

z

z − 1
− 7

z

z − 2
+

9

2

z

z − 3

x [n] =

[
5

2
− 7(2)n +

9

2
(3)n

]
u [n]

(f)
X [z]

z
=

−5z + 22

(z + 1)(z − 2)2
=

3

z + 1
+

k

z − 2
+

4

(z − 2)2

Multiply both sides by z and let z → ∞. This yields

0 = 3 + k + 0 =⇒ k = −3.

Thus,

X [z] = 3
z

z + 1
− 3

z

z − 2
+ 4

z

(z − 2)2

x [n] = [3(−1)n − 3(2)n + 2n(2)n]u [n] .

(g)
X [z]

z
=

1.4z + 0.08

(z − 0.2)(z − 0.8)2
=

1

z − 0.2
+

k

z − 0.8
+

2

(z − 0.8)2

Multiply both sides by z and let z → ∞. This yields

0 = 1 + k =⇒ k = −1.
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Thus,

X [z] =
z

z − 0.2
− z

z − 0.8
+ 2

z

(z − 0.8)2

x [n] =

[
(0.2)n − (0.8)n +

5

2
n(0.8)n

]
u [n] .

(h) From Table 5.1, we use pair 12c with A = 1, B = −2, a = −0.5, |γ| = 1. Therefore,

r =
√
4 = 2 β = cos−1(

0.5

1
) =

π

3
θ = tan−1(

1√
3
) =

π

3

x [n] = 2(1)n cos(
πn

3
+

π

3
)u [n] = 2 cos(

πn

3
+

π

3
)u [n] .

(i)
X [z]

z
=

2z2 − 0.3z + 0.25

z(z2 + 0.6z + 0.25)
=

1

z
+

Az +B

z2 + 0.6z + 25

Multiply both sides by z and let z → ∞. This yields

2 = 1 +A =⇒ A = 1.

Setting z = 1 on both sides yields

1.95

1.85
= 1 +

1 +B

1.85
=⇒ B = −0.9

X [z] = 1 +
z(z − 0.9)

z2 + 0.6z + 0.25
.

For the second fraction on right side, we use Table 5.1 pair 12c with A = 1, B = −0.9, a = 0.3,
and |γ| = 0.5. This yields

r =
√
10 β = cos−1(

−0.3

0.5
) = 2.214 θ = tan−1(

1.2

0.4
) = 1.249

x [n] = δ [n] +
√
10(0.5)n cos(2.214n+ 1.249)u [n] .

(j)
X [z]

z
=

2(3z − 23)

(z − 1)(z2 − 6z + 25)
=

−2

z − 1
+

Az +B

z2 − 6z + 25

Multiply both sides by z and let z → ∞. This yields

0 = −2 +A =⇒ A = 2.

Set z = 0 on both sides to obtain

46

25
= 2 +

B

25
=⇒ B = −4

X [z] = −2
z

z − 1
+

z(2z − 4)

z2 − 6z + 25
.

For the second fraction on the right-hand side, we use Table 5.1 pair 12c with A = 2, B = −4,
a = −3, and |γ| = 5. This yields

r =

√
17

2
β = cos−1(

3

5
) = 0.927 θ = tan−1(

−1

4
) = −0.25

x [n] =

[
−2 +

√
17

2
(5)n cos(0.927n− 0.25)

]
u [n] .
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(k)
X [z]

z
=

3.83z + 11.34

(z − 2)(z2 − 5z + 25)
=

1

z − 2
+

Az +B

z2 − 5z + 25

Multiply both sides by z and let z → ∞. This yields

0 = 1 +A =⇒ A = −1.

Setting z = 0 on both sides yields

11.34

−50
= −1

2
+

B

25
=⇒ B = 6.83

X [z] =
z

z − 2
+

z(−z + 6.83)

z2 − 5z + 25
.

For the second fraction on right-hand side, use Table 5.1 pair 12c with A = −1, B = 6.83,
a = −2.5, and |γ| = 5.

r =
√
2 β = cos−1(0.5) =

π

3
θ = tan−1(

−4.33

−4.33
) = −3π

4

x [n] =

[
(2)n +

√
2(5)n cos(

π

3
n− 3π

4
)

]
u [n]

(l)
X [z]

z
=

z(−2z2 + 8z − 7)

(z − 1)(z − 2)3
=

1

z − 1
+

k1
z − 2

+
k2

(z − 2)2
+

2

(z − 2)3

Multiply both sides by z and let z → ∞. This yields

−2 = 1 + k1 =⇒ k1 = −3.

Set z = 0 on both sides to obtain

0 = −1 +
3

2
+

k2
4

− 1

4
=⇒ k2 = −1.

Thus,

X [z] =
z

z − 1
− 3

z

z − 2
− z

(z − 2)2
+ 2

z

(z − 2)3

x [n] =

[
1− 3(2)n − n

2
(2)n +

1

4
n(n− 1)(2)n

]
u [n]

Solution 5.1-8

(a) Long division of 2z3 + 13z2 + z by z3 + 7z2 + 2z + 1 yields

X [z] = 2− 1

z
+

4

z2
+ · · · .

Therefore,
x [0] = 2, x [1] = −1, x [2] = 4.

(b) Long division of 2z4 + 16z3 + 17z2 + 3z by z3 + 7z2 + 2z + 1 yields

X [z] = 2z + 2− 1

z
+

4

z2
+ · · · .

Therefore,
x [−1] = 2, x [0] = 2, x [1] = −1, x [2] = 4.
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Solution 5.1-9

We obtain a series expansion of X [z] in powers of z−1 by dividing the numerator by the denominator
as follows:

z2 + 2z + 3 + 4z−1 + z−2 + 2z−3 + 3z−4 + 4z−5 + · · ·
z4 − 1

)
z6 + 2z5 + 3z4 + 4z3

z6 − z2

2z5 + 3z4 + 4z3 + z2

2z5 − 2z

3z4 + 4z3 + z2 + 2z
3z4 − 3

4z3 + z2 + 2z + 3
4z3 − 4z−1

z2 + 2z + 3 + 4z−1

...

.

After obtaining the first four terms (z2+2z+3+4z−1), the remainder has exactly the same form as
the original denominator, just a 4-lower power of z. Thus, continued division will yield a 4-repeating
sequence of coefficients and

X [z] = z2 + 2z + 3 + 4z−1 + z−2 + 2z−3 + 3z−4 + 4z−5 + · · ·

=

∞∑

k=0

z2−4k + 2z1−4k + 3z−4k + 4z−1−4k.

Inverting, we see that

x[n] = δ[n+ 2] + 2δ[n+ 1] + 3δ[n] + 4δ[n− 1] + δ[n− 2] + 2δ[n− 3] + 3δ[n− 4] + 4δ[n− 5] + · · ·

=

∞∑

k=0

δ[n+ 2− 4k] + 2δ[n+ 1− 4k] + 3δ[n− 4k] + 4δ[n− 1− 4k].

Over −5 ≤ n ≤ 5, we see that

{x[n]}5n=−5 = {0, 0, 0, 1, 2,
n=0

↓
3 , 4, 1, 2, 3, 4}.

Solution 5.1-10

Here,

X [z] =
γz

z2 − 2γz + γ2
.

Long division yields
γz

z2 − 2γz + γ2
=

γ

z
+ 2

(γ
z

)2
+ 3

(γ
z

)3
+ · · · .

Therefore, x [0] = 0, x [1] = γ, x [2] = 2γ2, x [3] = 3γ3, · · · , and

x [n] = nγnu [n] .

Solution 5.1-11

(a) We can express

X [z] = x[0] +
x[1]

z
+

x[2]

z2
+ · · ·
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Let Xn[z] and Xd[z] be the numerator and the denominator polynomials of X [z] with powers
M and N , respectively. If M = N , then the long division of Xn with Xd in power series of
z−1 yields x[0] as a nonzero constant. If N − M = 1, the term x[0] = 0, but x[1], x[2], · · ·
are generally nonzero. In general, if N − M = m, then the long division shows that all
x[0], x[1], · · · , x[m − 1] are zero. Only the terms from x[m] on are generally nonzero. The
difference N −M indicates that the first N −M samples of x[n] are zero.

(b) In this case the first four samples of x[n] are zero. Thus, N −M = 4.

Solution 5.2-1

(a) By definition of the z-transform, we know that

X [z] =
∞∑

n=−∞
x[n]z−n =

m∑

n=0

z−n.

This sum can be found using the result in Sec. B.8.3, as

X [z] =
(1/z)m−1 − 1

(1/z)− 1
=

1− z−m

1− z−1

(b) Since x [n] = u [n]− u [n−m], Table 5.1 tells us that

X [z] =
z

z − 1
− z−m z

z − 1
=

1− z−m

1− z−1
.

Solution 5.2-2

Using properties, we establish that

cos(πn/2)u[n] ⇐⇒ z2

z2+1 (Table 5.1, pair 11a)

−n cos(πn/2)u[n] ⇐⇒z d
dz

(
z2

z2+1

)
(z-domain differentiation)

= z
(

2z
z2+1 − z2

(z2+1)2 (2z)
)
= 2z2

(z2+1)2

x[n] = −(n− 1) cos(π(n− 1)/2)u[n− 1] ⇐⇒z−1 2z2

(z2+1)2 (time shift)

Thus,

X [z] =
2z

(z2 + 1)2
=

2z

z4 + 2z2 + 1
.

Solution 5.2-3

X [z] ⇐⇒ x[n] = 2(u[n− 10]− u[n− 6]) [

n=6

↓
−2, −2, −2, −2]

X [2z] ⇐⇒ (12 )
nx[n] [

n=6

↓
− 1

32 , − 1
64 , − 1

128 , − 1
256 ]

−z d
dzX [2z] ⇐⇒ n(12 )

nx[n] [

n=6

↓
− 3

16 , − 7
64 , − 1

16 , − 9
256 ]

−1

2
z2
(
−z

d

dz
X [2z]

)

︸ ︷︷ ︸
Y [z]

⇐⇒ −1

2
(n+ 2)(

1

2
)(n+ 2)x[n+ 2]

︸ ︷︷ ︸
y[n]

[

n=4

↓
3
32 ,

7
128 ,

1
32 ,

9
512 ]
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More generally in equation form, we have

y[n] = − 1
2 (n+ 2)(12 )

n+22(u[n− 8]− u[n− 4]) = (n+ 2)(12 )
n+2(u[n− 4]− u[n− 8]).

Solution 5.2-4

X [z] ⇐⇒ x[n] = 3(u[n]− u[n− 5]) [

n=0

↓
3 , 3, 3, 3, 3]

X [ z2 ] ⇐⇒ (2)nx[n] [

n=0

↓
3 , 6, 12, 24, 48]

−z d
dzX [ z2 ] ⇐⇒ n(2)nx[n] [

n=0

↓
0 , 6, 24, 72, 192]

−2z−5

(
−z

d

dz
X [

z

2
]

)

︸ ︷︷ ︸
Y [z]

⇐⇒ −2(n− 5)(2)n−5x[n− 5]︸ ︷︷ ︸
y[n]

[

n=5

↓
0 , −12, −48, −144, −384]

More generally in equation form, we have

y[n] = −6(n− 5)(2)n−5(u[n− 5]− u[n− 10]).

Solution 5.2-5

x [n] = δ [n− 1] + 2δ [n− 2] + 3δ [n− 3] + 4δ [n− 4] + 3δ [n− 5] + 2δ [n− 6] + δ [n− 7]

Therefore,

X [z] =
1

z
+

2

z2
+

3

z3
+

4

z4
+

3

z5
+

2

z6
+

1

z7

=
z6 + 2z5 + 3z4 + 4z3 + 3z2 + 2z + 1

z7
.

Alternate Method:

x [n] = n{u [n]− u [n− 5]}+ (−n+ 8){u [n− 5]− u [n− 9]}
= nu [n]− 2nu [n− 5] + nu [n− 9] + 8u [n− 5]− 8u [n− 9]

= nu [n]− 2{(n− 5)u [n− 5] + 5u [n− 5]}
+ (n− 9)u [n− 9] + 9u [n− 9] + 8u [n− 5]− 8u [n− 9]

= nu [n]− 2(n− 5)u [n− 5] + (n− 9)u [n− 9]− 2u [n− 5] + u [n− 9]

Therefore,

X [z] =
z

(z − 1)2
− 2z

z5(z − 1)2
+

z

z9(z − 1)2
− 2z

z5(z − 1)
+

z

z9(z − 1)

=
z

z9(z − 1)2
[
z9 − 2z4 + 1− 2z4(z − 1) + (z − 1)

]

=
1

z7(z − 1)2
[
z8 − 2z4 + 1

]
.

To verify that this answer matches the first, we use MATLAB. First, we root out the numerator
polynomial.

>> numroots = roots([1 0 0 0 -2 0 0 0 1]).’

numroots = -1 -1 1i -1i 1i -1i 1 1
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Thus,

X [z] =
(z + 1)2(z − j)2(z + j)2(z − 1)2

z7(z − 1)2
=

(z + 1)2(z − j)2(z + j)2

z7
.

Next, we expand the remaining numerator terms.

>> poly([-1 -1 -1j -1j 1j 1j])

ans = 1 2 3 4 3 2 1

Thus,

X [z] =
(z + 1)2(z − j)2(z + j)2

z7
=

z6 + 2z5 + 3z4 + 4z3 + 3z2 + 2z + 1

z7
.

This result verifies the answer from the second method exactly matches the result from the first
method.

Solution 5.2-6

To begin, we note that

(
1

2

)n

u[n− 3] =

(
1

2

)3(
1

2

)n−3

u[n− 3] ⇐⇒
(
1

2

)3

z−3 z

z − 1
2

and (
1

3

)n−6

u[n− 4] =

(
1

3

)−2(
1

3

)n−4

u[n− 4] ⇐⇒ 9z−4 z

z − 1
3

.

We are intersted in y[n] = (12 )
nu[n− 3] ∗ (13 )n−6u[n− 4]. From Table 5.2 we know that convolution

in the time-domain yields multiplication in the z-domain. Thus,

Y [z] =

(
1

2

)3

z−3 z

z − 1
2

9z−4 z

z − 1
3

=
9

8
z−7 z2

(z − 1
2 )(z − 1

3 )
.

Using modified partial fractions, we see that

Y [z]

z
=

9

8
z−6

(
6

z − 1
2

+
−6

z − 1
3

)
.

Thus,

Y [z] =
54

8
z−6

(
z

z − 1
2

− z

z − 1
3

)
.

Inverting, we obtain

y[n] =
27

4

[(
1

2

)n−6

−
(
1

3

)n−6
]
u[n− 6].

Comparing to the form y[n] = c1γ
n−N1
1 u[n−N1] + c2γ

n−N2
2 u[n−N2], we see that

c1 =
27

4
, c2 = −27

4
, γ1 =

1

2
, γ2 =

1

3
, N1 = 6, N2 = 6.

Solution 5.2-7

To begin, we express X [z] as

X [z] =
(
z−1
︸︷︷︸
delay
by 1

z
d

dz︸︷︷︸
mult
by −n

)7

︸ ︷︷ ︸
apply 7×

[
z−5

( 2
7z

z − 1
2

+
− 2

7z

z + 3

)]
.
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Inverting the part in square brackets yields

z−5

( 2
7z

z − 1
2

+
− 2

7z

z + 3

)
⇐⇒ 2

7

[
(12 )

n−5 − (−3)n−5
]
u[n− 5].

Applying the first z−1z d
dz term yields

z−1z
d

dz

[
z−5

( 2
7z

z − 1
2

+
− 2

7z

z + 3

)]
⇐⇒ (1 − n)27

[
(12 )

n−6 − (−3)n−6
]
u[n− 6].

Applying the second z−1z d
dz term yields

(
z−1z

d

dz

)2 [
z−5

( 2
7z

z − 1
2

+
− 2

7z

z + 3

)]
⇐⇒ (1 − n)(2− n)27

[
(12 )

n−7 − (−3)n−7
]
u[n− 7].

Continuing to the seventh z−1z d
dz term yields the final result of

x[n] =
2

7

(
7∏

i=1

(i− n)

)
[
(12 )

n−12 − (−3)n−12
]
u[n− 12].

Solution 5.2-8

(a) Consider

γnu[n] ⇐⇒ z

z − γ
.

Application of the multiplication property Eq. (5.18) to this pair yields

nγnu[n] ⇐⇒ −z
d

dz

(
z

z − γ

)
=

γz

(z − γ)2
.

One more application of the multiplication property yields

n2γnu[n] ⇐⇒ −z
d

dz

(
γz

(z − γ)2

)
=

γz(z + γ)

(z − γ)3
.

Letting γ = 1, we obtain

n2u [n] ⇐⇒ z(z + 1)

(z − 1)3
.

(b) Consider

γnu[n] ⇐⇒ z

z − γ
.

Application of the multiplication property Eq. (5.18) to this pair yields

nγnu[n] ⇐⇒ −z
d

dz

(
z

z − γ

)
=

γz

(z − γ)2
.

One more application of the multiplication property yields

n2γnu[n] ⇐⇒ −z
d

dz

(
γz

(z − γ)2

)
=

γz(z + γ)

(z − γ)3
.
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(c) Application of Eq. (5.18) to n2γnu [n] ⇐⇒ γz(z+γ)
(z−γ)3 (found in part a) yields

n3γnu [n] = −z
d

dz

(
γz(z + γ)

(z − γ)3

)
=

γz(z2 + 4γz + γ2)

(z − γ)4
.

Setting γ = 1 in this result yields

n3u [n] =
z(z2 + 4z + 1)

(z − 1)4

(d)

x [n] = an{u [n]− u [n−m]}
= anu [n]− ama(n−m)u [n−m]

X [z] =
z

z − a
− amz

z − a
z−m =

z

z − a

[
1−

(a
z

)m]

(e)

x [n] = ne−2nu [n−m] = (n−m+m)e−2(n−m+m)u [n−m]

= e−2m(n−m)e−2(n−m)u [n−m] +me−2me−2(n−m)u [n−m]

Using γnu[n]⇐⇒z/(z − γ) and the intermediate result of part (a), we obtain

X [z] = e−2m e−2z

(z − e−2)2
z−m +me−2m

(
z

z − e−2

)
z−m

=
z−m+1e−2m

(z − e−2)2

[
1

e2
(1−m) +mz

]
.

(f)

x[n] = (n− 2)(0.5)n−3u[n− 4]

=
1

2
(n− 4 + 2)(0.5)n−4u[n− 4]

=
1

2
(n− 4)(0.5)n−4u[n− 4] + (0.5)n−4u[n− 4]

Application of shift property yields

x[n] ⇐⇒ 1

2

[
0.5z

z4(z − 0.5)2

]
+

z

z4(z − 0.5)

or

X [z] =
0.25

z3(z − 0.5)2
+

1

z3(z − 0.5)
=

z − 0.25

z3(z − 0.5)2
.

Solution 5.2-9

Using only pair 1 in Table 5.1 and appropriate properties of the z-transform, we here iteratively
derive pairs 2 through 9. From pair 1, we know that

δ[n] ⇐⇒ 1
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To derive pair 2, we first express u[n] as

u[n] = δ[n] + δ[n− 1] + δ[n− 2] + · · · =
∞∑

k=0

δ[n− k].

Using the time-shifting and linearity properties, we therefore see that

u[n] ⇐⇒
∞∑

k=0

z−k =
1

1− z−1
=

z

z − 1
.

To derive pair 3, we use the differentiation-in-z property as

nu[n] ⇐⇒ −z
d

dz

(
z

z − 1

)
=

z

(z − 1)2
.

Applying the differentiation-in-z property to this result yields pair 4 as

n2u[n] ⇐⇒ −z
d

dz

(
z

(z − 1)2

)
=

z(z + 1)

(z − 1)3
.

Again applying the differentiation-in-z property to this result yields pair 5 as

n3u[n] ⇐⇒ −z
d

dz

(
z(z + 1)

(z − 1)3

)
=

z(z2 + 4z + 1)

(z − 1)4
.

To derive pair 6, we use the z-domain scaling property, which states that

γnx[n] ⇐⇒ X

(
z

γ

)
.

Applying this property to pair 2, we obtain pair 6 as

γnu[n] =

z
γ

z
γ − 1

=
z

z − γ
.

Applying the time-shifting property to this result, we obtain pair 7 as

γn−1u[n− 1] ⇐⇒ z−1 z

z − γ
=

1

z − γ
.

We next apply the z-domain differentiation property to pair 6 to obtain pair 8 as

nγnu[n] ⇐⇒ −z
d

dz

(
z

z − γ

)
=

−z

z − γ
+

z2

(z − γ)2
=

γz

(z − γ)2
.

Applying the z-domain differentiation property to this result, we obtain pair 9 as

n2γnu[n] ⇐⇒ −z
d

dz

(
γz

(z − γ)2

)
=

−γz

(z − γ)2
+ 2

γz2

(z − γ)3
=

γz(z + γ)

(z − γ)3
, |z| > |γ|.

Solution 5.2-10

Letting |γ| = 1, pair 11b in Table 5.1 tells us that

sin(βn)u[n]
Z⇐⇒ z sin(β)

z2 − 2 cos(β)z + 1
.
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To make use of this pair, we next express x[n] as

x[n] = cos
(π
4
n
)
u[n] = − sin

(π
4
n− π

2

)
u[n] = − sin

[π
4
(n− 2)

]
u[n]

= − sin
[π
4
(n− 2)

]
u[n− 2]− sin

(
−π

2

)
δ[n]− sin

(
−π

4

)
δ[n− 1]

= − sin
[π
4
(n− 2)

]
u[n− 2] + δ[n] +

1√
2
δ[n− 1].

Now, applying pairs 1 and 11b in Table 5.1 and the time-shifting property, we obtain

X [z] = Z
{
cos
(π
4
n
)
u[n]

}
= z−2

−z√
2

z2 −
√
2z + 1

+ 1 +

1√
2

z

=
− 1√

2
+ z3 −

√
2z2 + z + 1√

2
z2 − z + 1√

2

z(z2 −
√
2z + 1)

=
z
(
z − 1√

2

)

z2 −
√
2z + 1

.

As expected, this result matches pair 11a of Table 5.1.

Solution 5.2-11

Application of the time-reversal property to pair 6 yields

β−nu[−n] ⇐⇒ 1/z

1/z − β
=

1

1− βz
, |z| < 1/β.

Moreover,

β−nu[−n− 1] = β−nu[−n]− δ[n].

Hence,

β−nu[−n− 1] ⇐⇒ 1

1− βz
− 1 =

βz

1− βz
, |z| < 1/β.

Setting β = 1/γ, we obtain the desired result of

γnu[−n− 1] =
−z

z − γ
|z| < |γ|.

Solution 5.2-12

(a)

(−1)nx[n] ⇐⇒
∞∑

n=0

(−1)nx[n]

zn
=

∞∑

n=0

x[n]

(−z)n
= X [−z]

(b) Application of (a) to pair 6 of Table 5.1 yields

(−1)nγnu[n] = (−γ)nu[n] ⇐⇒ −z

−z − γ
=

z

z + γ
.

(c) (i)

2n−1u[n] =
1

2
2nu[n] ⇐⇒ 1

2

z

z − 2
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Application of (b) to this result yields

(−2)n−1u[n] = −1

2
(−2)nu[n] ⇐⇒ −1

2

z

z + 2
.

Hence,

xi[n] =
[
2n−1 − (−2)n−1

]
u[n] ⇐⇒ Xi[z] =

1

2

[
z

z − 2
+

z

z + 2

]
=

z2

z2 − 4
.

(ii) To begin, we note that
γn cosπnu[n] = (−γ)nu[n].

Hence,

xii[n] = γn cosπnu[n] ⇐⇒ Xii[z] =
z

z + γ

Solution 5.2-13

(a) To begin, notice that we can represent the accumulation of x[n] as

n∑

k=0

x[k] =
∞∑

k=0

x[k]u[n− k] = x[n] ∗ u[n] = u[n] ∗ x[n].

Using the time-convolution property and pair 2 of Table 5.1 yields

n∑

k=0

x[k] = u[n] ∗ x[n] ⇐⇒ z

z − 1
X [z].

This is the desired result.

(b) From pair 1 of Table 5.1, we know that x[n] = δ[n] has z-transform X [z] = 1. To derive pair
2, we first note that

u[n] =

n∑

k=0

δ[n] =

n∑

k=0

x[n].

Using the results of part (a), we see that

u[n] =

n∑

k=0

x[n] ⇐⇒ z

z − 1
(1) =

z

z − 1
.

This matches pair 2 of Table 5.1, as desired.

Solution 5.2-14

(a) In the time-domain, z2

(z−0.75)2 is a convolution of two causal, decaying exponentials. Thus,

either plot 1 or plot 13 is possible. Using the IVT, the initial value is limz→∞
z2

(z−0.75)2 = 1.

Thus,

Plot 13 corresponds to
z2

(z − 0.75)2
.

(b) In the time-domain, z2−0.9z/
√
2

z2−0.9
√
2z+0.81

is a decaying sinusoid. Thus, either plot 8 or plot 9 is

possible. Using the IVT, the initial value is limz→∞
z2−0.9z/

√
2

z2−0.9
√
2z+0.81

= 1. Thus,

Plot 9 corresponds to
z2 − 0.9z/

√
2

z2 − 0.9
√
2z + 0.81

.
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(c) Note that
∑4

k=0 z
−2k = 1 + z−2 + z−4 + z−6 + z−8. Thus, the time-domain signal is δ[n] +

δ[n− 2] + δ[n− 4] + δ[n− 6] + δ[n− 8] and

Plot 18 corresponds to

4∑

k=0

z−2k.

(d) By inspection, z−5

1−z−1 corresponds to a unit step that is shifted to the right by five. Thus,

Plot 10 corresponds to
z−5

1− z−1
.

(e) Using synthetic division on z2

z4−1 yields (z−2+ z−6+ z−10+ . . . ). In the time-domain, the first
non-zero term therefore occurs at n = 2. Thus,

Plot 15 corresponds to
z2

z4 − 1
.

(f) In the time-domain, 0.75z
(z−0.75)2 is a convolution of two causal, decaying exponentials. Thus,

either plot 1 or plot 13 is possible. Using the IVT, the initial value is limz→∞
0.75z

(z−0.75)2 = 0.

Thus,

Plot 1 corresponds to
0.75z

(z − 0.75)2
.

(g) In the time-domain, z2−z/
√
2

z2−
√
2z+1

has the form of a sinusoid. Thus, either plot 3 or plot 4 is

possible. Using the IVT, the initial value is limz→∞
z2−z/

√
2

z2−
√
2z+1

= 1. Thus,

Plot 4 corresponds to
z2 − z/

√
2

z2 −
√
2z + 1

.

(h) The apparent repeated root at z = 1 of z−1−5z−5+4z−6

5(1−z−1)2 suggests a signal that grows lin-

early in the time-domain. Thus, plot 6 or plot 12 are possible. To distinguish be-
tween the two, first determine whether or not a root at z = 1 really exists. First,

limz→1
z−1−5z−5+4z−6

5(1−z−1)2 = limz→1
z5−5z+4
5(z3−z2)2 = limz→1

z5−5z+4
5(z6−2z5+z4) = 0/0. This is inde-

terminant so use L’Hospital’s rule: limz→1
z−1−5z−5+4z−6

5(1−z−1)2 = limz→1

d
dz (z

5−5z+4)
d
dz (5z

6−10z5+5z4)
=

limz→1
5z4−5

30z5−50z4+20z3 = 0/0. This too is indeterminant so use L’Hospital’s rule again:

limz→1
z−1−5z−5+4z−6

5(1−z−1)2 = limz→1

d2

dz2
(z5−5z+4)

d2

dz2
(5z6−10z5+5z4)

= limz→1
20z3

150z4−200z3+60z2 = 20/10 = 2.

Since limz→1
z−1−5z−5+4z−6

5(1−z−1)2 = 2 6= ∞, no root exists at z = 1 and

Plot 6 corresponds to
z−1 − 5z−5 + 4z−6

5(1− z−1)2
.

(i) In the time-domain, z
z−1.1 is a growing exponential due to the root outside the unit circle.

Thus, plot 16 or plot 17 is possible. Using the IVT, the initial value is limz→∞
z

z−1.1 = 1.
Thus,

Plot 16 corresponds to
z

z − 1.1
.
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(j) In the time-domain, 0.25z−1

(1−z−1)(1−0.75z−1) is the convolution of a decaying sinusoid and a

unit step. Thus, plot 7 or plot 11 are possible. Using the IVT, the initial value is

limz→∞
0.25z−1

(1−z−1)(1−0.75z−1) = 0. Thus,

Plot 7 corresponds to
0.25z−1

(1− z−1)(1− 0.75z−1)
.

Solution 5.2-15

To begin, we express x[n] using the sifting property and show the corresponding z-transform as

x[n] =
∞∑

k=−∞
x[k]δ[n− k] ⇐⇒ X [z] =

∞∑

k=−∞
x[k]z−k.

This notation is particularly convenient for upsampling, which replaces δ[n − k] with δ[n − Nk].
Thus, upsampling x[n] by N produces y[n] as

y[n] =
∞∑

k=−∞
x[k]δ[n−Nk] ⇐⇒ Y [z] =

∞∑

k=−∞
x[k]z−Nk = X [zN ].

Clearly,
Y [z] = X [zN ], where ROC Ry is Rx with z replaced by zN .

Solution 5.3-1

Here, we use z-transform techniques to find the output y[n] of an LTID system specified by the
equation y[n] − 1

3y[n − 1] = x[n − 1] when the initial condition is y[−1] = 2 and the input is
x[n] = −u[n]. First, we take the unilateral z-transform of the difference equation to obtain

Y [z]− 1
3 (z

−1Y [z] + y[−1]) = z−1X [z] = − 1
z−1 .

Rearranging, we obtain
Y [z](1− 1

3z
−1) = − 1

z−1 + 2
3 .

Solving for Y [z]/z, we obtain

Y [z]
z = −1

(z− 1
3 )(z−1)

+
2
3

z− 1
3

=
3
2

z− 1
3

+
− 3

2

z−1 +
2
3

z− 1
3

=
13
6

z− 1
3

+
− 3

2

z−1 .

Inverting, the solution is therefore

y[n] =
(
13
6

(
1
3

)n − 3
2

)
u[n].

Solution 5.3-2

This problem considers an LTID system y[n] − y[n − 2] = x[n] with y[−1] = 0, y[−2] = 1, and
x[n] = u[n].

(a) Taking the unilateral z-transform of the difference equation, we obtain

Y [z](1− z−2)− z−1y[−1]− y[−2] = X [z] = z
z−1 .

Rearranging yields
Y [z](1− z−2) = z

z−1 + 1 = 2z−1
z−1 .

Solving for Y [z] we obtain

Y [z] =

(
2z − 1

z − 1

)
1

1− z−2
=

z2(2z − 1)

(z − 1)(z2 − 1)
.
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Written in factored form, we obtain

Y [z] =
2(z)(z)(z − 1

2 )

(z − 1)(z − 1)(z + 1)
.

(b) Using the result from part (a), we see that

Y [z]

z
=

2z(z − 1
2 )

(z − 1)(z − 1)(z + 1)
=

a0
(z − 1)2

+
a1

z − 1
+

k1
z + 1

.

Using the Heaviside cover-up method, we see that

a0 =
2(1)( 1

2 )

2 = 1
2 and k1 =

2(−1)(− 3
2 )

(−2)(−2) = 3
4 .

To find a1, multiply both sides by (z − 1) and let z → ∞,

2 = a1 + 0 + k1 ⇒ a1 =
5

4
.

Thus,

Y [z] =
1
2z

(z − 1)2
+

5
4z

z − 1
+

3
4z

z + 1
.

Using Table 5.1 to invert, the result is

y[n] =
(
1
2n+ 5

4 + 3
4 (−1)n

)
u[n].

Solution 5.3-3

We model the system as
y [n+ 1]− γy [n] = x [n+ 1]

with y [0] = −M , x [n] = Pu [n− 1]. Thus,

X [z] =
P

z − 1

y [n] ⇐⇒ Y [z] y [n+ 1] ⇐⇒ zY [z] +Mz.

The z-transform of the system equation is

zY [z] +Mz − γY [z] =
Pz

z − 1

(z − γ)Y [z] = −M +
Pz

z − 1

and

Y [z] =
−Mz

z − γ
+

Pz

(z − γ)(z − 1)

Y [z]

z
=

−M

z − γ
+

P

(z − γ)(z − 1)
=

−M

z − γ
+

P

γ − 1

[
1

z − γ
− 1

z − 1

]

Y [z] = −M
z

z − γ
+

P

γ − 1

[
z

z − γ
− z

z − 1

]

y [n] =

[
−Mγn +

P (γn − 1)

r

]
u [n] r = γ − 1
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The loan balance is zero for n = N , that is, y [N ] = 0. Setting n = N in the above equation we
obtain

y [N ] =

[
−MγN +

P (γN − 1)

r

]
= 0.

This yields

P =
rγN

γN − 1
M =

rM

1− (1 + r)−N
.

Solution 5.3-4

Here,

H [z] = Y [z]
X[z] =

2z−2
z− 1

2

⇒ (z − 1
2 )Y [z] = (2z − 2)X [z].

Inverting, the system difference equation is

y[n]− 1
2y[n− 1] = 2x[n]− 2x[n− 1].

The zero-input response requires we set x[n] = 0. Thus,

yzir[n]− 1
2yzir[n− 1] = 0.

Taking the unilateral z-transform yields

Yzir[z]− 1
2

(
z−1Yzir[z] + y[−1]

)
− 0.

Using y[−1] = 1, we see that

Yzir[z]
(
1− 1

2z
−1
)
= 1

2y[−1] = 1
2 .

Thus,

Yzir[z] =
1
2 z

z− 1
2

and

yzir[n] =
1
2 (

1
2 )

nu[n].

Solution 5.3-5

(a) Because part (b) requires us to separate the response into zero-input and zero-state compo-
nents, we shall start with the delay operator form of the equations, as

y[n] + 2y[n− 1] = x[n].

To determine the initial condition y[−1], we set n = 0 in this equation and substitute y[0] = 1
to obtain

1 + 2y[−1] = x[0] = e =⇒ y[−1] = (e − 1)/2.

The z-transform of the delay form of equation yields

Y [z] + 2

[
1

z
Y [z] +

e− 1

2

]
=

ez

z − e−1
.

Rearranging the terms yields

Y [z]

z
=

1

z + 2

[
(1− e) +

ez

z − e−1

]
.
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The term (1 − e) on the right-hand side is due to the initial condition, and hence represents
the zero-input component. The second term on the right-hand side represents the zero-state
component of the response. Thus,

Y [z]

z
=

1− e

z + 2
+

[
ez

(z − e−1)(z + 2)

]

=
1− e

z + 2
+

2e2

(2e+ 1)(z + 2)
+

e

(2e+ 1)(z − e−1)

and

Y [z] = (1− e)
z

z + 2
+

2e2

2e+ 1

z

z + 2
+

e

2e+ 1

z

z − e−1
.

The first term on the right-hand side is the zero-input component and the remaining two terms
represent the zero-state component. Thus,

y[n] = (1− e)(−2)nu[n]︸ ︷︷ ︸
zir

+
2e2

2e+ 1
(−2)nu[n] +

e

2e+ 1
e−nu[n]

︸ ︷︷ ︸
zsr

.

The total response is

y[n] =
1

2e+ 1

[
(e + 1)(−2)n + e−(n−1)

]
u[n].

(b) Referring to part (a), we see that

yzir[n] = (1− e)(−2)nu[n]

and

yzsr[n] =
2e2

2e+ 1
(−2)nu[n] +

e

2e+ 1
e−nu[n].

Solution 5.3-6

(a) Taking the z-transform of the difference equation (0 ICs) yields

Yzsr[z]− 1
4z

−2Yzsr[z] = z−1X [z].

Since x[n] = 3u[n− 5], we see that

Yzsr[z]
(
1− 1

4z
−2
)
= z−13z−5 z

z−1 .

Solving for Yzsr[z] yields

Yzsr[z] =
3z−5

(z−1)(1− 1
2 z

−1)(1+ 1
2 z

−1)
= 3z−3

(z−1)(z− 1
2 )(z+

1
2 )
.

The modified partial fraction expansion is thus

Yzsr[z]
z = 3z−4

(
4
3

z−1 + −2
z− 1

2

+
2
3

z+ 1
2

)
.

Inverting, we obtain

yzsr[n] =
(
4− 6(12 )

n−4 + 2(− 1
2 )

n−4
)
u[n− 4].
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(b) Taking the unilateral z-transform of the difference equation with x[n] = 0 yields

Yzir[z]− 1
4

[
z−2Yzir[z] + z−2(y[−1]z1 + y[−2]z2)

]
= 0.

Substituting yzir[−2] = yzir[−1] = 1 and then rearranging yield

Yzir[z]
(
1− 1

4z
−2
)
= 1

4 + 1
4z

−1.

Thus,
Yzir[z]

z =
1
4 (z+1)

z2− 1
4

=
3
8

z− 1
2

+
− 1

8

z+ 1
2

.

Inverting yields

yzir[n] =
(
3
8 (

1
2 )

n − 1
8 (− 1

2 )
n
)
u[n].

Solution 5.3-7

(a) The system equation in delay form is

2y [n]− 3y [n− 1] + y [n− 2] = 4x [n]− 3x [n− 1] .

Also

y [n] ⇐⇒ Y [z], y [n− 1] ⇐⇒ 1

z
Y [z], y [n− 2] ⇐⇒ 1

z2
Y [z] + 1,

x [n] ⇐⇒ X [z] =
z

z − 0.25
, and x [n− 1] ⇐⇒ 1

z − 0.25
.

The z-transform of the equation is

2Y [z]− 3

z
Y [z] +

1

z2
Y [z] + 1 =

4z

z − 0.25
− 3

z − 0.25
=

4z − 3

z − 0.25

or (
2− 3

z
+

1

z2

)
Y [z] = −1 +

4z − 3

z − 0.25
=

3z − 2.75

z − 0.25
.

Thus,

Y [z]

z
=

z(3z − 2.75)

(2z2 − 3z + 1)(z − 0.25)

=
z(3z − 2.75)

2(z − 0.5)(z − 1)(z − 0.25)

=
5/2

z − 1/2
+

1/3

z − 1
− 4/3

z − 0.25

y [n] =

[
1

3
+

5

2
(0.5)n − 4

3
(0.25)n

]
u [n]

=

[
1

3
+

5

2
(2)−n − 4

3
(4)−n

]
u [n] .

(b) From part (a), we have

(
2− 3

z
+

1

z2

)
Y [z] = −1︸︷︷︸

zero-input

+
4z − 3

z − 0.25︸ ︷︷ ︸
zero-state
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2z2 − 3z + 1

z2
Y [z] = −1 +

4z − 3

z − 0.25
.

Thus,

Y [z]

z
=

−z

2(z − 0.5)(z − 1)︸ ︷︷ ︸
zero-input

+
z(4z − 3)

2(z − 0.5)(z − 1)(z − 0.25)︸ ︷︷ ︸
zero-state

=
0.5

z − 0.5
− 1

z − 1
+

2

z − 0.5
+

4

3

1

z − 1
− 4

3

1

z − 0.25

and

Y [z] = 0.5
z

z − 0.5
− z

z − 1
+ 2

z

z − 0.5
+

4

3

z

z − 1
− 4

3

z

z − 0.25
.

Inverting yields

y[n] =

[
1

2
(0.5)n − 1

]
u[n]

︸ ︷︷ ︸
yzir[n]

+

[
2(0.5)n +

4

3
− 4

3
(0.25)n

]
u[n]

︸ ︷︷ ︸
yzsr[n]

.

(c) Given the total response, it is easy to separate the transient and steady-state components as

y[n] =

[
2.5(0.5)n − 4

3
(0.5)n

]
u[n]

︸ ︷︷ ︸
ytransient[n]

+
1

3
u[n]
︸ ︷︷ ︸

ysteady−state[n]

Solution 5.3-8

(a) For initial conditions y [0], y [1], we require the difference equation to be in advance form:

2y [n+ 2]− 3y [n+ 1] + y [n] = 4x [n+ 2]− 3x [n+ 1] .

Also,

y [n] ⇐⇒ Y [z], y [n+ 1] ⇐⇒ zY [z]− 3

2
z, y [n+ 2] ⇐⇒ z2Y [z]− 3

2
z2 − 35

4
z,

x [n] ⇐⇒ X [z] =
z

z − 0.25
, x [n+ 1] ⇐⇒ zX [z]− z =

0.25z

z − 0.25
,

and

x [n+ 2] ⇐⇒ z2X [z]− z2 − 1

4
z =

z

16(z − 0.25)
.

The z-transform of the equation is

2

[
z2Y [z]− 3

2
z2 − 35

4
z

]
− 3

[
zY [z]− 3

2
z

]
+ Y [z] =

−z/2

z − 0.25

or

(2z2 − 3z + 1)Y [z] =
z(3z2 + 12.25z − 3.75)

(z − 0.25)
.

Thus,
Y [z]

z
=

3z2 + 12.25z − 3.75

2(z − 0.25)(z − 1)(z − 0.5)
=

46/3

z − 1
− 4/3

z − 0.25
− 25/2

z − 0.5
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and

Y [z] =
46

3

z

z − 1
− 4

3

z

z − 0.25
− 25

2

z

z − 0.5
.

Inverting, we obtain

y [n] =

[
46

3
− 4

3
(0.25)n − 25

2
(0.5)n

]
u [n] .

(b) The solution to Prob. 5.3-7 determined a system output of

[
1

2
(0.5)n − 1

]
u[n]

︸ ︷︷ ︸
yzir[n]

+

[
2(0.5)n +

4

3
− 4

3
(0.25)n

]
u[n]

︸ ︷︷ ︸
yzsr[n]

.

Since the input and system are the same in this problem as they were in Prob. 5.3-7, the
zero-state response remains unchanged as

yzsr[n] =
[
2(0.5)n + 4

3 − 4
3 (0.25)

n
]
u[n].

The zero-input response is just yzsr[n] subtracted from the total response found in part (a),

yzir[n] =
[
42
3 − 29

2 (0.5)
n
]
u[n].

(c) Using the result in part (a), it is easy to separate the transient and steady-state components
as

y [n] =

[
−4

3
(0.25)n − 25

2
(0.5)n

]
u[n]

︸ ︷︷ ︸
ytransient[n]

+
46

3
u[n]

︸ ︷︷ ︸
ysteady−state[n]

.

Solution 5.3-9

(a) System equation in delay form is

4y [n] + 4y [n− 1] + y [n− 2] = x [n− 1] .

Also,

y [n] ⇐⇒ Y [z], y [n− 1] ⇐⇒ 1

z
Y [z], y [n− 2] ⇐⇒ 1

z2
Y [z] + 1

x [n] ⇐⇒ z

z − 1
, and x [n− 1] ⇐⇒ 1

z − 1
(x [−1] = 0).

The z-transform of the system equation is

4Y [z] +
4

z
Y [z] +

1

z2
Y [z] + 1 =

1

z − 1
(5.3-9a)

4z2 + 4z + 1

z2
Y [z] =

2− z

z − 1
. (5.3-9b)

Thus,

Y [z]

z
=

z(2− z)

4(z − 1)(z2 + z + 0.25)
=

z(2− z)

4(z − 1)(z + 0.5)2

=
1

4

[
4/9

z − 1
− 13/9

z + 0.5
+

5/6

(z + 0.5)2

]
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and

Y [z] =
1

4

[
4

9

z

z − 1
− 13

9

z

z + 0.5
+

5

6

z

(z + 0.5)2

]
.

Inverting yields

y [n] =

[
1

9
− 13

36
(−0.5)n − 5

12
n(−0.5)n

]
u [n] .

(b) To find the zero-input and the zero-state components, we observe that the only term arising
because of the initial conditions is 1 on the left-hand side of Eq. (5.3-9a). Hence, we can
rewrite Eq. (5.3-9b) with explicit zero-input and zero-state components as

4z2 + 4z + 1

z2
Y [z] = −1 +

1

z − 1

Here, −1 on the right-hand side represents the zero-input term and the second term on the
right-hand side represents the zero-state component. Rearranging the equation, we obtain

Y [z]

z
=

z

4(z + 0.5)2

[
−1 +

1

z − 1

]

=
−z

4(z + 0.5)2︸ ︷︷ ︸
zero-input

+
z

4(z − 1)(z + 0.5)2︸ ︷︷ ︸
zero-state

=
−1/4

z + 0.5
+

1/8

(z + 0.5)2︸ ︷︷ ︸
zero-input

+
1/9

z − 1
− 1/9

z + 0.5
+

1/12

(z + 0.5)2︸ ︷︷ ︸
zero-state

Therefore

Y [z] =
(−1/4)z

z + 0.5
+

(1/8)z

(z + 0.5)2︸ ︷︷ ︸
zero-input

+
(1/9)z

z − 1
− (1/9)z

z + 0.5
+

(1/12)z

(z + 0.5)2︸ ︷︷ ︸
zero-state

Inverting yields

y[n] =

[−1

4
(−0.5)n − n(−0.5)n

4

]
u[n]

︸ ︷︷ ︸
yzir[n]

+

[
1

9
− (−0.5)n

9
− n(−0.5)n

6

]
u[n]

︸ ︷︷ ︸
yzsr[n]

.

(c) The terms which vanish as n → ∞ correspond to the transient component and the terms which
do not vanish correspond to the steady-state component. Hence

y[n] =

[
−13

36
(−0.5)n − 5

12
n(−0.5)n

]
u[n]

︸ ︷︷ ︸
ytransient[n]

+
1

9
u[n]
︸ ︷︷ ︸

ysteady−state[n]

.

Solution 5.3-10

The system in delay form is

y [n]− 3y [n− 1] + 2y [n− 2] = x [n− 1] .

Also,

y [n] ⇐⇒ Y [z], y [n− 1] ⇐⇒ 1

z
Y [z] + 2, y [n− 2] ⇐⇒ 1

z2
Y [z] +

2

z
+ 3,

x [n] ⇐⇒ X [z], x [n− 1] ⇐⇒ 1

z
X [z], and X [z] =

z

z − 3
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The z-transform of the system equation is

Y [z]− 3

[
1

z
Y [z] + 2

]
+ 2

[
1

z2
Y [z] +

2

z
+ 3

]
=

1

z − 3(
1− 3

z
+

2

z2

)
Y [z] = −4

z
+

1

z − 3
=

−3z + 12

z(z − 3)
.

Thus,
Y [z]

z
=

−3z + 12

(z2 − 3z + 2)(z − 3)
=

−3z + 12

(z − 1)(z − 2)(z − 3)
=

9/2

z − 1
− 6

z − 2
+

3/2

z − 3

and

Y [z] =
9

2

z

z − 1
− 6

z

z − 2
+

3

2

z

z − 3
.

Inverting yields

y [n] =

[
9

2
− 6(2)n +

3

2
(3)n

]
u [n] .

Solution 5.3-11

The system equation in delay form is

y [n]− 2y [n− 1] + 2y [n− 2] = x [n− 2] .

Also,

y [n] ⇐⇒ Y [z], y [n− 1] ⇐⇒ 1

z
Y [z] + 1, y [n− 2] ⇐⇒ 1

z2
Y [z] +

1

z
,

x [n− 2] ⇐⇒ 1

z2
X [z], and X [z] =

z

z − 1

The z-transform of the difference equation is

Y [z]− 2

[
1

z
Y [z] + 1

]
+ 2

[
1

z2
Y [z] +

1

z

]
=

1

z(z − 1)
.

Thus,
(z2 − 2z + 2)

z2
Y [z] =

2z2 − 4z + 3

z(z − 1)
,

Y [z]

z
=

2z2 − 4z + 3

(z − 1)(z2 − 2z + 2)
=

1

z − 1
+

z − 1

z2 − 2z + 2
,

and

Y [z] =
z

z − 1
+

z(z − 1)

z2 − 2z + 2
.

For the second fraction on the right-hand side, we use pair 12c with A = 1, B = −1, a = −1,
|γ|2 = 2. This yields r = 1, β = π

4 , and θ = 0. Therefore

y [n] =
[
1 + (

√
2)n cos(

π

4
n)
]
u [n] .

Solution 5.3-12

(a) Here,

H [z] =
21(z2 + 1)

16(z2 + 1
4z − 3

8

=
21
16 + 21

16z
−2)

1 + 1
4z

−1 − 3
8z

−2
=

Y [z]

X [z]
.

Cross multiplying and inverting yields the desired difference equation of

y[n] + 1
4y[n− 1]− 3

8y[n− 2] = 21
16x[n] +

21
16x[n− 2].
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(b) Since H [z] and h[n] form a transform pair, we can obtain the impulse response h[n] directly
from H [z]. Using modified fractions we obtain

H [z]

z
=

21
16 (z

2 + 1)

z(z2 + 1
4z − 3

8 )
=

21
16 (

1
− 3

8

)

z
+

21
16 (

5
4

1
2 (

5
4 )
)

z − 1
2

+

21
16 (

25
16

− 3
4 (− 5

4 )
)

z + 3
4

.

Thus,

H [z] = −7

2
+

21

8

(
z

z − 1
2

)
+

35

16

(
z

z + 3
4

)
.

Inverting, we obtain the impulse response as

h[n] = 7
2δ[n] +

21
8 (

1
2 )

nu[n] + 35
16 (− 3

4 )
nu[n].

(c) Using the result from part (a) with x[n] = 0 yields

yzir[n] +
1
4yzir[n− 1]− 3

8yzir[n− 2] = 0.

Taking the unilateral z-transform yields

Yzir[z] +
1
4

(
z−1Yzir[z] + yzir[−1]

)
− 3

8

(
z−2Yzir[z] + z−1yzir[−1] + yzir[−2]

)
= 0.

Substituting yzir[−1] = 16 and yzir[−2] = 8 yields
(
1 + 1

4z
−1 − 3

8z
−2
)
Yzir[z] = −1 + 6z−1.

Using modified fractions we obtain

Yzir[z]

z
=

−z + 6

(z − 1
2 )(z +

3
4 )

=

11
2
5
4

z − 1
2

+

27
4

− 5
4

z + 3
4

.

Thus,

Yzir[z] =
22

5

(
z

z − 1
2

)
− 27

5

(
z

z + 34

)
.

Inverting, we obtain yzir[n] as

yzir[n] =
22
5 (12 )

nu[n]− 27
5 (− 3

4 )
nu[n].

Solution 5.3-13

(a) By inspection of y[n]− 5
6y[n− 1] + 1

6y[n− 2] = 3
2x[n− 1] + 3

2x[n− 2], the transfer function is

H [z] =
3
2z +

3
2

z2 − 5
6z +

1
6

=
3
2 (z + 1)

(z − 1
2 )(z − 1

3 )
.

Figure S5.3-13 shows the corresponding pole-zero plot. Note that one zero is at ∞.

(b) Setting x[n] = 0, we obtain y[n]− 5
6y[n−1]+ 1

6y[n−2] = 0. Taking the unilaterial z-transform
yields

Y [z]− 5
6 (z

−1Y [z] + y[−1]) + 1
6 (z

−2Y [z] + z−1y[−1] + y[−2]) = 0.

Thus, (
1− 5

6
z−1 +

1

6
z−2

)
Y [z] =

5

3
+

1

3
− 1

3
z−1, Y [z] =

2z2 − 1
3z

(z − 1
2 )(z − 1

3 )
,

Y [z]

z
=

2z − 1
3

(z − 1
2 )(z − 1

3 )
=

2
3
1
6

z − 1
2

+

1
3

− 1
6

z − 1
3

, and Y [z] =
4z

z − 1
2

− 2z

z − 1
3

.

Inverting, we obtain
zzir[n] =

(
4(12 )

n − 2(13 )
n
)
u[n].
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Solution 5.3-14

The equation in advance form is

y [n+ 2] + 2y [n+ 1] + 2y [n] = x [n+ 1] + 2x [n] .

Further, we know that

y [n] ⇐⇒ Y [z], y [n+ 1] ⇐⇒ zY [z], y [n+ 2] ⇐⇒ z2Y [z]− z,

x [n] ⇐⇒ X [z], x [n+ 1] ⇐⇒ zX [z]− z, and X [z] =
z

z − e
.

The z-transform of the difference equation is

z2Y [z]− z + 2zY [z] + 2Y [z] =
z2

z − e
− z +

2z

z − e
=

z(e+ 2)

z − e

(z2 + 2z + 2)Y [z] = z +
z(e+ 2)

z − e
=

z(z + 2)

z − e
.

Therefore,
Y [z]

z
=

z + 2

(z − e)(z2 + 2z + 2)
=

0.318

z − e
+

−0.318z − 0.502

z2 + 2z + 2

and

Y [z] = 0.318
z

z − e
− z(0.318z + 0.502)

z2 + 2z + 2
.

For the second fraction on the right-hand side, we use pair 12c with A = 0.318, B = 0.502, a = 1,
|γ|2 = 2 and

r = 0.367, β = cos−1(
−1√
2
) =

3π

4
, and θ = tan−1(

−0.184

0.318
) = −0.525.

Thus,

y [n] =

[
0.318(e)n − 0.367(

√
2)n cos(

3π

4
n− 0.525)

]
u [n] .
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Solution 5.3-15

In transform domain, H [z] = z−1 2z/3
z−1/3 and Y [z] = z−1−2z

z+2 . Since Y [z] = H [z]X [z],

we know X [z] = Y [z]/H [z] =
z−1 −2z

z+2

z−1 2z/3
z−1/3

. Thus, X [z] = −3 z−1/3
z+2 . Using tables,

x[n] = −3
(
(−2)nu[n]− 1

3 (−2)n−1u[n− 1]
)
= −3

(
−2(−2)n−1u[n]− 1

3 (−2)n−1u[n− 1]
)
or

x[n] = −3δ[n] + 7(−2)n−1u[n− 1].

Solution 5.3-16

A professor invests $10 into a savings account that earns 0.5% interest compounded monthly (6.17%
APY) and furthermore decides to supplement this initial investment with an additional $5 deposit
made every month, beginning the month immediately following the initial $10 investment.

(a) Designating y[n] as the account balance at month n, where n = 0 corresponds to the first
month that interest is awarded (and that her $5 deposits begin), the savings account can be
modeled using a difference equation as

y[n]− 1.005y[n− 1] = x[n], with y[−1] = 10 and x[n] = 5u[n].

(b) Taking the unilateral z-transform of the difference equation from part (a), we obtain

Y [z]− 1.005
(
z−1Y [z] + y[−1]

)
= X [z] =

5z

z − 1
=

5

1− z−1
.

Thus,

Y [z]
(
1− 1.005z−1

)
=

5

z − z−1
+ 1.005y[−1]

and

Y [z] =
5

(1− z−1)(z − 1.005z−1)
+

1.005y[−1]

1− 1.005z−1
.

Using a partial fraction expansion, we see that

Y [z] =
−1000

1− z−1
+

1000

1− 1.005z−1
+

10.05

1− 1.005z−1
.

Inverting, we obtain
y[n] = (1010.05(1.005)n − 1000)u[n].

(c) Directly from the difference equation, we see that the system transfer function is

H [z] =
Y [z]

X [z]
=

1

1− 1.005z−1
.

Inverting H [z], we the system impulse response is obtained as

h[n] = (1.005)nu[n].

(d) For most useful engineering systems, the response of a system H [z] to the everlasting exponen-
tial x[n] = 1n = 1 is computed using the concept of frequency response as y[n] = 1nH [1] = H [1]
(dc response). In this case, however, the output of the bank account to input x[n] = 1n = 1
is not y[n] = 1nH [1] = H [1]. To understand why, we note that the system H [z] is not stable
since its only root is outside the unit circle. Consequently, frequency response (or sinusoidal
steady-state) concepts are meaningless, since the unit circle (where frequency response is eval-
uated) is not in the region of convergence of H [z]; frequency response only applies to stable
systems.
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Solution 5.3-17

Taking the z-transform of b[m] = (1.01)b[m − 1] + p[m] and solving for B[z] yields
B[z] = P [z] 1

1−1.01z−1 . Thus, P [z] is required to solve for b[m]. One way to represent Sally’s

deposit schedule is p[m] = 100 (u[m]−∑∞
k=0 δ[m− (12k + 11)]). Defined this way, Sally deposits

one hundred dollars on the first day of every month m except for Decembers, (m = 12k + 11 for
k = {0, 1, 2, . . .}).

Taking the z-transform yields

P [z] = 100

(
1

1− z−1
−

∞∑

m=−∞

∞∑

k=0

δ[m− (12k + 11)]z−m

)

= 100

(
1

1− z−1
−

∞∑

k=0

∞∑

m=−∞
δ[m− (12k + 11)]z−m

)

= 100

(
1

1− z−1
−

∞∑

k=0

z−(12k+11)

)
.

Substituting P [z] into the expression for B[z] yields

B[z] = 100

(
1

1− z−1
−

∞∑

k=0

z−(12k+11)

)
1

1− 1.01z−1

= 100

(
1

(1− 1.01z−1)(1 − z−1)
+

∞∑

k=0

z−(12k+11)

1− 1.01z−1

)

= 100

(
101

1− 1.01z−1
+

−100

1− z−1
+

∞∑

k=0

z−(12k+11)

1− 1.01z−1

)
.

The first two terms are easily inverted using a table of z-transform pairs, while the last sum is
inverted using tables and the shifting property.

b[m] = 100

(
101(1.01)mu[m]− 100u[m]−

∞∑

k=0

(1.01)m−(12k+11)u[m− (12k + 11)]

)
.

Solution 5.3-18

(a) Note, h1[n] = (−1 + (0.5)n)u[n] = −(1)nu[n] + (1/2)nu[n]. Thus, two real poles are evident
at z = 1 and z = 1/2. Since h[n] is not absolutely summable, the system is not BIBO stable.
Thought of another way, the pole on the unit-circle makes the system marginally stable, at
best. Marginally stable systems are not BIBO stable.

(b) Notice, h2[n] = (j)n (u[n]− u[n− 10]) is a finite duration, causal signal. Thus, h2[n] has no
poles (other than at zero). Since h2[n] is absolutely summable, the system is BIBO stable.

Solution 5.3-19

(a) If we let y[n] =
∑n

k=0 k, then

y[n]− y[n− 1] = n with y[0] = 0.

Setting n = 0 in this equation and y[0] = 0, yields

y[0]− y[−1] = 0 =⇒ y[−1] = 0.
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The z-transform of the difference equation is

(
1− 1

z

)
Y [z] =

z

(z − 1)2

and
Y [z]

z
=

z

(z − 1)3
=

1

(z − 1)2
+

1

(z − 1)3
.

Hence

Y [z] =
z

(z − 1)2
+

z

(z − 1)3

and

y[n] = n+
n(n− 1)

2
=

n(n+ 1)

2
(n ≥ 0).

(b) If we let y[n] =
∑n

k=0 k
2, then

y[n]− y[n− 1] = n2 with y[0] = 0.

Setting n = 0, we get

0− y[−1] = 0 =⇒ y[−1] = 0.

The z-transform of the difference equation is

z − 1

z
Y [z] =

z(z + 1)

(z − 1)3
.

Hence

Y [z]

z
=

z(z + 1)

(z − 1)4
=

1

(z − 1)2
+

3

(z − 1)3
+

2

(z − 1)4

Y [z] =
z

(z − 1)2
+

3z

(z − 1)3
+

2z

(z − 1)4

y[n] =

[
n+

3n(n− 1)

2
+

n(n− 1)(n− 2)

3

]

=
2n3 + 3n2 + n

6

=
n(n+ 1)(2n+ 1)

6
(n ≥ 0).

Solution 5.3-20

If we let y[n] =
∑n

k=0 k
3, then

y[n]− y[n− 1] = n3 with y[0] = 0.

Setting n = 0 in this equation and using y[0] = 0, we get

0− y[−1] = 0 =⇒ y[−1] = 0.

The z-transform of the difference equation is

z − 1

z
Y [z] =

z(z2 + 4z + 1)

(z − 1)4
.
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Thus,

Y [z]

z
=

z(z2 + 4z + 1)

(z − 1)5
=

1

(z − 1)2
+

7

(z − 1)3
+

12

(z − 1)4
+

6

(z − 1)5
,

Y [z] =
z

(z − 1)2
+ 7

z

(z − 1)3
+ 12

z

(z − 1)4
+ 6

z

(z − 1)5
, and

y[n] = n+
7

2
n(n− 1) + 2n(n− 1)(n− 2) +

1

4
n(n− 1)(n− 2)(n− 3)

=
n4 + 2n3 + n2

4
=

n2(n+ 1)2

4
(n ≥ 0).

Solution 5.3-21

If we let y[n] =
∑n

k=0 ka
k a 6= 1, then

y[n]− y[n− 1] = nak with y[0] = 0.

Setting n = 0 and y[0] = 0 in this equation yields

0− y[−1] = 0 =⇒ y[−1] = 0.

The z-transform of the difference equation is

z − 1

z
Y [z] =

az

(z − a)2

or

Y [z]

z
=

az

(z − 1)(z − a)2
=

a
(a−1)2

z − 1
−

a
(a−1)2

z − a
+

a2

a−1

(z − a)2
.

Thus,

Y [z] =
a

(a− 1)2

[
z

z − 1
− z

z − a
+ a(a− 1)

z

(z − a)2

]

and

y[n] =
a

(a− 1)2
[1− an + (a− 1)nan]

=
a+ an+1[n(a− 1)− 1]

(a− 1)2
a 6= 1 and (n ≥ 0).

Solution 5.3-22

(a) Let x[n] = nu[n]. Then,

X [z] =
z

(z − 1)2
.

Use of the result in Prob. 5.2-13a yields

n∑

k=0

k ⇐⇒ z2

(z − 1)3
=

z(z + 1)

(z − 1)3
− z

(z − 1)3
.

Hence
n∑

k=0

k = n2 − n(n− 1)

2
=

n(n+ 1)

2
(n ≥ 0).
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(b) Let x[n] = n2u[n]. Then,

X [z] =
z(z + 1)

(z − 1)3
.

Use of the result in Prob. 5.2-13a yields

n∑

k=0

k2 ⇐⇒ z2(z + 1)

(z − 1)4
=

z(z2 + 4z + 1)

(z − 1)4
− 3z(z − 1)

(z − 1)4
− 4z

(z − 1)4
.

Hence

n∑

k=0

k2 = n3 − 3n(n− 1)

2
− 2n(n− 1)(n− 2)

3
=

2n3 + 3n2 + n

6

=
n(n+ 1)(2n+ 1)

6
(n ≥ 0).

Solution 5.3-23

Let x[n] = n3u[n]. Then,

X [z] =
z(z2 + 4z + 1)

(z − 1)4
.

Use of the result in Prob. 5.2-13a yields

n∑

k=0

k3 ⇐⇒ z2(z2 + 4z + 1)

(z − 1)5
=

z

(z − 1)2
+

7z

(z − 1)3
+

12z

(z − 1)4
+

6z

(z − 1)5
.

Hence

n∑

k=0

k3 = n+
7

2
n(n− 1) + 2n(n− 1)(n− 2) +

n(n− 1)(n− 2)(n− 3)

4

=
n4 + 2n3 + n2

4

=
n2(n+ 1)2

4
(n ≥ 0).

Solution 5.3-24

Let x[n] = nanu[n]. Then,

X [z] =
az

(z − a)2
.

Use of the result in Prob. 5.2-13a yields

n∑

k=0

kak ⇐⇒ az2

(z − 1)(z − a)2
=

a

(a− 1)2

[
z

z − 1
− z

z − a
+ a(a− 1)

z

(z − a)2

]
.

Hence

n∑

k=0

kak =
a

(a− 1)2
[1− an + (a− 1)nan]

=
a+ an+1[n(a− 1)− 1]

(a− 1)2
a 6= 1 and (n ≥ 0).
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Solution 5.3-25

(a) Here,

x [n] = eenu [n] , X [z] =
ez

z − e
, and

Y [z] = X [z]H [z] =
ez2

(z − e)(z + 0.2)(z − 0.8)
.

Therefore,

Y [z]

z
=

ez

(z − e)(z + 0.2)(z − 0.8)
=

1.32

z − e
− 0.186

z + 0.2
− 1.13

z − 0.8
,

Y [z] = 1.32
z

z − e
− 0.186

z

z + 0.2
− 1.13

z

z − 0.8
, and

y [n] = [1.32(e)n − 0.186(−0.2)n − 1.13(0.8)n]u [n] .

(b) From the given H [z], we can write

(z2 − 0.6z − 0.16)Y [z] = zX [z].

Hence, the corresponding difference equation of the system is

y[n+ 2]− 0.6y[n+ 1]− 0.16y[n] = x[n+ 1]

or

y[n]− 0.6y[n− 1]− 0.16y[n− 2] = x[n− 1].

Solution 5.3-26

(a) Here,

Y [z] = X [z]H [z] =
z(2z + 3)

(z − 1)(z − 2)(z − 3)
.

Therefore,

Y [z]

z
=

2z + 3

(z − 1)(z − 2)(z − 3)
=

5/2

z − 1
− 7

z − 2
+

9/2

z − 3
,

Y [z] =
5

2

z

z − 1
− 7

z

z − 2
+

9

2

z

z − 3
, and

y [n] =

[
5

2
− 7(2)n +

9

2
(3)n

]
u [n] .

(b) From the given H [z], we can write

(z2 − 5z + 6)Y [z] = (2z + 3)X [z].

Hence, the corresponding difference equation of the system is

y[n+ 2]− 5y[n+ 1] + 6y[n] = 2x[n+ 1] + 3x[n]

or

y[n]− 5y[n− 1] + 6y[n− 2] = 2x[n− 1] + 3x[n− 2].
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Solution 5.3-27

All cases use the same transfer function. From the given H [z] (after dividing the numerator and
the denominator by 6), we can write

(
z2 − 5

6
z +

1

6

)
Y [z] = (5z − 1)X [z].

Hence, the corresponding difference equation of the system is

y[n+ 2]− 5

6
y[n+ 1] +

1

6
y[n] = 5x[n+ 1]− x[n]

or

y[n]− 5

6
y[n− 1] +

1

6
y[n− 2] = 5x[n− 1]− x[n− 2].

(a) Here, x [n] = 4−nu [n] = (14 )
nu [n], so that X [z] = z

z− 1
4

, and

Y [z] = X [z]H [z] =
6z(5z − 1)

(z − 1
4 )(6z

2 − 5z + 1)
=

z(5z − 1)

(z − 1
4 )(z − 1

3 )(z − 1
2 )

.

Therefore,

Y [z]

z
=

5z − 1

(z − 1
4 )(z − 1

3 )(z − 1
2 )

=
12

z − 1
4

− 48

z − 1
3

+
36

z − 1
2

,

Y [z] = 12
z

z − 1
4

− 48
z

z − 1
3

+ 36
z

z − 1
2

, and

y [n] =

[
12(

1

4
)n − 48(

1

3
)n + 36(

1

2
)n
]
u [n]

= 12
[
4−n − 4(3)−n + 3(2)−n

]
u [n] .

(b) The input here is 4−(n−2)u [n− 2], which is identical to the input in part (a) delayed by 2
units. Therefore, the response will be the output in part (a) delayed by 2 units (time-invariance
property). That is,

y [n] = 12
[
4−(n−2) − 4(3)−(n−2) + 3(2)−(n−2)

]
u [n− 2] .

(c) Here the input can be expressed as

x [n] = 4−(n−2)u [n] = 16(4)−nu [n] .

This input is 16 times the input in part (a). Therefore, the response will be 16 times the
output in part (a) (linearity property). Thus,

y [n] = 192
[
4−n − 4(3)−n + 3(2)−n

]
u [n] .

(d) Here the input can be expressed as

x [n] = 4−nu [n− 2] =
1

16
(4)−(n−2)u [n− 2] .

This input is 1
16 times the input in part (b). Therefore the response will be 1

16 times the output
in part (b). Therefore,

y [n] =
3

4

[
4−(n−2) − 4(3)−(n−2) + 3(2)−(n−2)

]
u [n− 2] .
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Solution 5.3-28

(a) Here,

Y [z] = X [z]H [z] =
z(2z − 1)

(z − 1)(z2 − 1.6z + 0.8)
,

Y [z]

z
=

2z − 1

(z − 1)(z2 − 1.6z + 0.8)
=

5

z − 1
− 5(z − 1)

z2 − 1.6z + 0.8
, and

Y [z] = 5
z

z − 1
− 5

z(z − 1)

z2 − 1.6z + 0.8
.

For the second fraction on the right-hand side, we use pair 12c with A = 1, B = −1, a = −0.8,
γ = 2√

5
, |γ|2 = 0.8. Therefore,

r = 1.118, β = cos−1(
0.8

√
5

2
) = 0.464, θ = tan−1(

0.2

0.4
) = 0.464,

and

y [n] =

[
5− 5(1.118)

(
2√
5

)n

cos(0.464n+ 0.464)

]
u [n]

=

[
5− 5.59

(
2√
5

)n

cos(0.464n+ 0.464)

]
u [n] .

(b) From the given H [z], we can write
(
z2 − 1.6z + 0.8

)
Y [z] = (2z − 1)X [z].

Hence, the corresponding difference equation of the system is

y[n+ 2]− 1.6y[n+ 1] + 0.8y[n] = 2x[n+ 1]− x[n]

or
y[n]− 1.6y[n− 1] + 0.8y[n− 2] = 2x[n− 1]− x[n− 2].

Solution 5.3-29

(a) For Prob. 5.3-5, the transfer function is

H [z] =
z

z + 2
.

(b) For Prob. 5.3-7, the transfer function is

H [z] =
4z2 − 3z

2z2 − 3z + 1
.

(c) For Prob. 5.3-9, the transfer function is

H [z] =
z

4z2 + 4z + 1
.

(d) For Prob. 5.3-14, we convert the equation to advance operator form. This yields (E2 + 2E +
2)y[n] = (E + 2)x[n]. Hence, the transfer function is

H [z] =
z + 2

z2 + 2z + 2
.
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Solution 5.3-30

(a) In this case,

H [z] =
z2 + 3z + 3

z2 + 3z + 2
=

z2 + 3z + 3

(z + 1)(z + 2)
.

Therefore,

H [z]

z
=

z2 + 3z + 3

z(z + 1)(z + 2)
=

3/2

z
− 1

z + 1
+

1/2

z + 2
,

H [z] =
3

2
− z

z + 1
+

1

2

z

z + 2
, and

h [n] =

[
3

2
δ [n]− (−1)n +

1

2
(−2)n

]
u [n]

(b) Here,

H [z] =
2z2 − z

z2 + 2z + 1
=

z(2z − 1)

(z + 1)2
.

Therefore,

H [z]

z
=

2z − 1

(z + 1)2
=

2

z + 1
− 3

(z + 1)2
,

H [z] = 2(
z

z + 1
)− 3

z

(z + 1)2
, and

h [n] = [2(−1)n + 3n(−1)n]u [n] = (2 + 3n)(−1)nu [n] .

(c) In this part,

H [z] =
z2 + 2z

z2 − z + 0.5
=

z(z + 2)

z2 − z + 0.5
.

Therefore,
H [z]

z
=

z + 2

z2 − z + 0.5
.

We use pair 12c with A = 1, B = 2, a = −0.5, |γ|2 = 0.5, and |γ| = 1√
2
. Thus,

r = 5.099, β = cos−1(0.5
√
5) =

π

4
, θ = tan−1(

−2.5

0.5
) = −1.373,

and

h [n] = 5.099

(
1√
2

)n

cos(
π

4
n− 1.373)u [n] .

Solution 5.3-31

(a) For Prob. 5.3-25,

H [z]

z
=

1

(z + 0.2)(z − 0.8)
=

−1

z + 0.2
+

1

z − 0.8
,

H [z] = − z

z + 0.2
+

z

z − 0.8
, and

h [n] = [−(−0.2)n + (0.8)n]u [n] .
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(b) For Prob. 5.3-26,

H [z]

z
=

2z + 3

z(z − 2)(z − 3)
=

1/2

z
− 7/2

z − 2
+

3

z − 3
,

H [z] =
1

2
− 7

2

z

z − 2
+ 3

z

z − 3
, and

h [n] =

[
1

2
δ [n]− 7

2
(2)n + 3(3)n

]
u [n] .

(c) For Prob. 5.3-28,

H [z]

z
=

2z − 1

z(z2 − 1.6z + 0.8)
=

−1.25

z
+

1.25z

z2 − 1.6z + 0.8
.

For the second fraction on the right-hand side, we use pair 12c with A = 1.25, B = 0, a = −0.8,
|γ|2 = 0.8, and |γ| = 2√

5
. Thus,

r = 2.795, β = cos−1(
0.8

√
5

2
) = 0.464, θ = tan−1(−2) = −1.107,

and

h [n] = −1.25δ [n] + 2.795(
2√
5
)n cos(0.464n− 1.107)u [n] .

Solution 5.3-32

(a) Noting that H [z] = z−3 z
z−1 , we see that H−1[z] = 1

H[z] =
z−1
z−2 = z3 − z2. Thus,

h−1[n] = δ[n+ 3]− δ[n+ 2].

(b) Since h−1[n] is absolutely summable, the system inverse is stable. However, h−1[n] 6= 0 for
n < 0 so the system is not causal.

(c) For systems that have time as the independent variable, it is only possible to realize causal
systems. Shifting h−1[n] by three makes it causal and therefore realizable. That is, implement
h−1

causal
[n] = h−1[n − 3] = δ[n] − δ[n − 1], as shown in Fig. S5.3-32c. Within a delay factor,

this implementation functions as the system inverse.

x(n) y(n)

z–1

–1

Σ

Figure S5.3-32c

Solution 5.4-1

For convenience, let γ = 1+j√
8

and rewrite h[n] = (γn + (γ∗)n)u[n].

(a) By inspection, the structure is a parallel implementation of two modes, which are easily iden-
tified in h[n]. The transfer function of the structure is H [z] = 1

1+A1z−1 + 1
1+A2z−1 . Taking the

transform of h[n], H [z] = 1
1−γz−1 + 1

1−γ∗z−1 . Thus,

A1 = −γ = −1 + j√
8

and A2 = −γ∗ = −1− j√
8

.
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(b) Here, y0[n] = h[n] ∗ x[n] =∑∞
k=−∞ h[k]x[n− k] =

{∑n+3
k=0 γ

n + (γ∗)n
}
u[n+ 3]. Thus,

y0[n] =

{
1− γn+4

1− γ
+

1− (γ∗)n+4

1− γ∗

}
u[n+ 3], where γ = 1+j√

8
.

Written another way, y0[n] = 2Re
{

1−γn+4

1−γ

}
u[n+ 3].

Solution 5.4-2

(a) We want to realize the system

H [z] =
z(3z − 1.8)

z2 − z + 0.16
=

3− 1.8z−1

1− z−1 + 0.16z−2
.

Figure S5.4-2a shows the canonical direct form (DFII) of the system.

Σ
X[z]

z−1

Σ
1

Σ
3 Y [z]

−1.8

z−1

−0.16

Figure S5.4-2a

To construct a parallel realization, we use partial fractions. To begin, notice that

H [z]

z
=

3z − 1.8

z2 − z + 0.16
.

We use MATLAB to compute the necessary partial fraction expansion.

>> [r,p,k] = residue([3 -1.8],[1 -1 0.16])

r = 1.0000 2.0000

p = 0.8000 0.2000

k = []

Thus,

H [z] =
2z

z − 0.2
+

z

z − 0.8
.

Figure S5.4-2b shows a parallel realization based on this expression for H [z].

To construct a series realization, we simply factor H [z] as

H [z] =

(
3z

z − 0.2

)(
z − 0.6

z − 0.8

)
.

Figure S5.4-2c shows a series realization based on this expression for H [z]. Notice that the
parallel and series representations of the system are not unique.

(b) We can obtain the transpose of a block diagram by the following operations:
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X[z]
Σ

z−1

0.2

2
Σ

Y [z]

Σ

z−1

0.8

Figure S5.4-2b

Σ
X[z]

z−1

0.2

3
Σ

z−1

0.8

Σ
1

−0.6

Y [z]

Figure S5.4-2c

1. Reverse the directions of all paths.

2. Replace summing nodes with pick-off nodes and pick-off nodes with summing nodes.

3. Interchange the input x[n] and the output y[n].

Figures S5.4-2d, S5.4-2e, and S5.4-2f are the transpose realizations of Figs. S5.4-2a, S5.4-2b,
and S5.4-2c, respectively.

X[z]
Σ

3

Σ
−1.8

z−1

1

−0.16

z−1

Y [z]

Figure S5.4-2d



390 Student use and/or distribution of solutions is prohibited

X[z]
Σ

2

0.2

z−1

Σ
Y [z]

Σ

0.8

z−1

Figure S5.4-2e

X[z]
Σ

1

Σ
−0.6

z−1

0.8

Σ
3

0.2

z−1

Y [z]

Figure S5.4-2f

Solution 5.4-3

(a) We want to realize the system

H [z] =
5z + 2.2

z2 + z + 0.16
=

5z−1 + 2.2z−2

1 + z−1 + 0.16z−2
.

Figure S5.4-3a shows the canonical direct form (DFII) of the system.

Σ
X[z]

z−1

Σ
−1

Σ
5

Y [z]

z−1

−0.16 2.2

Figure S5.4-3a

To construct a parallel realization, we use MATLAB to expand H [z] using partial fractions.

>> [r,p,k] = residue([5 2.2],[1 1 0.16])

r = 3.0000 2.0000

p = -0.8000 -0.2000

k = []

Thus,

H [z] =
2

z + 0.2
+

3

z + 0.8
.
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X[z]
Σ

z−1

−0.2 2

Σ
Y [z]

Σ

z−1

−0.8 3

Figure S5.4-3b

Figure S5.4-3b shows a parallel realization based on this expression for H [z].

To construct a series realization, we simply factor H [z] as

H [z] =

(
1

z + 0.2

)(
5z + 2.2

z + 0.8

)
.

Figure S5.4-3c shows a series realization based on this expression for H [z]. Notice that the

Σ
X[z]

z−1

−0.2 1

Σ

z−1

−0.8

Σ
5

2.2

Y [z]

Figure S5.4-3c

parallel and series representations of the system are not unique.

(b) We can obtain the transpose of a block diagram by the following operations:

1. Reverse the directions of all paths.

2. Replace summing nodes with pick-off nodes and pick-off nodes with summing nodes.

3. Interchange the input x[n] and the output y[n].

Figures S5.4-3d, S5.4-3e, and S5.4-3f are the transpose realizations of Figs. S5.4-3a, S5.4-3b,
and S5.4-3c, respectively.
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X[z]

Σ
5

Σ
2.2

z−1

z−1

−1

−0.16

Y [z]

X[z]

Σ
2

z−1

−0.2

Σ
Y [z]

Σ
3

z−1

−0.8

Figures S5.4-3d and S5.4-3e

X[z]
Σ

5

Σ
2.2

z−1

−0.8
Σ

1

z−1

−0.2

Y [z]

Figure S5.4-3f

Solution 5.4-4

(a) We want to realize the system

H [z] =
3.8z − 1.1

(z − 0.2)(z2 − 0.6z + 0.25)
=

3.8z−2 − 1.1z−3

1− 0.8z−1 + 0.37z−2 − 0.05z−3
.

Figure S5.4-4a shows the canonical direct form (DFII) of the system.

Σ
X[z]

z−1

Σ
0.8

z−1

Σ
−0.37

Σ
3.8

Y [z]

z−1

0.05 −1.1

Figure S5.4-4a

To construct a parallel realization, we use MATLAB to expand H [z] using partial fractions.

>> [r,p,k] = residue([3.8 -1.1],[1 -0.8 0.37 -0.05])

r = 1.0000-4.5000i 1.0000+4.5000i -2.0000

p = 0.3000+0.4000i 0.3000-0.4000i 0.2000

k = []
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Thus,

H [z] =
1− 4.5j

z − 0.3− 0.4j
+

1 + 4.5j

z − 0.3 + 0.4j
+

−2

z − 0.2
=

−2

z − 0.2
+

2z + 3

z2 − 0.6z + 0.25
.

Figure S5.4-4b shows a parallel realization based on this expression for H [z].

X[z]
Σ

z−1

0.2 −2

Σ
Y [z]

Σ

z−1

Σ
0.6

Σ
2

z−1

−0.25 3

Figure S5.4-4b

To construct a series realization, we simply factor H [z] as

H [z] =

(
1

z − 0.2

)(
3.8z − 1.1

z2 − 0.6z + 0.25

)
.

Figure S5.4-4c shows a series realization based on this expression for H [z]. Notice that the

Σ
X[z]

z−1

0.2 1

Σ

z−1

Σ
0.6

Σ
3.8

z−1

−0.25 −1.1

Y [z]

Figure S5.4-4c

parallel and series representations of the system are not unique.

(b) We can obtain the transpose of a block diagram by the following operations:

1. Reverse the directions of all paths.

2. Replace summing nodes with pick-off nodes and pick-off nodes with summing nodes.

3. Interchange the input x[n] and the output y[n].

Figures S5.4-4d, S5.4-4e, and S5.4-4f are the transpose realizations of Figs. S5.4-4a, S5.4-4b,
and S5.4-4c, respectively.
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Figure S5.4-4f

Solution 5.4-5

(a) We want to realize the system

H [z] =
z(1.6z − 1.8)

(z − 0.2)(z2 + z + 0.5)
=

1.6z−1 − 1.8z−2

1 + 0.8z−1 + 0.3z−2 − 0.1z−3
.

Figure S5.4-5a shows the canonical direct form (DFII) of the system.

To construct a parallel realization, we use MATLAB to expand H[z]
z using partial fractions.

>> [r,p,k] = residue([1.6 -1.8],[1 0.8 0.3 -0.1])

r = 1.0000-3.0000i 1.0000+3.0000i -2.0000

p = -0.5000+0.5000i -0.5000-0.5000i 0.2000

k = []

Thus,

H [z]

z
=

1− 3j

z + 0.5− 0.5j
+

1 + 3j

z + 0.5 + 0.5j
+

−2

z − 0.2
=

−2

z − 0.2
+

2z + 4

z2 + z + 0.5
.

or

H [z] =
−2z

z − 0.2
+

2z2 + 4z

z2 + z + 0.5
.
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Figure S5.4-5b

Figure S5.4-5b shows a parallel realization based on this expression for H [z].

To construct a series realization, we simply factor H [z] as

H [z] =

(
z

z − 0.2

)(
1.6z − 1.8

z2 + z + 0.5

)
.

Figure S5.4-5c shows a series realization based on this expression for H [z]. Notice that the
parallel and series representations of the system are not unique.

(b) We can obtain the transpose of a block diagram by the following operations:

1. Reverse the directions of all paths.

2. Replace summing nodes with pick-off nodes and pick-off nodes with summing nodes.

3. Interchange the input x[n] and the output y[n].

Figures S5.4-5d, S5.4-5e, and S5.4-5f are the transpose realizations of Figs. S5.4-5a, S5.4-5b,
and S5.4-5c, respectively.
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Solution 5.4-6

(a) we want to realize the system

H [z] =
z(2z2 + 1.3z + 0.96)

(z + 0.5)(z − 0.4)2
=

2 + 1.3z−1 + 0.96z−2

1− 0.3z−1 − 0.24z−2 + 0.08z−3
.

Figure S5.4-6a shows the canonical direct form (DFII) of the system.

Σ
X[z]

Σ
2

z−1

Σ
0.3

z−1

Σ
0.24

Σ
1.3

Y [z]

z−1

−0.08

0.96

Figure S5.4-6a

To construct a parallel realization, we use MATLAB to expand H[z]
z using partial fractions.

>> [r,p,k] = residue([2 1.3 0.96],[1 -0.3 -0.24 0.08])

r = 1.0000 1.0000 2.0000

p = -0.5000 0.4000 0.4000

k = []

Thus,
H [z]

z
=

1

z + 0.5
+

1

z − 0.4
+

2

(z − 0.4)2
.

or

H [z] =
z

z + 0.5
+

z

z − 0.4
+

2z

(z − 0.4)2
.

Figure S5.4-6b shows a parallel realization based on this expression for H [z].

To construct a series realization, we simply factor H [z] as

H [z] =

(
z

z + 0.5

)(
2z2 + 1.3z + 0.96

z2 − 0.8z + 0.16

)
.

Figure S5.4-6c shows a series realization based on this expression for H [z]. Notice that the
parallel and series representations of the system are not unique.

(b) We can obtain the transpose of a block diagram by the following operations:

1. Reverse the directions of all paths.

2. Replace summing nodes with pick-off nodes and pick-off nodes with summing nodes.

3. Interchange the input x[n] and the output y[n].

Figures S5.4-6d, S5.4-6e, and S5.4-6f are the transpose realizations of Figs. S5.4-6a, S5.4-6b,
and S5.4-6c, respectively.
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Solution 5.4-7

(a) The equation governing the summer output is

1

2
y[n+ 1] = y[n] + 3x[n] + 3x[n− 1].

Scale by 2, delay by 1, and rearrange to get standard form as

y[n]− 2y[n− 1] = 6x[n− 1] + 6x[n− 2].

(b) Taking the z-transform of the result of part (a) yields

Y [z](1− 2z−1) = X [z](6z−1 + 6z−2).

Thus, the transfer function is

H [z] =
Y [z]

X [z]
=

6(z + 1)

z(z − 2)
=

−3

z
+

9

z − 2
= −3z−1 + 9z−1 z

z − 2
.

Inverting, the system impulse response is

h[n] = −3δ[n− 1] + 9(2)n−1u[n− 1].

(c) From (a), the system difference equation is y[n] − 2y[n − 1] = 6x[n − 1] + 6x[n − 2]. Since
the number of delay blocks in the system realization exactly matches the largest delay in the
difference equation, the system is canonical.

Yes. The system realization is canonical.

(d) From H [z] = 6(z+1)
z(z−2) , we see that the system has a pole at z = 0 and z = 2. Since a system

pole is outside the unit circle, the system is not stable.

No. The system is not stable.

(e) Any system that can be physically realized with summers, scale multipliers, and delay blocks
must be causal. This conclusion is also verified by noticing that the impulse response found
in part (b) is zero for all n less than zero (h[n] = 0 for n < 0).

Yes. The system is causal.

Solution 5.4-8

We want to realize the system

H [z] =
2z4 + z3 + 0.8z2 + 2z + 8

z4
= 2 + z−1 + 0.8z−2 + 2z−3 + 8z−4.

Since there is no feedback, we see that H [z] represents a finite impulse response (FIR) system. We
can simply realize the system using the direct form structure shown in Fig. S5.4-8.
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Figure S5.4-8

Solution 5.4-9

We now want to realize the system

H [z] =
6∑

n=0

nz−n = z−1 + 2z−2 + 3z−3 + 4z−4 + 5z−5 + 6z−6.

Since there is again no feedback, we see that H [z] represents a finite impulse response (FIR) system.
We can simply realize the system using the direct form structure shown in Fig. S5.4-9.
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Figure S5.4-9

Solution 5.4-10

(a) We begin by labeling some nodes on the system block diagram, as shown in Fig. S5.4-10a.

x[n]
Σ

v[n]
z−1

v[n− 1]

c

cv[n− 1]
z−1

cv[n− 2]
Σ

y[n]

c c

Figure S5.4-10a

Using Fig. S5.4-10a and the z-transform, the output of the second summer is

Y [z] = cz−2V [z] + cz−1V [z] = (cz−2 + cz−1)V [z].

Similarly, the output of the first summer is

V [z] = c2z−1V [z] +X [z] ⇒ X [z] = (1− c2z−1)V [z].

Combining, we obtain

H [z] =
Y [z]

X [z]
=

(cz−2 + cz−1)V [z]

(1− c2z−1)V [z]
=

c(z + 1)

z(z − c2)
.

(b) By inspection of H [z] from part (a), we see that

the system has two poles (z = 0 and z = c2) and two zeros (z = −1 and z = ∞).
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(c) Since the system has two poles and two zeros, the system order is two. Further, the number
of delay blocks in the system realization exactly equals the system order. Thus, the system is
canonical.

Yes. The system is canonical (# of delays blocks = system order).

(d) To be stable, the pole at c2 must be inside the unit circle. Furthermore we know c is real.
Thus,

the system is stable if −1 < c < 1.

Solution 5.4-11

To begin, we represent a general second-order transfer function with two real zeros and two real
poles as

H [z] =
b0z

2 + b1z + b2
z2 + a1z + z2

= b0
(z − z1)(z − z2)

(z − p1)(z − p2)
= b0 +

k1
z − p1

+
k2

z − p2
.

Next, we investigate realizing this system with canonic direct, cascade, parallel, and corresponding
transposed forms. To simplify this process, let us represent a canonic direct (DFII) realization as

[·] and a transposed canonic direct realization (TDFII) as [·]T . Thus, we represent the second-order
canonic direct (DFII) realization of H [z] as

[
b0z

2 + b1z + b2
z2 + a1z + z2

]

and we represent the second-order transposed canonic direct (TDFII) realization as

[
b0z

2 + b1z + b2
z2 + a1z + z2

]T
.

Graphical depiction of these, and later, realizations are easily generated following the discussion and
figures in Sec. 5.4 and are not given here.

We can also realize the system with at least 16 different realizations that cascade two first-order
systems, represented as

b0

[
z−z1
z−p1

] [
z−z2
z−p2

]
, b0

[
z−z1
z−p1

]T [
z−z2
z−p2

]
, b0

[
z−z1
z−p1

] [
z−z2
z−p2

]T
, b0

[
z−z1
z−p1

]T [
z−z2
z−p2

]T
,

b0

[
z−z1
z−p2

] [
z−z2
z−p1

]
, b0

[
z−z1
z−p2

]T [
z−z2
z−p1

]
, b0

[
z−z1
z−p2

] [
z−z2
z−p1

]T
, b0

[
z−z1
z−p2

]T [
z−z2
z−p1

]T
,

b0

[
z−z2
z−p1

] [
z−z1
z−p2

]
, b0

[
z−z2
z−p1

]T [
z−z1
z−p2

]
, b0

[
z−z2
z−p1

] [
z−z1
z−p2

]T
, b0

[
z−z2
z−p1

]T [
z−z1
z−p2

]T
,

b0

[
z−z2
z−p2

] [
z−z1
z−p1

]
, b0

[
z−z2
z−p2

]T [
z−z1
z−p1

]
, b0

[
z−z2
z−p2

] [
z−z1
z−p1

]T
, b0

[
z−z2
z−p2

]T [
z−z1
z−p1

]T
.

Additionally, there are at least 4 different parallel forms, represented as

b0 +
[

k1

z−p1

]
+
[

k2

z−p2

]
, b0 +

[
k1

z−p1

]T
+
[

k2

z−p2

]
,

b0 +
[

k1

z−p1

]
+
[

k2

z−p2

]T
, b0 +

[
k1

z−p1

]T
+
[

k2

z−p2

]T
.

Together, we have shown a total of 22 realizations. We have not considered realizations using
the DFI or TDFI forms, combination of DFI and TDFI forms with the DFII and TDFII forms,
distribution or placement of the constant b0, or any of the various nonstandard realizations. There
are, in fact, a limitless number of realizations, even for this relatively low-order system.
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Solution 5.4-12

(a) Following the code given in the problem, Figure S5.4-12a presents the system block diagram.

Σ
x[n] mem(1)

Σ

7

16

z−1

mem(2)

z−1

mem(3)

−
9

16
−

7

16

y[n]

Figure S5.4-12a

As shwon in Fig. S5.4-12a, the code implements at DFII.

(b) From part (a), we see that

H [z] =
7
16 (z

2 − 1)

z2 + 9
16

=
7
16 (z − 1)(z + 1)

(z − j3
4 )(z +

j3
4 )

.

(c) We use MATLAB to plot the system magnitude response.

>> Omega = linspace(-pi,pi,1001); H = @(z) 7/16*(z.^2-1)./(z.^2+9/16);

>> plot(Omega,abs(H(exp(1j*Omega))),’k’); axis tight;

>> xlabel(’\Omega’); ylabel(’|H[e^{j \Omega}]|’);

-3 -2 -1 0 1 2 3

Ω

0

1

2

|H
[e

j Ω
]|

Figure S5.4-12c

As Fig. S5.4-12b makes clear, this digital system is a bandpass filter (BPF).

(d) From part (b), we know that H [z] =
7
16 (z

2−1)

z2+ 9
16

. Thus, the inverse system has transfer function

H−1[z] =
16
7 (z2 + 9

16 )

z2 − 1
=

16
7 z

2 + 9
7

z2 − 1
.

Figure S5.4-12d shows the DFI block implementation of H−1[z]. Since the inverse system has
poles on the unit circle (z = ±1), the inverse system is marginally stable (and BIBO unstable).

The inverse system is BIBO unstable and will not operate well.
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Solution 5.4-13

(a) Following the code given in the problem, Figure S5.4-13a presents the system block diagram.

x = read ADC
Σ

7

32

Σ

7

32

z−1

mem(2)

z−1

mem(1)

9

16

write DAC = y

Figure S5.4-13a

As shwon in Fig. S5.4-13a, the code implements at TDFII.

(b) From part (a), we see that

H [z] =
7
32 (z

2 + 1)

z2 − 9
16

=
7
32 (z − j)(z + j)

(z − 3
4 )(z +

3
4 )

.

(c) We use MATLAB to plot the system magnitude response.

>> Omega = linspace(-pi,pi,1001); H = @(z) 7/32*(z.^2+1)./(z.^2-9/16);

>> plot(Omega,abs(H(exp(1j*Omega))),’k’); axis tight;

>> xlabel(’\Omega’); ylabel(’|H[e^{j \Omega}]|’);

As Fig. S5.4-13b makes clear, this digital system is a bandstop filter (BSF).

(d) From part (b), we know that H [z] =
7
32 (z

2+1)

z2− 9
16

. Thus, the inverse system has transfer function

H−1[z] =
32
7 (z2 − 9

16 )

z2 + 1
=

32
7 z2 − 18

7

z2 + 1
.

Figure S5.4-13d shows the DFI block implementation of H−1[z]. Since the inverse system has
poles on the unit circle (z = ±j), the inverse system is marginally stable (and BIBO unstable).

The inverse system is BIBO unstable and will not operate well.
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Solution 5.5-1

Sampling cos(ωt) at uniform instants t = nT yields a discrete-time sinusoid cos(ωTn) = cos(Ωn).
Thus, we see that Ω = ωT or ω = Ω/T . Using Fs = 1/T , this becomes

ω = ΩFs.

(a) For Ω = π
4 , ω = π

4 (1000) = 250π rad/s.

(b) For Ω = 2π
3 , ω = 2π

3 (1000) = 2000π
3 rad/s.

(c) For Ω = 7
8 , ω = 7

8 (1000) = 875 rad/s.

Solution 5.5-2

(a) By inspection, the transfer function of Fig. P5.5-2a is

Ha[z] =
1

z − 0.4
.

Thus,

Ha

[
ejΩ
]
=

1

ejΩ − 0.4
=

1

cos(Ω)− 0.4 + j sin(Ω)
.

To determine the magnitude response, we see that

∣∣Ha

[
ejΩ
]∣∣2 = Ha

[
ejΩ
]
H∗

a

[
ejΩ
]
=

1

(ejΩ − 0.4)(e−jΩ − 0.4)
=

1

1.16− 0.8 cos(Ω)
.

Thus,
∣∣Ha

[
ejΩ
]∣∣ = 1√

1.16− 0.8 cos(Ω)
.
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Furthermore,

∠Ha

[
ejΩ
]
= − tan−1

(
sin(Ω)

cos(Ω)− 0.4

)
.

We use MATLAB to compute and plot the system magnitude and phase responses, which are
shown in Fig. S5.5-2a. Based on |Ha[e

jΩ]|, we see that this system is lowpass (or low-enhance)
in nature.

>> Ha = @(z) 1./(z-0.4); Omega = linspace(-pi,pi,1001);

>> subplot(121); plot(Omega,abs(Ha(exp(1j*Omega))));

>> ylabel(’|H_a[e^{j\Omega}]|’); xlabel(’\Omega’); grid on

>> set(gca,’xtick’,-pi:pi/2:pi,’ytick’,0:1/3:2); axis([-pi pi 0 2]);

>> subplot(122); plot(Omega,angle(Ha(exp(1j*Omega))));

>> ylabel(’\angle H_a[e^{j\Omega}]’); xlabel(’\Omega’); grid on

>> set(gca,’xtick’,-pi:pi/2:pi,’ytick’,-pi:pi/2:pi); axis([-pi pi -pi pi]);
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Figure S5.5-2a

(b) By inspection, the transfer function of Fig. P5.5-2b is

Hb[z] =
z

z − 0.4
=

1

1− 0.4z−1
.

Thus,

Hb

[
ejΩ
]
=

1

1− 0.4e−jΩ
=

1

1− 0.4 cos(Ω) + j0.4 sin(Ω)
.

To determine the magnitude response, we see that

∣∣Hb

[
ejΩ
]∣∣2 = Hb

[
ejΩ
]
H∗

b

[
ejΩ
]
=

1

(1− 0.4e−jΩ)(1 − 0.4ejΩ)
=

1

1.16− 0.8 cos(Ω)
.

Thus,
∣∣Hb

[
ejΩ
]∣∣ = 1√

1.16− 0.8 cos(Ω)
.

Furthermore,

∠Hb

[
ejΩ
]
= − tan−1

(
0.4 sin(Ω)

1− 0.4 cos(Ω)

)
.

We use MATLAB to compute and plot the system magnitude and phase responses, which are
shown in Fig. S5.5-2b. Based on |Hb[e

jΩ]|, we see that this system is lowpass (or low-enhance)
in nature. Notice that

∣∣Hb

[
ejΩ
]∣∣ is exactly the same as

∣∣Ha

[
ejΩ
]∣∣; the only difference between

Ha[e
jΩ] and Hb[e

jΩ] is in the phase response.

>> Hb = @(z) z./(z-0.4); Omega = linspace(-pi,pi,1001);

>> subplot(121); plot(Omega,abs(Hb(exp(1j*Omega))));

>> ylabel(’|H_b[e^{j\Omega}]|’); xlabel(’\Omega’); grid on
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>> set(gca,’xtick’,-pi:pi/2:pi,’ytick’,0:1/3:2); axis([-pi pi 0 2]);

>> subplot(122); plot(Omega,angle(Hb(exp(1j*Omega))));

>> ylabel(’\angle H_b[e^{j\Omega}]’); xlabel(’\Omega’); grid on

>> set(gca,’xtick’,-pi:pi/2:pi,’ytick’,-pi:pi/2:pi); axis([-pi pi -pi pi]);
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Figure S5.5-2b

(c) By inspection, the transfer function of Fig. P5.5-2c is

Hc[z] =
3z2 + 1.8z

z2 − z + 0.16
.

Thus,

Hc

[
ejΩ
]
=

3ej2Ω + 1.8ejΩ

ej2Ω − ejΩ + 0.16
=

3 cos(2Ω) + 1.8 cos(Ω) + j[3 sin(2Ω) + 1.8 sin(Ω)]

cos(2Ω)− cos(Ω) + 0.16 + j[sin(2Ω)− sin(Ω)]
.

To determine the magnitude response, we see that

∣∣Hc

[
ejΩ
]∣∣2 = Hc

[
ejΩ
]
H∗

c

[
ejΩ
]
=

(
3ej2Ω + 1.8ejΩ

ej2Ω − ejΩ + 0.16

)(
3e−j2Ω + 1.8e−jΩ

e−j2Ω − e−jΩ + 0.16

)

=
12.24 + 10.8 cos(Ω)

2.0256− 2.32 cos(Ω) + 0.32 cos(2Ω)
.

Thus,

∣∣Hc

[
ejΩ
]∣∣ =

√
12.24 + 10.8 cos(Ω)

2.0256− 2.32 cos(Ω) + 0.32 cos(2Ω)
.

Furthermore,

∠Hc

[
ejΩ
]
= tan−1

(
3 sin(2Ω) + 1.8 sin(Ω)

3 cos(2Ω) + 1.8 cos(Ω)

)
− tan−1

(
sin(2Ω)− sin(Ω)

cos(2Ω)− cos(Ω) + 0.16

)
.

We use MATLAB to compute and plot the system magnitude and phase responses, which are
shown in Fig. S5.5-2c. Based on |Hc[e

jΩ]|, we see that this system is lowpass in nature.

>> Hc = @(z) (3*z.^2+1.8*z)./(z.^2-z+0.16); Omega = linspace(-pi,pi,1001);

>> subplot(121); plot(Omega,abs(Hc(exp(1j*Omega))));

>> ylabel(’|H_c[e^{j\Omega}]|’); xlabel(’\Omega’); grid on

>> set(gca,’xtick’,-pi:pi/2:pi,’ytick’,0:5:35); axis([-pi pi 0 35]);

>> subplot(122); plot(Omega,angle(Hc(exp(1j*Omega))));

>> ylabel(’\angle H_c[e^{j\Omega}]’); xlabel(’\Omega’); grid on

>> set(gca,’xtick’,-pi:pi/2:pi,’ytick’,-pi:pi/2:pi); axis([-pi pi -pi pi]);



408 Student use and/or distribution of solutions is prohibited

-3.1416 -1.5708 0 1.5708 3.1416

Ω

0
5

10
15
20
25
30
35

|H
c[e

jΩ
]|

-3.1416 -1.5708 0 1.5708 3.1416

Ω

-3.1416

-1.5708

0

1.5708

3.1416

 H
c[e

jΩ
]

Figure S5.5-2c

Solution 5.5-3

(a) We can easily compute the magnitude response at some key points:

|H(±j)| = 0, |H(1)| = 21

16

(
1 + 1

1 + 1
4 − 3

8

)
= 3, |H(−1)| = 21

16

(
1 + 1

1− 1
4 − 3

8

)
= 7.

We use MATLAB to confirm these points and plot the magnitude response over−2π ≤ Ω ≤ 2π.

>> H = @(z) 21/16*(z.^2+1)./(z.^2+z/4-3/8); Omega = linspace(-2*pi,2*pi,1001);

>> plot(Omega,abs(H(exp(1j*Omega))));

>> ylabel(’|H[e^{j\Omega}]|’); xlabel(’\Omega’); grid on

>> set(gca,’xtick’,-2*pi:pi/2:2*pi,’ytick’,0:1:8); axis([-2*pi 2*pi 0 8]);
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Figure S5.5-3a

(b) We use MATLAB to compute and plot the phase response over −2π ≤ Ω ≤ 2π.

>> H = @(z) 21/16*(z.^2+1)./(z.^2+z/4-3/8); Omega = linspace(-2*pi,2*pi,1001);

>> plot(Omega,angle(H(exp(1j*Omega))));

>> ylabel(’\angle H[e^{j\Omega}]’); xlabel(’\Omega’); grid on

>> set(gca,’xtick’,-2*pi:pi/2:2*pi,’ytick’,-pi:pi/2:pi); axis([-2*pi 2*pi -pi pi]);

(c) To begin, we note that x[n] can be written more compactly as

x[n] = 3
2 + 1

2 (−1)n.

Written in this form, we see that x[n] is comprised of two everlasting sinusoids of frequencies
Ω = 0 and Ω = π. Consequently, we can determine the output using the concept of frequency
response as

y[n] = 3
2H [ej0] + 1

2 (−1)nH [ejπ ].

Using the results from (a) and (b), we see that

y[n] = 9
2 + 7

2 (−1)n.
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That is,

y[n] = [. . . , 1, 8, 1,
↓
8, 1, 8, 1, . . .].

Solution 5.5-4

(a) We can easily compute the magnitude response at some key points:

|H [ej0]| = 7

32

(
2

5
4 (

5
4 )

)
=

7

25
, |H [ejπ/2]| = 7

32

√
2

1
4 (

7
4 )

=
1√
2
, |H [ejπ]| = 0.

We use MATLAB to confirm these points and plot the magnitude response over−2π ≤ Ω ≤ 2π.

>> H = @(z) -7/32*(z+1)./(z.^2+9/16); Omega = linspace(-2*pi,2*pi,1001);

>> plot(Omega,abs(H(exp(1j*Omega))));

>> ylabel(’|H[e^{j\Omega}]|’); xlabel(’\Omega’); grid on

>> set(gca,’xtick’,-2*pi:pi/2:2*pi,’ytick’,0:.1:.8); axis([-2*pi 2*pi 0 .8]);
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Figure S5.5-4a

(b) We use MATLAB to compute and plot the phase response over −2π ≤ Ω ≤ 2π.

>> H = @(z) -7/32*(z+1)./(z.^2+9/16); Omega = linspace(-2*pi,2*pi,1001);

>> plot(Omega,angle(H(exp(1j*Omega))));

>> ylabel(’\angle H[e^{j\Omega}]’); xlabel(’\Omega’); grid on

>> set(gca,’xtick’,-2*pi:pi/2:2*pi,’ytick’,-pi:pi/2:pi); axis([-2*pi 2*pi -pi pi]);

(c) To begin, we note that x[n] can be written more compactly as

x[n] = 2 + cos(πn/2).

Written in this form, we see that x[n] is comprised of two everlasting sinusoids of frequencies
Ω = 0 and Ω = π/2. Consequently, we can determine the output using the concept of frequency
response as

y[n] = 2H [ej0] + |H [ejπ/2]| cos
(
π
2n+ ∠H [ejπ/2]

)
.
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Figure S5.5-4b

Using the results from (a) and (b), we see that

y[n] = − 14
25 + 1√

2
cos
(
π
2n+ π

4

)
.

Solution 5.5-5

Since neither system has feedback, both are finite impulse response (FIR) systems.

(a) By inspection, the transfer function of the first FIR filter is

Ha[z] = 1 + 0.5z−1 + 2z−2 + 2z−3 + 0.5z−4 + z−5.

The frequency response is therefore

Ha

(
ejΩ
)
= 1+ 0.5e−jΩ + 2e−j2Ω + 2e−j3Ω + 0.5e−j4Ω + e−j5Ω

= e−j2.5Ω
(
ej2.5Ω + 0.5ej1.5Ω + 2ej0.5Ω + 2e−j0.5Ω + 0.5e−j1.5Ω + e−j2.5Ω

)

= e−j2.5Ω (2 cos(2.5Ω) + cos(1.5Ω) + 4 cos(0.5Ω)) .

The magnitude and phase responses, shown in Fig. S5.5-5a, are

∣∣Ha

(
ejΩ
)∣∣ = |2 cos(2.5Ω) + cos(1.5Ω) + 4 cos(0.5Ω)| and ∠Ha

(
ejΩ
)
= −2.5Ω.

>> Ha = @(z) 1+0.5*z.^(-1)+2*z.^(-2)+2*z.^(-3)+0.5*z.^(-4)+z.^(-5);

>> Omega = linspace(-pi,pi,1001); subplot(121); plot(Omega,abs(Ha(exp(1j*Omega))));

>> ylabel(’|H_a[e^{j\Omega}]|’); xlabel(’\Omega’); grid on

>> set(gca,’xtick’,-pi:pi/2:pi,’ytick’,0:1:8); axis([-pi pi 0 8]);

>> subplot(122); plot(Omega,angle(Ha(exp(1j*Omega))));

>> ylabel(’\angle H_a[e^{j\Omega}]’); xlabel(’\Omega’); grid on

>> set(gca,’xtick’,-pi:pi/2:pi,’ytick’,-pi:pi/2:pi); axis([-pi pi -pi pi]);
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Figure S5.5-5a
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(b) By inspection, the transfer function of the second FIR filter is

Hb[z] = 1 + 0.5z−1 + 2z−2 − 2z−3 − 0.5z−4 − z−5.

The frequency response is therefore

Hb

(
ejΩ
)
= 1 + 0.5e−jΩ + 2e−j2Ω − 2e−j3Ω − 0.5e−j4Ω − e−j5Ω

= e−j2.5Ω
(
ej2.5Ω + 0.5ej1.5Ω + 2ej0.5Ω − 2e−j0.5Ω − 0.5e−j1.5Ω − e−j2.5Ω

)

= ej(
π
2 −2.5Ω) (2 sin(2.5Ω) + sin(1.5Ω) + 4 sin(0.5Ω)) .

The magnitude response is

∣∣Hb

(
ejΩ
)∣∣ = |2 sin(2.5Ω) + sin(1.5Ω) + 4 sin(0.5Ω)| .

Since 2 sin(2.5Ω) + sin(1.5Ω) + 4 sin(0.5Ω) > 0 for 0 < Ω < π and 2 sin(2.5Ω) + sin(1.5Ω) +
4 sin(0.5Ω) < 0 for −π < Ω < 0, the phase response is (over −π ≤ Ω < π)

∠Hb

(
ejΩ
)
= sgn(Ω)

π

2
− 2.5Ω.

The magnitude and phase responses are shown in Fig. S5.5-5b. Clearly, this FIR filter has
linear phase.

>> Hb = @(z) 1+0.5*z.^(-1)+2*z.^(-2)-2*z.^(-3)-0.5*z.^(-4)-z.^(-5);

>> Omega = linspace(-pi,pi,1001); subplot(121); plot(Omega,abs(Hb(exp(1j*Omega))));

>> ylabel(’|H_b[e^{j\Omega}]|’); xlabel(’\Omega’); grid on

>> set(gca,’xtick’,-pi:pi/2:pi,’ytick’,0:1:6); axis([-pi pi 0 6]);

>> subplot(122); plot(Omega,angle(Hb(exp(1j*Omega))));

>> ylabel(’\angle H_b[e^{j\Omega}]’); xlabel(’\Omega’); grid on

>> set(gca,’xtick’,-pi:pi/2:pi,’ytick’,-pi:pi/2:pi); axis([-pi pi -pi pi]);
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Figure S5.5-5b

Solution 5.5-6

In this problem, we consider the 5-point moving-average system given by

y[n] =
1

5

4∑

k=0

x[n− k].

Taking the z-transform of this difference equation yields

Y [z] =
1

5

4∑

k=0

z−kX [z] = X [z]
1

5

4∑

k=0

z−k.
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Solving for the transfer function yields

H [z] =
Y [z]

X [z]
=

1

5

4∑

k=0

z−k

The system frequency response is therefore given as

H
[
ejΩ
]
=

1

5

4∑

k=0

e−jkΩ

Expanding and simplifying yield

H
[
ejΩ
]
=

1

5

(
1 + e−jΩ + e−j2Ω + e−j3Ω + e−j4Ω+

)
=

1

5
e−j2Ω (1 + 2 cos(Ω) + 2 cos(2Ω)) .

Solution 5.5-7

(a) Taking the z-transform of the two difference equations yields

Y [z]
(
1 + 0.9z−1

)
= X [z] and Y [z]

(
1− 0.9z−1

)
= X [z].

The transfer functions of the two filters are therefore

Hi[z] =
1

1 + 0.9z−1
and Hii[z] =

1

1− 0.9z−1
.

The frequency response of the first system is

Hi

[
ejΩ
]
=

1

1 + 0.9e−jΩ
=

1

1 + 0.9 cos(Ω)− j0.9 sin(Ω)
.

The corresponding magnitude response and phase response are

∣∣Hi

[
ejΩ
]∣∣ = 1√

1.81 + 1.8 cos(Ω)
and ∠Hi

[
ejΩ
]
= − tan−1

( −0.9 sin(Ω)

1 + 0.9 cos(Ω)

)
.

The frequency response of the second system is

Hii

[
ejΩ
]
=

1

1− 0.9e−jΩ
=

1

1− 0.9 cos(Ω) + j0.9 sin(Ω)
.

The corresponding magnitude response and phase response are

∣∣Hii

[
ejΩ
]∣∣ = 1√

1.81− 1.8 cos(Ω)
and ∠Hii

[
ejΩ
]
= − tan−1

(
0.9 sin(Ω)

1− 0.9 cos(Ω)

)
.

The first filter Hi[z] has a zero at the origin and a pole at −0.9. Because the pole is near
Ω = π (z = −1), this is a highpass filter, as verified from the magnitude response plot shown
in Fig. S5.5-7a.

The second filter Hii[z] has a zero at the origin and a pole at 0.9. Because the pole is near
Ω = 0 (z = 1), this is a lowpass filter, as verified from the magnitude response plot shown in
Fig. S5.5-7a.

>> Omega = linspace(-pi,pi,1001);

>> Hi = @(z) z./(z+0.9); Hii = @(z) z./(z-0.9);

>> subplot(121); plot(Omega,abs(Hi(exp(1j*Omega)))); grid on;

>> xlabel(’\Omega’); ylabel(’|H_i[e^{j\Omega}]|’);

>> set(gca,’xtick’,-pi:pi/2:pi,’ytick’,0:2:10); axis([-pi pi 0 10]);

>> subplot(122); plot(Omega,abs(Hii(exp(1j*Omega)))); grid on;

>> xlabel(’\Omega’); ylabel(’|H_{ii}[e^{j\Omega}]|’);

>> set(gca,’xtick’,-pi:pi/2:pi,’ytick’,0:2:10); axis([-pi pi 0 10]);
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Figure S5.5-7a

(b) To determine the filter responses to x[n] = cos(0.01πn), we use MATLAB compute the mag-
nitude and phase responses at Ω = 0.01π.

>> [abs(Hi(exp(j*0.01*pi))), angle(Hi(exp(j*0.01*pi)))]

ans = 0.5264 0.0149

>> [abs(Hii(exp(j*0.01*pi))), angle(Hii(exp(j*0.01*pi)))]

ans = 9.5835 -0.2743

Thus, the outputs of the first and second filters to input x[n] = cos(0.01πn) are, respectively,

yi[n] = 0.5264 cos(0.01πn+ 0.0149) and yii[n] = 9.5835 cos(0.01πn− 0.2743).

To determine the filter responses to x[n] = cos(0.99πn), we use MATLAB compute the mag-
nitude and phase responses at Ω = 0.99π.

>> [abs(Hi(exp(j*0.99*pi))), angle(Hi(exp(j*0.99*pi)))]

ans = 9.5835 0.2743

>> [abs(Hii(exp(j*0.99*pi))), angle(Hii(exp(j*0.99*pi)))]

ans = 0.5264 -0.0149

Thus, the outputs of the first and second filters to input x[n] = cos(0.99πn) are, respectively,

yi[n] = 9.5835 cos(0.99πn+ 0.2743) and yii[n] = 0.5264 cos(0.01πn− 0.0149).

Since cos(Ω0) = − cos(π − Ω0) we see that

∣∣Hi

[
ejΩ0

]∣∣ = 1√
1.81 + 1.8 cos(Ω0)

=
1√

1.81− 1.8 cos(π − Ω0)
=
∣∣∣Hii

[
ej(π−Ω0)

]∣∣∣ .

That is, the gain (magnitude response) of the first filter at frequency Ω0 is the same as the
gain of the second filter at frequency π − Ω0. Thus, the gain response of the first system at
Ω0 = 0.01π will be the same as the gain response of the second system at Ω0 = 0.99π. Similarly,
the gain response of the first system at Ω0 = 0.99π will be the same as the gain response of
the second system at Ω0 = 0.01π. This is precisely the behavior observed previously.

Solution 5.5-8

By inspection of the difference equation, the system’s transfer function is

H [z] =
z + 0.8

z − 0.5
.
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(a) The frequency response of the system is

H
(
ejΩ
)
= H [z]|z=ejΩ =

ejΩ + 0.8

ejΩ − 0.5
=

cos(Ω) + 0.8 + j sin(Ω)

cos(Ω)− 0.5 + j sin(Ω)
.

To determine the magnitude response, we see that

∣∣H
[
ejΩ
]∣∣2 = H

[
ejΩ
]
H∗ [ejΩ

]
=

(ejΩ + 0.8)(e−jΩ + 0.8)

(ejΩ − 0.5)(e−jΩ − 0.5)
=

1.64 + 1.6 cos(Ω)

1.25− cos(Ω)
.

Thus, the magnitude response is

∣∣H
[
ejΩ
]∣∣ =

√
1.64 + 1.6 cos(Ω)

1.25− cos(Ω)
.

The phase responses is

∠H
[
ejΩ
]
= tan−1

(
sin(Ω)

cos(Ω) + 0.8

)
− tan−1

(
sin(Ω)

cos(Ω)− 0.5

)
.

The magnitude and phase responses are shown in Fig. S5.5-8. H = @[z] (z+0.8)./(z-0.5);

>> Omega = linspace(-pi,pi,1001); H = @(z) (z+0.8)./(z-0.5);

>> subplot(121); plot(Omega,abs(H(exp(1j*Omega)))); grid on;

>> xlabel(’\Omega’); ylabel(’|H[e^{j\Omega}]|’);

>> set(gca,’xtick’,-pi:pi/2:pi,’ytick’,0:.5:4); axis([-pi pi 0 4]);

>> subplot(122); plot(Omega,angle(H(exp(1j*Omega)))); grid on;

>> xlabel(’\Omega’); ylabel(’\angle H[e^{j\Omega}]’);

>> set(gca,’xtick’,-pi:pi/2:pi,’ytick’,-pi:pi/2:pi); axis([-pi pi -pi pi]);
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Figure S5.5-8a

(b) To determine the response y[n] to input x[n] = cos(0.5n − π/3), we need to evaluate the
magnitude response and phase response at Ω = 0.5.

>> [abs(H(exp(1j*0.5))),angle(H(exp(1j*0.5)))]

ans = 2.8590 -0.6253

Thus,
y[n] = 2.8590 cos(0.5n− π/3− 0.6253) = 2.8590 cos(0.5n− 1.6725).

Solution 5.5-9

From Eq. (5.20), we know that
Y [z] = X [z]H [z].
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For the input x [n] = ejΩnu[n], entry 6 of Table 5.1 tells us that X [z] = z
z−ejΩ . Thus,

Y [z] =
z

z − ejΩ
H [z].

Assuming H [z] follows a standard rational form where

H [z] =
B[z]

A[z]
=

B[z]

(z − p1)(z − p2) · · · (z − pN )
,

then

Y [z] =
zB[z]

(z − ejΩ)(z − p1)(z − p2) · · · (z − pN)

and

Y [z]

z
=

B[z]

(z − ejΩ)(z − p1)(z − p2) · · · (z − pN )

=
c0

z − ejΩ
+

c1
z − p1

+
c2

z − p2
+ · · ·+ cK

z − pN
.

The coefficient c0 is computed as

c0 =
B[z]

(z − ejΩ)(z − p1)(z − p2) · · · (z − pN )
(z − ejΩ)

∣∣∣∣
z=ejΩ

= H [z]|z=ejΩ = H
(
ejΩ
)
.

Therefore,

Y [z] = H
[
ejΩ
] z

z − ejΩ
+

N∑

i=1

ci
z

z − pi
.

and

y[n] =

[
H
[
ejΩ
]
ejΩn +

N∑

i=1

cipi
n

]
u[n].

For an asymptotically stable system |pi| < 1 (i = 1, 2, . . . , N), and the sum on the right-hand
side vanishes as n → ∞. This sum is therefore the transient component of the response. The term
H
[
ejΩ
]
ejΩn, which does not vanish as n → ∞, is the steady-state component of the response yss[n].

Thus, the steady-state response of an asymptotically stable LTID system to input x [n] = ejΩnu[n]
is

yss[n] = H
[
ejΩ
]
ejΩnu[n].

Solution 5.5-10

For each of the following, designate Ωa as the apparent frequency.

(a) Because Ω = 0.8π is in the fundamental range, Ωa = Ω = 0.8π and the signal appears
unchanged as

cos(0.8πn+ θ).

(b) Because Ωa = 〈1.2π + π〉2π − π = −0.8π,

sin(1.2πn+ θ) = sin(−0.8πn+ θ) = − sin(0.8πn− θ).

(c) Because Ωa = 〈6.9 + π〉2π − π = 0.6168,

cos(6.9n+ θ) = cos(0.6168n+ θ).
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(d) Because 〈2.8π + π〉2π − π = 0.8π and 〈3.7π + π〉2π − π = −0.3π, the apparent frequencies of
cos(2.8πn+ θ) and 2 sin(3.7πn+ θ) are 0.8π and −0.3π, respectively. Hence,

cos(2.8πn+ θ) + 2 sin(3.7πn+ θ) = cos(0.8πn+ θ) + 2 sin(−0.3πn+ θ)

= cos(0.8πn+ θ)− 2 sin(0.3πn− θ).

(e) From the definition of sinc, we know that

sinc
(πn

2

)
=

sin(πn/2)

(πn/2)
.

Since Ω = π/2 is in the fundamental range, Ωa = π/2 and the signal appears unchanged as

sinc
(πn

2

)
.

(f) From the definition of sinc, we know that

sinc

(
3πn

2

)
=

sin(3πn/2)

(3πn/2)
.

Because Ωa = 〈3π/2 + π〉2π − π = −π/2, the signal appears as

sinc

(
3πn

2

)
=

sin(−πn/2)

(3πn/2)

= −1

3
sinc

(πn
2

)
.

(g) From the definition of sinc, we know that

sinc (2πn) =
sin(2πn)

(2πn)
.

Since sin(2πn) = 0 for all n, this expression is 0 for all n 6= 0. At n = 0, we have sinc(0) = 1.
Thus, the signal appears as

sinc (2πn) =

{
0 n 6= 0
1 n = 0

.

Except for n = 0, this is consistent with the apparent frequency Ωa = 〈2π + π〉2π − π = 0, for
which sin is always 0.

Solution 5.5-11

Because 〈1.4π + π〉2π − π = −0.6π, frequency Ω = 1.4π appears as Ωa = −0.6π and
cos(1.4πn+ π

3 ) = cos(−0.6πn+ π
3 ) = cos(0.6πn− π

3 ). Also

cos
(
0.6πn+ π

6

)
= cos(0.6πn) cos(π6 )− sin(0.6πn) sin(π6 )

=
√
3
2 cos(0.6πn)− 1

2 sin(0.6πn).

Similarly,

√
3 cos

(
0.6πn− π

3

)
=

√
3 cos(0.6πn) cos(π3 ) +

√
3 sin(0.6πn) sin(π3 )

=
√
3
2 cos(0.6πn) + 3

2 sin(0.6πn).
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Adding these results yields

cos
(
0.6πn+ π

6

)
+
√
3 cos

(
1.4πn+ π

3

)
= cos

(
0.6πn+

π

6

)
+
√
3 cos

(
0.6πn− π

3

)

=
√
3 cos(0.6πn) + sin(0.6πn).

From trigonometry, we know that a cos(x) + b sin(x) =
√
a2 + b2 cos(x + tan−1(−b/a)). Since√

(
√
3)2 + 12 = 2 and tan−1(−1/

√
3) = −π/6, we thus obtain the desired result of

cos
(
0.6πn+ π

6

)
+
√
3 cos

(
1.4πn+ π

3

)
= 2 cos

(
0.6πn− π

6

)
.

Solution 5.5-12

(a) For T = 50 µs, the sampling frequency is Fs = 1
T = 20 kHz. From Nyquist, we know that

aliasing begins to occur when input frequencies exceed Fs

2 . Therefore, the maximum frequency
that can be processed by this filter without aliasing is fmax = 10 kHz.

(b) If the maximum input frequency to a digital system is fmax = 50 kHz, then Nyquist requires
that the system sampling frequency be no smaller than Fs = 2fmax = 100 kHz.

Technically, if an input includes an everlasting sinusoid at exactly the maximum frequency fmax,
the sampling frequency must be strictly greater than 2fmax. Thus, part (a) really requires an input
frequency just under 10 kHz and part (b) requires a sampling frequency just above 100 kHz. In
practice, everlasting sinusoids cannot be generated so this distinction is unimportant.

Solution 5.5-13

Taking the z-transform of y[n] =
∑∞

k=0(0.5)
kx[n − k] yields Y [z] =

∑∞
k=0(0.5)

kX [z]z−k =
X [z]

∑∞
k=0(0.5/z)

k. For |z| > 1/2, this becomes Y [z] = X [z] 1
1−0.5z−1 . Thus, the transfer function

is H [z] = Y [z]
X[z] =

1
1−0.5z−1 .

(a) Using H [z] and letting z = ejΩ, the magnitude response is

∣∣H [ejΩ]
∣∣ =

∣∣∣∣
1

1− 0.5e−jΩ

∣∣∣∣ =
1√

(1 − 0.5 cos(Ω))2 + (−0.5 sin(Ω))2

=
1√

1− cos(Ω) + 0.25(cos2(Ω) + sin2(Ω))
.

Thus,
∣∣H [ejΩ]

∣∣ = 1√
5/4− cos(Ω)

.

MATLAB is used to plot
∣∣H [ejΩ]

∣∣ in two ways: from the above expression and also by substi-
tution into H [z]. As Fig. S5.5-13a shows, both methods yield identical results.

>> Omega = linspace(-pi,pi,501);

>> Hm = @(Omega) 1./sqrt(5/4-cos(Omega)); H = @(z) 1./(1-0.5*z.^(-1));

>> subplot(121); plot(Omega,Hm(Omega),’k-’); grid on;

>> axis([-pi pi 0 2.5]); xlabel(’\Omega’); ylabel(’|H[e^{j\Omega}]|’);

>> subplot(122); plot(Omega,abs(H(exp(1j*Omega))),’k-’); grid on;

>> axis([-pi pi 0 2.5]); xlabel(’\Omega’); ylabel(’|H[e^{j\Omega}]|’);
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Figure S5.5-13a

(b) Using H [z] and letting z = ejΩ, the phase response is ∠H(ejΩ) = ∠
1

1−0.5e−jΩ = −∠(1 −
0.5 cos(Ω)− 0.5j sin(−Ω)). Thus,

∠H(ejΩ) = − arctan

(
0.5 sin(Ω)

1− 0.5 cos(Ω)

)
.

MATLAB is used to plot ∠H(ejΩ) in two ways: from the above expression and also by sub-
stitution into H [z]. As Fig. S5.5-13b shows, both methods yield identical results.

>> Omega = linspace(-pi,pi,501); H = @(z) 1./(1-0.5*z.^(-1));

>> Ha = @(Omega) -atan2(0.5*sin(Omega),1-0.5*cos(Omega));

>> subplot(121); plot(Omega,Ha(Omega),’k-’); grid on;

>> axis([-pi pi -pi/2 pi/2]); xlabel(’\Omega’); ylabel(’\angle H[e^{j\Omega}]’);

>> subplot(122); plot(Omega,angle(H(exp(1j*Omega))),’k-’); grid on;

>> axis([-pi pi -pi/2 pi/2]); xlabel(’\Omega’); ylabel(’\angle H[e^{j\Omega}]’);
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Figure S5.5-13b

(c) Since H [z] = Y [z]
X[z] =

1
1−0.5z−1 , an equivalent difference equation description is y[n]− 0.5y[n−

1] = x[n]. From this equation, an efficient block representation is found, as shown in Fig. S5.5-
13c.

Σ y[n]x[n]

1/2

z–1

Figure S5.5-13c
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Solution 5.6-1

In general, pole-zero plots do not provide the overall gain b0 of a system. For each of the two cases,
we therefore normalize the magnitude response by |b0| and adjust the phase response by −∠b0.

(a) Figure S5.6-1a shows sketches of the filter’s magnitude and phase responses. The magnitude
response is relatively high at frequencies Ω = ±π/4, where the poles are closest to the unit
circle. The gain is smallest at Ω = ±π, where the poles are farthest away. The zero at the
origin does not affect the magnitude response.

The phase of the zero is zero and the phases of the two poles are equal and opposite at Ω = 0.
Thus, the (adjusted) phase response is 0 at Ω = 0. As Ω increases, the phases of the zero and
both poles increase toward π. At Ω = π, the phase response is therefore π − (π + π) = −π.
The phase response changes most quickly near Ω = ±π/4, where the phase of nearby poles are
likewise rapidly changing.

By inspection of the pole-zero plot, we see that the system transfer function is, at least ap-
proximately, given by

Ha[z] = b0
z

(z − 0.75ejπ/4)(z − 0.75e−jπ/4)
.

With this expression, we can use MATLAB to readily confirm the system’s frequency response
characteristics.

>> Omega = linspace(-pi,pi,1001);

>> Ha = @(z) z./((z-0.75*exp(j*pi/4)).*(z-0.75*exp(-j*pi/4)));

>> subplot(121); plot(Omega,abs(Ha(exp(1j*Omega)))); grid on;

>> axis([-pi pi 0 3.5]); xlabel(’\Omega’); ylabel(’|H_a[e^{j\Omega}]/b_0|’);

>> set(gca,’xtick’,-pi:pi/2:pi,’ytick’,0:.5:3.5);

>> subplot(122); plot(Omega,angle(Ha(exp(1j*Omega))));

>> grid on; axis([-pi pi -pi pi]);

>> xlabel(’\Omega’); ylabel(’\angle H_a[e^{j\Omega}]-\angle b_0’);

>> set(gca,’xtick’,-pi:pi/2:pi,’ytick’,-pi:pi/2:pi);
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Figure S5.6-1a

(b) Figure S5.6-1b shows sketches of the filter’s magnitude and phase responses. The magnitude
response is relatively high at frequencies Ω = ±7π/8, where the poles are closest to the unit
circle. The gain is smallest at Ω = 0, where the poles are farthest away. The zeros at the
origin do not affect the magnitude response.

The phases of the zero are zero and the phases of the two poles are equal and opposite at
Ω = 0. Thus, the (adjusted) phase response is 0 at Ω = 0. At Ω = π, the phase response is
2π − (π + θ + π − θ) = 0. As Ω moves between 0 and π, the overall phase bumps up before
returning to zero. The phase response changes most quickly near Ω = ±7π/8, where the phase
of nearby poles are likewise rapidly changing.
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By inspection of the pole-zero plot, we see that the system transfer function is, at least ap-
proximately, given by

Hb[z] = b0
z2

(z − 0.825ej7π/8)(z − 0.825e−j7π/8)
.

With this expression, we can use MATLAB to readily confirm the system’s frequency response
characteristics.

>> Omega = linspace(-pi,pi,1001);

>> Hb = @(z) z.^2./((z-0.825*exp(j*7*pi/8)).*(z-0.825*exp(-j*7*pi/8)));

>> subplot(121); plot(Omega,abs(Hb(exp(1j*Omega)))); grid on;

>> axis([-pi pi 0 8.5]); xlabel(’\Omega’); ylabel(’|H_b[e^{j\Omega}]/b_0|’);

>> set(gca,’xtick’,-pi:pi/2:pi,’ytick’,0:1:8.5);

>> subplot(122); plot(Omega,angle(Hb(exp(1j*Omega))));

>> grid on; axis([-pi pi -pi pi]);

>> xlabel(’\Omega’); ylabel(’\angle H_b[e^{j\Omega}]-\angle b_0’);

>> set(gca,’xtick’,-pi:pi/2:pi,’ytick’,-pi:pi/2:pi);
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Solution 5.6-2

(a) From the pole/zero plot, we see that

H [z] =
k(z − 1)

(z − 0.5j)(z + 0.5j)
=

k(z − 1)

z2 + 1
4

.

Further,

H [−1] = −1 =
k(−2)

1 + 1
4

⇒ −2k = −5

4
⇒ k =

5

8
.

Referenced to H [z] = b0z
2+b1z+b2

z2+a1z+a2
, we see that

b0 = 0, b1 =
5

8
, b2 = −5

8
, a1 = 0, a2 =

1

4
.

(b) By inspection, we see that

|H [ej0]| = 0 and |H [e−jπ ]| = 1.

At Ω = π
2 , we see that

|H [ejπ/2]| = 5

8

( √
2

1
2 (

3
2 )

)
=

5

3
√
2
= 1.1785.
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Figure S5.6-2b

Since the system is real, |H [ejΩ]| has even symmetry, which when combined with its 2π periodic
nature, implies symmetry about Ω = −π as well. Due to the influence of the zero, the peak
of the magnitude response occurs just before Ω = π/2. Figure S5.6-2b shows the resulting
magnitude response (dots for hand-calculated values, curve for actual magnitude response).

(c) From part (b), |H [ejπ/2]| = 5
3
√
2
. Further,

∠H [ejπ/2] = 0 +
3π

4
−
(π
2
+

π

2

)
= −π

4
.

Thus, the response to x[n] = sin
(
πn
2

)
is

y[n] = 5
3
√
2
sin
(
πn
2 − π

4

)
.

Solution 5.6-3

(a) From the pole/zero plot, we see that

H [z] =
k(z + 1)

(z − 0.5j)(z + 0.5j)
=

k(z − 1)

z2 + 1
4

.

Further,

H [1] = −1 =
k(2)

1 + 1
4

⇒ 2k = −5

4
⇒ k = −5

8
.

Referenced to H [z] = b0z
2+b1z+b2

z2+a1z+a2
, we see that

b0 = 0, b1 = −5

8
, b2 = −5

8
, a1 = 0, a2 =

1

4
.

(b) By inspection, we see that

|H [ej0]| = 1 and |H [e−jπ ]| = 0.

At Ω = π
2 , we see that

|H [ejπ/2]| = 5

8

( √
2

1
2 (

3
2 )

)
=

5

3
√
2
= 1.1785.

Since the system is real, |H [ejΩ]| has even symmetry, which when combined with its 2π periodic
nature, implies symmetry about Ω = −π as well. Due to the influence of the zero, the peak
of the magnitude response occurs just after Ω = π/2. Figure S5.6-3b shows the resulting
magnitude response (dots for hand-calculated values, curve for actual magnitude response).
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Figure S5.6-3b

(c) From part (b), |H [ejπ/2]| = 5
3
√
2
. Further,

∠H [ejπ/2] = π +
π

4
−
(π
2
+

π

2

)
=

π

4
.

Thus, the response to x[n] = sin
(
πn
2

)
is

y[n] = 5
3
√
2
sin
(
πn
2 + π

4

)
.

Solution 5.6-4

(a) From the pole/zero plot, we see that the zeros can be represented as

(z − ejπ/4)(z − e−jπ/4) = z2 − 2 ejπ/4−e−jπ/4

2 z + 1 = z2 − 2 cos(π4 )z + 1 = z2 −
√
2z + 1.

Similarly, the poles can be represented as

(z− 1√
2
ej3π/4)(z− 1√

2
e−j3π/4) = z2− 2√

2
ej3π/4−e−j3π/4

2 z+ 1
2 = z2−

√
2 cos(3π4 )z+ 1

2 = z2+z+ 1
2 .

Further,

H [−1] = 1 = k
1 +

√
2 + 1

1− 1− 1
2

⇒ k =
1

4 + 2
√
2
.

Referenced to H [z] = k z2+b1z+b2
z2+a1z+a2

, we see that

k =
1

4 + 2
√
2
, b1 = −

√
2, b2 = 1, a1 = 1, a2 =

1

2
.

(b) By inspection, we see that

|H [ejπ ]| = 1 and |H [e±jπ/4]| = 0.

At Ω = ± 3π
4 , we see that

|H [e±j3π/4]| ≈ 1

4 + 2
√
2

(
(1.4)(2)

(0.3)(1.25)

)
= 1.1.

At Ω = 0, we see that

|H [ej0]| ≈ 1

4 + 2
√
2

(
2−

√
2

2.5

)
≈ 0.04.

Since the system is real, |H [ejΩ]| has even symmetry. Due to the influence of the zero, the
peak of the magnitude response occurs just after Ω = 3π/4. Figure S5.6-4b shows the resulting
magnitude response (dots for hand-calculated values, curve for actual magnitude response).
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(c) To avoid aliasing (i.e., Nyquist is met), we need to sample such that the ω = 500π component
hits the system zero at Ω = π/4. That is,

Ω = ωT ⇒ π

4
= 500πT ⇒ T =

1

2000
⇒ Fs =

1

T
= 2000Hz.

Now, ω = 100π is five times small than ω = 500π, so

Ω0 =
1

5

(π
4

)
⇒ Ω0 =

π

20
.

(d) Since the system poles are contained inside the unit circle, the system is asymptotically stable
and also BIBO stable. Thus,

yes; the impulse response h[n] is absolutely summable since the system is stable.

Solution 5.6-5

(a) From the pole/zero plot, we see that the zeros can be represented as

(z − ej3π/4)(z − e−j3π/4) = z2 − 2 ej3π/4−e−j3π/4

2 z + 1 = z2 − 2 cos(3π4 )z + 1 = z2 +
√
2z + 1.

Similarly, the poles can be represented as

(z − 1√
2
ejπ/4)(z − 1√

2
e−jπ/4) = z2 − 2√

2
ejπ/4−e−jπ/4

2 z + 1
2 = z2 −

√
2 cos(π4 )z +

1
2 = z2 − z + 1

2 .

Further,

H [1] = −1 = k
2 +

√
2

1
2

⇒ k =
−1

4 + 2
√
2
.

Referenced to H [z] = k z2+b1z+b2
z2+a1z+a2

, we see that

k =
−1

4 + 2
√
2
, b1 =

√
2, b2 = 1, a1 = −1, a2 =

1

2
.

(b) By inspection, we see that

|H [ej0]| = 1 and |H [e±j3π/4]| = 0.

At Ω = ±π
4 , we see that

|H [e±jπ/4]| ≈ 1

4 + 2
√
2

(
(1.4)(2)

(0.3)(1.25)

)
= 1.1.
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At Ω = π, we see that

|H [ejπ ]| ≈ 1

4 + 2
√
2

(
2−

√
2

2.5

)
≈ 0.04.

Since the system is real, |H [ejΩ]| has even symmetry. Due to the influence of the zero, the
peak of the magnitude response occurs just before Ω = π/4. Figure S5.6-5b shows the resulting
magnitude response (dots for hand-calculated values, curve for actual magnitude response).
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(c) We know that Ω = π corresponds to Fs/2. Thus, the system zeros at Ω = ±3π/4 correspond
to ±3Fs/8. Any alias (integer multiple of Fs) also hits these zeros. Thus,

frequencies f = ± 3Fs

8 + kFs, where k is any integer, will produce y[n] = 0.

For example, if Fs = 8000 Hz, sinusoids of frequencies ±3000, ±5000, ±11000, ±13000, and so
forth would produce zero output.

Solution 5.6-6

The two systems are very similar and have identical steady-state characteristics. There is an im-
portant difference, however, between the two systems. The system y[n]− y[n− 1] = x[n]− x[n− 1]
is first-order and can support an initial condition; the system y[n] = x[n] is zero-order and cannot
support an initial condition. If the initial condition of the first system is non-zero, the output of
the two systems can be quite different.

Solution 5.6-7

(a) From the pole/zero plot, we see that the zeros can be represented as

(z − 1)(z − 1) = (z2 − 2z + 1).

Similarly, the poles can be represented as

(z − 1
2e

j3π/4)(z − 1
2e

−j3π/4) = z2 − cos(3π
4 )z +

1
4 = z2 + 1√

2
z + 1

4 .

Further,

H [−1] = 4 = k
(−1)2 − 2(−1) + 1

(−1)2 + 1√
2
(−1) + 1

4

= k
4

5
4 − 1√

2

⇒ k =
5

4
− 1√

2
≈ 0.54.

Referenced to H [z] = k z2+b1z+b2
z2+a1z+a2

, we see that

k =
5

4
− 1√

2
, b1 = −2, b2 = 1, a1 =

1√
2
, a2 =

1

4
.
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(b) By inspection, we see that

|H [ej0]| = 0 and |H [e±π]| = 4.

Using the techniques of Sec. 5.6 (based on distances from poles and zeros to frequencies of
interest), we see that

|H [e±jπ/2]| ≈ 0.54

(√
2(
√
2)

3
4

−
(32

−
)

)
≈ 1

and

|H [e±j3π/4]| ≈ 0.54




(√
(74 )

2 + (34 )
2
)2

1
2

√
(38 )

2 + (98 )
2


 = 1.08

58
16√
90
8

= 3.3.

Since the system is real, |H [ejΩ]| has even symmetry. Figure S5.6-7b shows the resulting
magnitude response (dots for hand-calculated values, curve for actual magnitude response).
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Figure S5.6-7b

(c) We already know that |H [e±j3π/4]| ≈ 3.3. Further, we see that

∠H [e±j3π/4] ≈ 0+2(180◦−atan(37 ))−(135◦+(90◦+atan(39 ))) ≈ 2(155◦)−(135◦+110◦) ≈ 65◦ = 1.14rad.

Thus, the steady-state output to x[n] = cos(3πn4 )u[n] is

yss[n] ≈ 3.3 cos(3πn4 + 1.14)u[n].

This result (based on somewhat rough calculations) is quite close to the true result of yss[n] ≈
3.3157 cos(3πn4 + 1.2490)u[n].

(d) From the magnitude response in part (b),

the system is HP.

From the magnitude response (as well as the pole locations), we know that the filter cutoff
frequency is approximately Ωc = 3π

4 = ωcT = 2πfc
1
Fs
. Thus, fc = 3

8 (Fs). For Fs = 8000, we
see that

fc ≈
3

8
(8000) = 3000Hz.

Solution 5.6-8

(a) From the magnitude response plot, it is clear that this is a highpass filter. Low frequencies
near Ω = 0 are attenuated, and high frequencies near Ω = ±π are passed with unity gain.
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(b) From the magnitude and phase response plots, H [ejπ/2] = 1√
2
ej3π/4. Thus, the output to

x1[n] = 2 sin(π2n+ π
4 ) is

y1[n] =
√
2 sin(π2n+ π) = −

√
2 sin(π2n).

(c) Notice, H [ej7π/4] = H [e−jπ/4]. From the magnitude (even) and phase (odd) response plots,
H [e−jπ/4] ≈ 0.07ej3π/4. Thus, the output to x2[n] = cos(7π4 n) is

y2[n] ≈ 0.07 cos(7π4 n+ 3π/4).

Solution 5.6-9

(a) By direct substitution, we see that

b0
e−j2π + 1

e−j2π − 9
16

= b0
2
7
16

= −1.

Thus,

b0 = − 7

32
.

(b) As shown in Fig. S5.6-9b, the system has

poles at z = 3
4 and z = − 3

4 and zeros at z = j and z = −j.
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Figure S5.6-9b

(c) By constraint, |H [e−jπ]| = 1. Due to symmetry in the pole-zero plot, we also know that
|H [ej0]| = 1. Further, the two zeros cause |H [e±jπ/2]| = 0. Thus, as shown in Fig. S5.6-9c,
the system has bandstop (notch) character (dots for hand-calculated values, curve for actual
magnitude response).

(d) Since H [ej0] = H [ejπ] = −1 and H [ejπ/2] = H [e−jπ/2] = 0, the output in response to x[n] =
(−1 + j) + jn + (1− j) sin(πn+ 1) is

y[n] = (1 − j) + (j − 1) sin(πn+ 1).

(e) Figure S5.6-9e shows a TDFII realization of the system, which generally has the most desirable
characteristics of the basic structures (DFI, DFII, TDFI, and TDFII).



Student use and/or distribution of solutions is prohibited 427

0 0.7854 1.5708 2.3562 3.1416 3.9270 4.7124 5.4978 6.2832

Ω

0

0.2

0.4

0.6

0.8

1

|H
[e

jΩ
]|

Figure S5.6-9c

x[n]
Σ

−
7

32

Σ

−
7

32

z−1

z−1

9

16

y[n]

Figure S5.6-9e

Solution 5.6-10

Taking the z-transform of 4y[n+ 2] − y[n] = x[n + 2] + x[n] yields Y [z]
(
4z2 − 1

)
= X [z]

(
z2 + 1

)
.

Thus, the system function is

H [z] =
Y [z]

X [z]
=

z2 + 1

4z2 − 1
= 0.25

1 + z−2

1− z−2/4
.

(a) As shown in Fig. S5.6-10a, the system has

poles at z = 1
2 and z = − 1

2 and zeros at z = j and z = −j.

(b) Using the techniques of Sec. 5.6 (based on distances from poles and zeros to frequencies of
interest), we see that

|H [ej0]| = 1

4

(√
2
√
2

1
2 (

3
2 )

)
=

2

3
.

Due to symmetry in the pole-zero plot, we also know that

|H [ejπ ]| = |H [ej0]| = 2

3
.

The two zeros cause |H [e±jπ/2]| = 0. Thus, as shown in Fig. S5.6-10b, the system has bandstop
(notch) character (dots for hand-calculated values, curve for actual magnitude response).

(c) The pole-zero plot of Fig. S5.6-10a and the magnitude response plot of Fig. S5.6-10b confirm
that this is a band-stop system.

(d) Yes, the system is asymptotically stable. Referring to Fig. S5.6-10a, all the system poles are
within the unit circle.
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Figure S5.6-10a
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(e) Yes, the system is real. Since the system is expressed as a constant-coefficient linear difference
equation with real coefficients, the impulse response h[n] and system are both real.

(f) For an input of the form x[n] = cos(Ωn), the greatest possible amplitude of the output cor-
responds to the greatest gain shown in the magnitude response plot of Fig. S5.6-10b. Thus,
2
3 is the greatest output amplitude given an input of x[n] = cos(Ωn). This output amplitude
occurs when Ω = kπ, for any integer k.

(g) InvertingH [z] = Y [z]
X[z] = 0.25 1+z−2

1−z−2/4 provides y[n]−0.25y[n−2] = 0.25x[n]+0.25x[n−2], which

is a convenient form for implementation. Figure S5.6-10g illustrates a TDFII implementation
of the system.

x[n]
Σ

1

4

Σ

1

4

z−1

z−1

1

4

y[n]

Figure S5.6-10g
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Solution 5.6-11

(a) From the block diagram, the corresponding difference equation is written directly.

y[n]− 0.5y[n− 2] = x[n].

(b) Taking the z-transform of y[n]− 0.5y[n− 2] = x[n] yields Y [z](1− 0.5z−2) = X [z]. Thus,

H [z] =
Y [z]

X [z]
=

1

1− 0.5z−2
,

and we see that the system has

a repeated zero at z = 0 and poles at z = ± 1√
2
.

Using the techniques of Sec. 5.6 (based on distances from poles and zeros to frequencies of
interest), we see that

|H [ej0]| = 1(1)

(1 + 1√
2
)(1− 1√

2
)
=

1
1
2

= 2.

Further,

|H [e±jπ/2]| = 1(1)√
12 + ( 1√

2
)2
√

12 + ( 1√
2
)2

=
1
3
2

=
2

3
.

Due to symmetry in the pole-zero plot, we also know that

|H [ejπ ]| = |H [ej0]| = 2.

The resulting magnitude response is shown in Fig. S5.6-11b (dots for hand-calculated values,
curve for actual magnitude response). Standard filter types do not provide a good description
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of this filter. The system appears most like a bandstop filter, but its stopband attenuation is
quite poor. The system boosts the gain of low and high frequencies more than it attenuates
the middle frequencies.

(c) Inverting H [z] = 1
1−0.5z−2 = 1/2

1−z−1/
√
2
+ 1/2

1+z−1/
√
2
yields

h[n] = 0.5
(
(1/

√
2)n + (−1/

√
2)n
)
u[n].
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Solution 5.6-12

For this problem, we have H [z] = K z+1
z−a .

(a) Figure S5.6-12a illustrates a TDFII implementation of the system.

x[n]
Σ

K

Σ
K

z−1

a

y[n]

Figure S5.6-12a

(b) This system has a zero at z = −1 and a pole at z = a. For |a| < 1, the pole is closer to Ω = 0
than is the system zero. Hence there is highest gain at dc, and the system is lowpass in nature.
Figure S5.6-12b shows the K-normalized magnitude response for a = 1

2 , 0, and − 1
2 .

-3.1416 -2.3562 -1.5708 -0.7854 0 0.7854 1.5708 2.3562 3.1416

Ω

0

1

2

3

4

|H
[e

jΩ
]/K

|

a=0.5

a=0

a=-0.5

Figure S5.6-12b

(c) To begin, note that

H
[
ejΩ
]
= K

(
ejΩ + 1

ejΩ − a

)
= K

(
cosΩ + 1 + j sinΩ

cosΩ− a+ j sinΩ

)

and

|H
[
ejΩ
]
| = K

√
2(1 + cosΩ)

1 + a2 − 2a cosΩ
.

For a = 0.2

|H
[
ejΩ
]
| = K

√
2(1 + cosΩ)

1.04− 0.4 cosΩ
.

The dc gain is |H [ej0]| = 2.5K, and the 3 dB bandwidth occurs when |H [ejΩ]|2 = 1
2 |H [ej0]|2 =

3.125K2. Hence

3.125K2 = K2

[
2(1 + cosΩ)

1.04− 0.4 cosΩ

]
=⇒ Ω = 1.176.

Hence, the (Hertzian) bandwidth is

B =
Ω

2πT
=

1.176

2πT
=

0.187

T
Hz.
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Solution 5.6-13

Since the highest frequency to be processed is 20 kHz, we can avoid aliasing by satisfying the
Nyquist condition of

T ≤ 1

2fmax
=

1

2(20000)
= 25 µs.

Selecting T = 25 µs, the notch frequency of fc = 5000 Hz corresponds to

Ωc = 2πfcT = (2π5 · 103)(25 · 10−6) =
π

4
.

Therefore, we must place zeros at e±jπ/4. For rapid recovery on either side of 5000 Hz, we need
poles at ae±jπ/4 where 0 < a < 1 and a is close to 1. The transfer function is

H(z) = K
(z − ejπ/4)(z − e−jπ/4)

(z − aejπ/4)(z − ae−jπ/4)
=

K(z2 −
√
2z + 1)

z2 −
√
2az + a2

A canonical TDFII realization of this system is shown in Fig. S5.6-13a.

x[n]
Σ

K

Σ
−

√

2K

Σ
K

z−1

z−1

√

2a

−a2

y[n]

Figure S5.6-13a

The constant K is chosen so that the filter has unity dc (z = 1) gain. That is,

H [1] =
K(2−

√
2)

1 + a2 −
√
2a

= 1.

Solving for K yields

K =
1 + a2 −

√
2a

2−
√
2

= 1.7071(1 + a2 −
√
2a).

Using K given above, the magnitude response is thus

∣∣H
[
ejΩ
]∣∣ =

∣∣∣∣∣K
ej2Ω −

√
2ejΩ + 1

ej2Ω −
√
2aejΩ + a2

∣∣∣∣∣ .

Figure S5.6-13b shows the magnitude response for a = 0.95 and confirms the design.

>> a = 0.95; K = (1+a^2-sqrt(2)*a)/(2-sqrt(2));

>> Omega = linspace(-pi,pi,1001);

>> H = @(z) K*(z.^2-sqrt(2)*z+1)./(z.^2-sqrt(2)*a*z+a^2);

>> plot(Omega,abs(H(exp(1j*Omega)))); grid on;

>> axis([-pi pi 0 1.15]); xlabel(’\Omega’); ylabel(’|H[e^{j\Omega}]|’);

>> set(gca,’xtick’,-pi:pi/4:pi,’ytick’,0:.25:1);
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Solution 5.6-14

(a) We know that the magnitude response of DT systems are 2π periodic. Periodically replicating
the magnitude response of Fig. P5.6-14 and looking over −π ≤ Ω ≤ π, we obtain a traditional
view of the system magnitude response, as shown in Fig. S5.6-14a.

Clearly from Fig. S5.6-14a, the system is a bandpass filter.
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(b) We can obtain a reasonable second-order approximation of this response by placing zeros at
z = ±1 and poles at z = ±ja (0 ≤ a ≤ 1). This results in a transfer function

H [z] = b0
z2 − 1

z2 + a2
.

To find suitable constants b0 and a, let us try and set a peak gain of unity and 3 dB (half
power) cutoff frequencies. To set the peak gain at unity requires

|H [ejπ/2]| = |b0|
∣∣∣∣
ej2π − 1

ej2π − a2

∣∣∣∣ = |b0|
2

1− a2
= 1.

Thus, let us set

b0 =
1− a2

2
.

We determine a by setting a 3 dB (half power) gain at Ω = π/4. That is,

|H [ejπ/4]|2 =
1

2
= |b0|2

∣∣∣∣
ejπ − 1

ejπ − a2

∣∣∣∣
2

=
1− 2a2 + a4

4

(
(j − 1)(−j − 1)

(j + a2)(−j + a2)

)

=
1− 2a2 + a4

4

(
2

1− a4

)
.
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Thus,

1 + a4 = 1− 2a2 + a4 ⇒ a = 0.

For a = 0, the corresponding coefficient b0 is just 1
2 . Taken together our system is

H [z] =
1
2z

2 − 1
2

z2
.

Figure S5.6-14b shows the resulting pole-zero plot and magnitude response, thereby confirming
the design.
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Solution 5.6-15

In this problem, we consider a first-order LTID system with a pole at z = γ (γ is potentially
complex) and a zero at z = 1

γ∗ , where |γ| ≤ 1. The system transfer function is

H1[z] =
z − 1

γ∗

z − γ
.

The magnitude response squared of this first order system is

∣∣H1

[
ejΩ
]∣∣2 = H1

[
ejΩ
]
H∗

1

[
ejΩ
]
=

(
ejΩ − 1

γ∗

ejΩ − γ

)(
e−jΩ − 1

γ

e−jΩ − γ∗

)

=
1 + 1

|γ|2 − 2
|γ| cos(Ω− ∠γ)

1 + |γ|2 − 2|γ| cos(Ω− ∠γ)
=

1

|γ|2 .

The magnitude response is therefore
∣∣H1

[
ejΩ
]∣∣ = 1

|γ| .

Since the magnitude response is a constant for all frequencies Ω, the filter is clearly allpass.

Letting γ be a real value r (|r| < 1), we see that H1[z] =
z−

1

r
z−r has a magnitude response

∣∣H1

[
ejΩ
]∣∣ = 1

|r| .
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For a second-order system with poles at z = re±jθ and zeros at z = (1/r)e±jθ, we see that

H2[z] =

(
z − 1

γ∗
1

z − γ1

)(
z − 1

γ∗
2

z − γ2

)
,

where γ1 = rejθ and γ1 = re−jθ . Using our earlier result, the magnitude response of this system is

∣∣H2

[
ejΩ
]∣∣ = 1

|γ1||γ2|
=

1

|r|2 .

Since the magnitude response is a constant for all frequencies Ω, the filter is clearly allpass.

Solution 5.6-16

The impulse responses of two LTID systems are related as

h2[n] = (−1)nh1[n].

(a) Since −1 = e∓jπ , we see that
h2[n] = e∓jπnh1[n].

Using the z-domain scaling property of Table ?? with γ = e∓jπ , we see that

H2[z] = H1[z/e
∓jπ] = H1[e

±jπz].

Hence
H2

[
ejΩ
]
= H1

[
e±jπejΩ

]
= H1

[
ej(Ω±π)

]
.

In this way, we see that the frequency response of the second filter is just the frequency response
of the first filter shifted by π.

(b) Figure S5.6-16b shows the frequency response H1

[
ejΩ
]
of an ideal lowpass filter with cutoff

frequency Ωc and the resulting frequency response H2

[
ejΩ
]
, which is just H1

[
ejΩ
]
shifted by

π (recall that the frequency response of any DT system is 2π-periodic). It is clear that the
shifted response H2

[
ejΩ
]
corresponds to an ideal high-pass filter with cutoff frequency π−Ωc.

-π -Ω
c

0 Ω
c

π

Ω

0

1

|H
1
[e

jΩ
]|

-π -π+Ω
c

0 π-Ω
c

π

Ω

0

1

|H
2
[e

jΩ
]|

Figure S5.6-16b

Solution 5.6-17

(a) Let H [z] represent the original filter, either highpass or lowpass. The transformed filter has
system function HT[z] = H [z]|z=−z = H [−z]. The basic character of the transformed filter can

be assessed by its magnitude response, |HT[e
jΩ]| = |H [−ejΩ]| = |H [ejπejΩ]| = |H [ej(Ω+π)]|.

That is, the magnitude response of a transformed filter is just the magnitude response of the
original filter shifted in frequency by π. If the magnitude response of a digital LPF is shifted in
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frequency by π, it becomes a highpass filter. Similarly, if the magnitude response of a digital
HPF is shifted in frequency by π, it becomes a lowpass filter. Put another way, an original
passband centered at Ω = 0 (LPF) is shifted by the transformation to a passband centered at
Ω = π (HPF), and vice-versa.

(b) If H [z] =
∑∞

n=−∞ h[n]z−n is the original filter, HT[z] = H [−z] =
∑∞

n=−∞ h[n](−z)−n =∑∞
n=−∞(−1)nh[n]z−n. Thus, the transformed filter has impulse response

hT[n] = (−1)nh[n].

Put another way, the same transformation is accomplished by simply negating the values of
h[n] for every odd integer n.

Solution 5.6-18

The bilinear transformation states s = 2(1−z−1)
T (1+z−1) . Rearranging yields z = 1+Ts/2

1−Ts/2 . Thus, s = jω

maps to z = 1+jωT/2
1−jωT/2 .

(a) The magnitude of this transformation is |z| =
∣∣∣ 1+jωT/2
1−jωT/2

∣∣∣ = |1+jωT/2|
|1−jωT/2| = 1. Since only the unit

circle has |z| = 1, the bilinear transform maps s = jω onto the unit circle in the z-plane.

(b) Using the results from part (a), we know that z = 1+jωT/2
1−jωT/2 describes the unit circle in the

complex plane. This allows us to write z = ejΩ = 1+jωT/2
1−jωT/2 . Thus, the bilinear transformation

maps (−∞ ≤ ω ≤ ∞) to (−π/2 ≤ Ωπ/2) in a monotonic, although non-linear, manner

according to Ω = ∠z = ∠
1+jωT/2
1−jωT/2 = arctan(ωT/2)− arctan(−ωT/2) = 2 arctan(ωT/2).

Solution 5.7-1

For the system in Eq. (3.12), the transfer function H(s) and impulse response h[n] are given by

H(s) =
1

s+ c
and h(t) = e−ctu(t).

Using the impulse invariance criterion, we obtain the equivalent digital filter transfer function from
Table 5.3 corresponding to H(s) = 1

s+c as

H [z] =
Tz

z − e−ct
≃ Tz

z − (1 − cT )
assuming T → 0.

The approximation of Eq. (3.13) yields

Ĥ[z] =
βz

z + α
.

Substituting β = T
1+cT and α = −1

1+cT , we obtain

Ĥ [z] =
Tz

1+cT

z − 1
1+cT

.

As T → 0, 1
1+cT ≃ 1− cT . Hence

Ĥ[z] ≃ T (1− cT )z

z − (1− cT )
≃ Tz

z − (1− cT )
,

which is same as that found by impulse-invariance method.
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Solution 5.7-2

The impulse invariance method requires that

h[n] = Thct(nT ) = Te−nTu[n].

Letting T = 0.1 and taking the z-transform yields

H [z] = 0.1
z

z − e−0.1
=

Y [z]

X [z]
.

Cross multiplying and taking the inverse transform yields the system difference equation as

y[n]− e−0.1y[n− 1] = 0.1x[n].

The DFI realization of this system is shown in Fig. S5.7-2.

X[z]
Σ

0.1

z−1

e−0.1

Y [z]

Figure S5.7-2

Solution 5.7-3

(a)

Ha(s) =
7s+ 20

2(s2 + 7s+ 10)
=

7s+ 20

2(s+ 2)(s+ 5)
=

1

s+ 2
+

5/2

s+ 5
.

Using Table 5.3, we get

H [z] = T

[
z

z − e−2T
+

5

2

z

z − e−5T

]
.

This is the transfer function of our desired digital filter.

(b) To realize the design, we first select T :

Ha(0) = 1 and for s ≫ 5 =⇒ Ha(s) ≈
7

2s

and |Ha(jω)| ≃
7

2ω
ω ≫ 5.

We shall choose the filter bandwidth to be that frequency where |Ha(jω0)| is 1% of |Ha(0)|.
Hence,

7

2ω0
= 0.01, ω0 = 350, and T =

π

350
.

Substituting this value of T in H [z] yields

H [z] = 0.008976

[
z

z − 0.9822
+

5

2

z

z − 0.9561

]
= 0.031416z

[
z − 0.97475

z2 − 1.9383z + 0.9391

]
.

For the canonical (DFI) realization, we represent H [z] as

H [z] =
0.031416z2 − 0.03062z

z2 − 1.9383z + 0.9391
.

For the parallel realization, we represent H [z] as

H [z] =
0.008976z

z − 0.9822
+

0.02244z

z − 0.9561
.

The canonical DFI and parallel realizations are shown in Fig. S5.7-3b.
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Σ
X[z]

z−1

Σ
1.9383

Σ
0.031416 Y [z]

−0.03062

z−1

−0.9391

X[z]
Σ

z−1

0.9822

0.008976
Σ

Y [z]

Σ

z−1

0.9561

0.02244

Figure S5.7-3b

Solution 5.7-4

Here, Ha(s) =
1

s2+
√
2s+1

. Using Table 5.3, we get

H [z] =




√
2Tze−T/

√
2 sin

(
T√
2

)

z2 − 2ze−T/
√
2 cos

(
T√
2

)
+ e−

√
2T


 .

We now select T . At dc, Ha(0) = 1. For large s, Ha(s) ≈ 1
s2 , hence |Ha(jω)| ≃ 1

ω2 for high ω. For
negligible aliasing, we select the frequency ω0 to be that where |Ha(jω0)| is 1% of |Ha(0)|. Hence,

1

ω2
0

= 0.01, ω0 = 10, and T =
π

ω0
=

π

10
.

Substitution of this value of T in H [z] yields

H [z] =
0.0784z

z2 − 1.5622z + 0.6413
.

Solution 5.7-5

For an ideal integrator

Ha(s) =
1

s
.

Using Table 5.3, we find that

H [z] =
Tz

z − 1
and H [ejωT ] =

TejωT

ejωT − 1
.

Therefore,

|H [ejωT ]| = T∣∣∣∣
√
(cosωT − 1)2 + sin2 ωT

∣∣∣∣

=
T

|
√
2(1− cosωT )|

=
T

2| sin ωT
2 |

, |ω| ≤ π

T
.

The ideal integrator amplitude response is

|Ha(jω)| =
1

ω
.
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Figure S5.7-5 shows the (T -normalized) digital filter magnitude response
∣∣∣H[ejωT ]

T

∣∣∣ (solid line) as well

as the ideal (T -normalized) integrator magnitude response
∣∣∣Ha(jω)

T

∣∣∣. The two responses are quite

close for low frequencies (as expected), and, due to aliasing, deviate at higher frequencies. Notice
the repeating nature of the DT filter response, as expected.

0 π/T 2π/T

ω

0

5

10

|H
[e

jω
 T

]/T
|

Figure S5.7-5

Solution 5.7-6

(a) Because an oscillator output is basically a system output with no input, a system with zero-
input response of the form sinΩ0n (or cos(Ω0n+ θ) with any value of θ), where Ω0 = ω0T will
serve as the desired oscillator. A marginally stable system with impulse response of the above
form is a candidate. From Table 5.1, pair 11b, we see that a transfer function

H [z] =
z sinω0T

z2 − 2z cosω0T + 1

has an impulse response (or zero-input response) of the form sinΩ0n (Ω0 = ω0T ). The period
of the sinusoid is T0 = 2π/Ω0, and there are 10 samples in each cycle. Therefore, the sampling
interval T = T0/10 = π/5Ω0, and Ω0T = π/5. Hence,

H [z] =
z sin

(
π
5

)

z2 − 2 cos
(
π
5

)
z + 1

=
0.5878z

z2 − 1.618z + 1
.

This is one possible solution. By varying the phase in the impulse response, we could obtain
variations of this transfer function.

(b) Another approach is to consider an analog system with transfer function Ha(s) such that its
impulse response (or zero-input response) is of the form sinω0t [or cos(ω0t+ θ) for any value
of θ]. From Table 4.1, pair 8b we find

Ha(s) =
ω0

s2 + ω2
0

.

Now using Table 5.1, we find the corresponding digital filter using impulse invariance method
as

H [z] =
Tz sinω0T

z2 − 2z cosω0T + 1
.

In part (a) we found that ω0T = π/5. Because ω0 = 2π(10, 000) = 20, 000π, the period
T0 = 10−4. There are 10 samples in each period. Hence the sampling interval T = 10−5, and

H [z] = 10−5 0.5878z

z2 − 1.618z + 1
.
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This is identical to the answer in (a) except for an amplitude scaling by 10−5. Because, we
did not specify any amplitude requirement on the oscillator, different answers will differ by a
constant multiplier. This is a marginally stable system and will oscillate without input with
the response of the form

h[n] = 10−5 sin(0.2πn).

This is a discrete sinusoid with 10 samples for each cycle. Each sample is separated by 10−5

seconds. Hence the duration (period) of a cycle is 10 × 10−5 = 10−4 and the frequency of
oscillator is 104 Hz or 10 kHz as desired.

(c) The controller canonical form of realization is shown in Fig. S5.7-6c. Note that the multiplier
10−5 is not important in this realization, and hence is not shown in the figure. Although the
input of x[n] = 0 is shown for reference, it would not need to be explicitly included in the final
realization.

Σ
x[n] = 0

z−1

Σ
1.681 0.5878

y[n]

z−1

−1

Figure S5.7-6c

Solution 5.7-7

(a) If ga(t) is the unit step response of the system Ha(s) in Fig. 5.24a, then ga(nT ) should be the
response of H [z] to the input u[n]. We can use this criterion to design a digital filter to realize
a given Ha(s). Consider the filter

Ha(s) =
ωc

s+ ωc
.

The unit step response ga(t) is given by:

ga(t) = L−1

[
Ha(s)

s

]
= L−1

[
ωc

s(s+ ωc)

]
= L−1

[
1

s
− 1

s+ ωc

]
.

Therefore,
ga(t) = (1 − e−ωct)u(t) and ga(nT ) = (1 − e−ωcnT )u[n].

Also, the response of H [z] to u[n] is given by

g[n] = Z−1

{
z

z − 1
H [z]

}
.

Since g[n] = ga(nT ),

z

z − 1
H [z] = Z[(1− e−ωcnT )u[n]]

=
z

z − 1
− z

z − e−ωcT
=

z(1− e−ωcT )

(z − 1)(z − e−ωcT )
.
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Therefore,

H [z] =
1− e−ωcT

z − e−ωcT
.

Using the above argument, we can generalize to

H [z] =
z − 1

z
Z
[
L−1

(
Ha(s)

s

)]

t=nT

.

(b) For Ha(s) =
ωc

s+ωc
, the unit step invariance method gives

H [z] =
1− e−ωcT

z − e−ωcT
.

(c) For an integrator, Ha(s) = 1/s, and L−1[Hs)/s = tu(t). Thus,

H [z] =
z − 1

z
Z[nTu[n]] =

T

z − 1

and

H [ejωT ] =
T

ejωT − 1
.

Hence,

|H [ejωT ]| = T∣∣∣∣
√
(cosωT − 1)2 + sin2 ωT

∣∣∣∣
=

T

|
√
2(1− cosωT )|

=
T

2| sin ωT
2 |

|ω| ≤ π

T
.

The ideal integrator amplitude response is

|Ha(jω)| =
1

ω
.

Observe that this amplitude response is identical to that found by the impulse invariance
method in Prob. 5.7-5. Hence, this amplitude response and the ideal integrator amplitude
response are the same as those in Fig. S5.7-5. The only difference between the answers obtained
by these methods is that the phase response of the step invariance response differs from that
of the impulse invariance method by a constant π

2 .

Solution 5.7-8

(a) For a differentiator
Ha(s) = s.

The unit ramp response r(t) is given by

r(t) = L−1F (s)Ha(s) = L−1 1

s2
(s) = u(t).

Now we must design H [z] such that its response to input nTu[n] is u[n]; that is,

Z[u[n]] = H [z]Z[nTu[n]]

z

z − 1
=

Tz

(z − 1)2
H [z].

Thus,

H [z] =
1

T
(z − 1).
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(b) For an integrator

H(s) =
1

s
.

The unit ramp response r(t) is given by

r(t) = L−1

(
1

s2

)
1

s
=

1

2
t2u(t).

Now we design H [z] such that its response to nTu[n] is 1
2n

2T 2u[n], that is

Z
{
1

2
n2T 2u[n]

}
= H [z]Z{nTu[n]}

or
T 2z(z + 1)

2(z − 1)3
=

Tz

(z − 1)2
H [z].

Hence,

H [z] =
T

2

(
z + 1

z − 1

)
.

Solution 5.7-9

For Ha(s) =
∑

i

ki
s− λi

, H [z] = T
∑

i

kiz

z − eλiT
.

If λi = αi + jβi, then eλiT = eαiT ejβiT . When λi is in the LHP, αi < 0 and |eλiT | = eαiT < 1.
Hence if λi is in the LHP, the corresponding pole of H [z] is within the unit circle. Clearly if Ha(s)
is stable, the corresponding H [z] is also stable.

Solution 5.7-10

(a) The ω-axis is given by s = jω. Rewriting the transformation s = 1−z−1

T as z = 1
1−sT and

substituting s = jω yields z = 1
1−jωT . Thus, we need to show that z = 1

1−jωT describes a

circle centered at (1/2, 0) with a radius of 1/2.

For a complex variable z, the equation |z−1/2|2 = (1/2)2 describes a circle centered at (1/2, 0)
with a radius of 1/2. The transformation rule z = 1

1−jωT is substituted into this expression.

|z − 1/2|2 = (z − 1/2)(z∗ − 1/2)

=

(
1

1− jωT
− 1

2

)(
1

1 + jωT
− 1

2

)

=
1

1 + ω2T 2
+

−1

2(1 + jωT )
+

−1

2(1− jωT )
+

1

4

=
1

1 + ω2T 2
+

−(1− jωT )− (1 + jωT )

2(1 + jωT )(1− jωT )
+

1

4

=
1

1 + ω2T 2
+

−2

2(1 + ω2T 2)
+

1

4

= 1/4 = (1/2)
2

Since the equation is satisfied, the transformation rule z = 1
1−jωT maps the ω-axis to a circle

centered at (1/2, 0) with a radius of 1/2.

Notice that different values of ω can map to the same value of z (aliasing), which makes an
inverse transformation problematic.
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(b) First, rewrite the transformation s = 1−z−1

T as z = 1
1−sT . Next, notice

|z|2 = zz∗

=
1

1− sT

1

1− s∗T

=
1

1− sT − s∗T + ss∗T 2

=
1

1− (σ + jω)T − (σ − jω)T + (σ2 + ω2)T 2

=
1

1− 2σT + (σ2 + ω2)T 2
.

For σ < 0, the denominator 1 − 2σT + (σ2 + ω2)T 2 > 1 and |z|2 < 1. That is, the left-half
plane of s (σ < 0) is guaranteed to map to the interior of the unit circle in the z-plane.

Solution 5.8-1

(a)

x [n] = (0.8)nu [n]︸ ︷︷ ︸
x1[n]

+2nu [−(n+ 1)]︸ ︷︷ ︸
x2[n]

x1 [n] ⇐⇒ z

z − 0.8
|z| > 0.8

x2 [n] ⇐⇒ −z

z − 2
|z| < 2

Hence

X [z] =
z

z − 0.8
− z

z − 2
0.8 < |z| < 2

=
−1.2z

z2 − 2.8z + 1.6
0.8 < |z| < 2.

(b)

X1[z] =
z

z − 2
|z| > 2

X2[z] =
z

z − 3
|z| < 3

Hence

X [z] =
z

z − 2
+

z

z − 3
2 < |z| < 3

=
z(2z − 5)

z2 − 5z + 6
2 < |z| < 3.

(c) By definition,

X [z] =

0∑

n=−∞
(−2)3

(
−2

z

)n

+

∞∑

n=−∞

∞∑

k=0

(
1

2

)k−1

δ[n− 2k]z−n.
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For |z| < 2, the first sum converges, and

X [z] = −8

(
0−

(−2
z

)1

1−
(−2

z

)
)

+

∞∑

k=0

2

(
1

2

)k ∞∑

n=−∞
z−nδ[n− 2k]

=
−16
z

1 + 2
z

+ 2

∞∑

k=0

(
1

2

)k

z−2k

=
−16

z + 2
+ 2

∞∑

k=0

(
1

2z2

)k

.

The second sum converges for |z| > 1√
2
, yielding

X [z] =
−16

z + 2
+ 2

1− 0

1− 1
2z2

= − 16

z + 2
+

2z2

z2 − 1
2

.

Simplifying, we obtain

X [z] =
2z3 − 12z2 + 8

z3 + 2z2 − 1
2z − 1

,
1√
2
< |z| < 2.

(d)

X1[z] =
z

z − 0.8
|z| > 0.8

X2[z] =
−z

z − 0.9
|z| < 0.9

Hence X [z] =
z

z − 0.8
− z

z − 0.9

=
−z

10(z2 − 1.7z + 0.72)
0.8 < |z| < 0.9.

(e)

[(0.8)n + 3(0.4)n]u [−(n+ 1)] ⇐⇒
( −z

z − 0.8
− 3z

z − 0.4

)
|z| < 0.4

=
−4z(z − 0.7)

(z − 0.4)(z − 0.8)
|z| < 0.4

(f)

[(0.8)n + 3(0.4)n]u [n] ⇐⇒ z

z − 0.8
+

3z

z − 0.4
|z| > 0.8

=
4z(z − 0.7)

(z − 0.4)(z − 0.8)
|z| > 0.8

(g)
(0.8)nu [n] + 3(0.4)nu [−(n+ 1)]

The region of convergence for (0.8)nu [n] is |z| > 0.8. The region of convergence for
(0.4)nu [−(n+ 1)] is |z| < 0.4. The common region does not exist. Hence the z-transform
for this function does not exist.
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(h)

x[n] = (0.5)|n| = 0.5nu[n] + (0.5)−nu[−n− 1]

= 0.5nu[n] + 2nu[−n− 1].

Further,

0.5nu[n] ⇐⇒ z

z − 0.5
|z| > 0.5

2nu[−n− 1] ⇐⇒ −z

z − 2
|z| < 2.

Hence,

X [z] =
z

z − o.5
− z

z − 2
=

−1.5z

(z − 0.5)(z − 2)
0.5 ≤ |z| < 2.

(i)
x[n] = nu[−(n+ 1)]

X [z] =
−z

(z − 1)2
|z| < 1

Solution 5.8-2

(a) Notice that

x[n] = 3nu[−n] =

{
3n n < 0

30 = 1 n ≥ 0
.

By definition,

X [z] =
−1∑

n=−∞
3nz−n +

∞∑

n=0

z−n.

The first sum converges if |z| < 3 and the second sum converges if |z| > 1. Thus,

X [z] =
0−

(
3
z

)−1+1

1− 3
z

+

(
1
z

)0 − 0

1− 1
z

=
−z

z − 3
+

z

z − 1
=

−z2 + z + z2 − 3z

z2 − 4z + 3
.

Thus,

X [z] =
−2z

z2 − 4z + 3
, 1 < |z| < 3.

(b) Notice that

x[n] =

(
1

3

)nu[n]

=

{ (
1
3

)0
= 1 n < 0(

1
3

)n
n ≥ 0

.

By definition,

X [z] =

−1∑

n=−∞
z−n +

∞∑

n=0

(
1

3

)n

z−n.

The first sum converges if |z| < 1 and the second sum converges if |z| > 1
3 . Thus,

X [z] =
0−

(
1
z

)−1+1

1− 1
z

+

(
1
3z

)0 − 0

1− 1
3z

=
−z

z − 1
+

z

z − 1
3

=
z2 + z

3 + z2 − z

z2 − 4
3z +

1
3

.
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Thus,

X [z] =
− 2

3z

z2 − 4
3z +

1
3

,
1

3
< |z| < 1.

Solution 5.8-3

To begin, we note that
X [z]

z
=

z − 1
3

(z − 1)(z + 2)
=

2
9

z − 1
+

7
9

z + 2
.

Since 1 < |z| < 2, the first fraction corresponds to a right-sided signal while the second fraction
corresponds to a left-sided signal. Therefore, the inverse bilateral z-transform yields

x[n] =
2

9
u[n]− 7

9
(−2)nu[−n− 1].

Solution 5.8-4

X [z]

z
=

e−2 − 2

(z − e−2)(z − 2)
=

1

z − e−2
− 1

z − 2

and X [z] =
z

z − e−2
− z

z − 2

(a) The region of convergence is |z| > 2. Both terms are causal, and

x [n] = (e−2n − 2n)u [n] .

(b) The region of convergence is e−2 < |z| < 2. In this case the first term is causal and the second
is anticausal. Thus,

x [n] = e−2nu [n] + 2nu [−(n+ 1)] .

(c) The region of convergence is |z| < e−2. Both terms are anticausal in this case, hence

x [n] = (−e−2n + 2n)u [−(n+ 1)] .

Solution 5.8-5

Here,

X [z] =
1

(2z + 1)(z + 1)(z + 1
2 )

=
1/2

(z + 1/2)2(z + 1)

=
1

(z + 1/2)2
+

−2

(z + 1/2)
+

2

(z + 1)
= −2z−1 −z/2

(z + 1/2)2
− 2z−1 z

(z + 1/2)
+ 2z−1 z

(z + 1)
.

Since
(
|z| < 1

2

)
, the time-domain signal is left-sided. Thus,

x[n] = 2(n− 1)(−1/2)n−1u[−(n− 1)− 1] + 2(−1/2)n−1u[−(n− 1)− 1]− 2(−1)n−1u[−(n− 1)− 1]

= −4(n− 1)(−1/2)nu[−n]− 4(−1/2)nu[−n] + 2(−1)nu[−n].

Simplifying yields
x[n] = −4n(−1/2)nu[−n] + 2(−1)nu[−n].

Solution 5.8-6

To begin, we note that

(
1

3
)n−3u[n− 2] = 3(

1

3
)n−2u[n− 2] ⇐⇒ 3z−2 z

z − 1
3

, |z| > 1

3
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and
(2)nu[−n] = −2

(
−2n−1u[−(n− 1)− 1]

)
⇐⇒ −2z−1 z

z − 2
, |z| < 2.

Since convolution in the time domain corresponds to multiplication in the transform domain, we
know that

y[n] = (
1

3
)n−3u[n− 2] ∗ (2)nu[−n] ⇐⇒ Y [z] = 3z−2(−2z−1)

[
z(z)

(z − 1
3 )(z − 2)

]
,

1

3
< |z| < 2.

Taking a partial fraction expansion, we see that

Y [z] = −6z−1

[ − 3
5

z − 1
3

+
3
5

z − 2

]

=
18

5
z−2 z

z − 1
3

− 18

5
z−2 z

z − 2
.

Using 1
3 < |z| < 2, the inverse transform is

y[n] =
18

5

(
1

3

)n−2

u[n− 2] +
18

5
(2)n−2u[−(n− 2)− 1]

=
162

5

(
1

3

)n

u[n− 2] +
9

10
(2)nu[−n+ 1].

Comparing to the form y[n] = c1γ
n
1 u[n+N1] + c2γ

n
2 u[−n+N2], we see that

c1 =
162

5
, c2 =

9

10
, γ1 =

1

3
, γ2 = 2, N1 = −2, and N2 = 1.

Due to a shared boundary, it is also possible to specify N1 = −3 and N2 = 2.

Solution 5.8-7

To begin, we notice that

H [z] = z3
z + 1

(z − 2)(z + 1
2 )

= z3
( 6

5

z − 2
+

− 1
5

z + 1
2

)
= z2

( 6
5z

z − 2
+

− 1
5z

z + 1
2

)
.

For stable h[n], the ROC must include the unit circle, so 1
2 < |z| < 2. Inverting, we obtain

h[n] = −6

5
(2)n+2u[−(n+ 2)− 1] =

1

5
(−1

2
)n+2u[n+ 2].

Simplifying, we obtain

h[n] = −24

5
(2)nu[−n− 3]− 1

20
(−1

2
)nu[n+ 2].

Solution 5.8-8

(a) The three poles satisfy z3 = 27
8 , or z = 3/2ej2πk/3 for k = (0, 1, 2). There are two finite zeros

at z = 0 and z = 1/2 as well as a zero at infinity. MATLAB is used to create the corresponding
pole-zero plot.

>> k = [0:2]; zp = 3/2*exp(j*2*pi*k/3); zz = [0,1/2];

>> plot(real(zz),imag(zz),’ko’,real(zp),imag(zp),’kx’);

>> xlabel(’Re(z)’); ylabel(’Im(z)’);

>> axis equal; grid; axis([-1.6 1.6 -1.6 1.6]);
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Figure S5.8-8a

There are two possible regions of convergence, both of which exclude the three system poles:

ROC 1: |z| < 3/2 and ROC 2: |z| > 3/2.

(b) The poles and zeros of H−1[z] are just the zeros and poles, respectively, of H [z]. Thus, the
three zeros of H [z] satisfy z3 = 27

8 , or z = 3/2ej2πk/3 for k = (0, 1, 2). There are two finite
poles at z = 0 and z = 1/2 as well as a pole at infinity. MATLAB is used to create the
corresponding pole-zero plot.

>> k = [0:2]; zz = 3/2*exp(j*2*pi*k/3); zp = [0,1/2];

>> plot(real(zz),imag(zz),’ko’,real(zp),imag(zp),’kx’);

>> xlabel(’Re(z)’); ylabel(’Im(z)’);

>> axis equal; grid; axis([-1.6 1.6 -1.6 1.6]);
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Figure S5.8-8b

There are two possible regions of convergence, both of which exclude the three system poles:

ROC 1: 0 < |z| < 1/2 and ROC 2: 1/2 < |z| < ∞.
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Solution 5.8-9

It is known that x[n] has a mode (1/2)n and that x1[n] = (1/3)nx[n] is absolutely summable. For
this to be true, the mode at (1/2)n must be right-sided. That is, (1/2)n(1/3)nu[n] is absolutely
summable but (1/2)n(1/3)nu[−n] is not. It is also known that x2[n] = (1/4)nx[n] is not absolutely
summable. For this to be true, there must be a pole somewhere in the annulus 3 < |z| < 4
that corresponds to a left-sided signal; such a mode when multiplied by (1/3)n is still absolutely
summable but when multiplied by (1/4)n is not absolutely summable. Thus,

x[n] is a two-sided signal.

Solution 5.8-10

In polar form, the known pole is at z =
√
18/16ejπ/4. To be absolutely summable, the signal’s

region of convergence must include the unit circle, |z| = 1.

(a) Yes, the signal can be left-sided. Since the known pole is outside the unit circle, a region of
convergence that includes the unit circle (needed for absolute summability) implies that the
known pole corresponds to a left-sided component of the signal.

(b) No, the signal cannot be right-sided. If the known pole outside the unit circle is right-sided,
the region of convergence cannot include the unit circle and the signal cannot be absolutely
summable as required.

(c) Yes, the signal can be two-sided. Let the known pole correspond to a left-sided component and
let there be another pole within the unit circle that corresponds to a right-sided component.
Such a signal is two-sided and has a region of convergence that includes the unit circle, which
ensures the signal is absolutely summable as required.

(d) No, the signal cannot be finite duration. Finite duration signals cannot have poles in the
region 0 < |z| < ∞. Such poles, such as the pole known to exist, correspond to time-domain
components with infinite duration.

Solution 5.8-11

(a) X1[z] =
z

z− 3
4

. Next, Y1[z] = H [z]X1[z] =
z− 1

2

z+1/2

(
z

z− 3
4

)
. Thus, Y1[z]

z =
z− 1

2

z+ 1
2

(
1

z− 3
4

)
=

4
5

z+ 1
2

+
1
5

z− 3
4

or Y1[z] =
4
5 z

z+ 1
2

+
1
5 z

z− 3
4

. Inverting yields

y1[n] =
4
5

(
− 1

2

)n
u[n] + 1

5

(
3
4

)n
u[n].

(b) The idea of frequency response is used to determine the output in response to the everlasting

exponential input x2[n] = (34 )
n. That is, H(z = 3

4 ) =
3
4− 1

2
3
4+

1
2

=
1
4
5
4

= 1
5 . Thus,

y2[n] =
1
5

(
3
4

)n
.

(c) X3[z] = − z
z− 3

4

with |z| < 3
4 . Next, Y3[z] = H [z]X3[z] = − z− 1

2

z+1/2

(
z

z− 3
4

)
with 1

2 < |z| < 3
4 .

Thus, Y3[z]
z = − z− 1

2

z+ 1
2

(
1

z− 3
4

)
= −

4
5

z+ 1
2

−
1
5

z− 3
4

or Y3[z] = −
4
5 z

z+ 1
2

−
1
5 z

z− 3
4

. Using 1
2 < |z| < 3

4 and

inverting yields

y1[n] = −4

5

(
−1

2

)n

u[n] +
1

5

(
3

4

)n

u[−n− 1].
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Solution 5.8-12

The given signal is x[n] = (−1)nu[n − n0] + αnu[−n]. If |α| = 2, the z-transform
X [z] = (−1)n0z−n0 z

z+1 + −z
z−α has region of convergence 1 < |z| < |α| = 2, as desired.

Thus, the necessary constraint is
|α| = 2.

There is no constraint on the integer n0, other than it be finite.

Solution 5.8-13

(a) X1[z] =
∑∞

n=−∞ x1[n]z
−n =

∑∞
n=−∞ ((−j)−nu[−n] + δ[−n]) z−n =

∑0
n=−∞

(
−1
jz

)n
+

∑∞
n=−∞ δ[−n]z−n =

∑0
n=−∞

(
j
z

)n
+ 1. For |z| < 1, this becomes

X1[z] = 1 +
0− j/z

1− j/z
= 1 +

−j

z − j
; ROC |z| < 1.

(b) X2[z] =
∑∞

n=−∞ x2[n]z
−n =

∑∞
n=−∞(j)n cos(n + 1)u[n] =

∑∞
n=0 j

n0.5
(
ej(n+1) + e−jmath(n+1)

)
z−n =

∑∞
n=0 0.5e

j
(

jej

z

)n
+
∑∞

n=0 0.5e
−j
(

je−j

z

)n
.

For |z| > 1, this becomes

X2[z] =
0.5ej

1− jejz−1
+

0.5e−j

1− je−jz−1
; ROC |z| > 1.

(c) X3[z] =
∑∞

n=−∞ x3[n]z
−n =

∑∞
n=−∞ (j0.5(en − e−n)u[−n+ 1]) z−n =∑1

n=−∞ j0.5
{(

e
z

)n −
(

1
ez

)n}
. For |z| < e and |z| < e−1, this becomes X3[z] =

j
2

{
0−(e/z)2

1−e/z − 0−(ez)−2

1−(ez)−1

}
. Thus,

X3[z] =
jz−2

2

{
e−2

1− (ez)−1
+

e2

1− ez−1

}
; ROC |z| < e−1.

(d) X4[z] =
∑∞

n=−∞ x4[n]z
−n =

∑∞
n=−∞

(∑0
k=−∞(2j)nδ[n− 2k]

)
z−n =

∑0
k=−∞

∑∞
n=−∞

(
2j
z

)n
δ[n − 2k] =

∑0
k=−∞

(
2j
z

)2k
=
∑0

k=−∞
(−4
z2

)k
. For |z2| < 4, this

becomes

X4[z] =
0− (−4z−2)

1− (−4z−2)
=

4z−2

1 + 4z−2
; ROC |z| < 2.

Note: |z2| = |z|2, so the region of convergence is |z|2 < 4 or |z| < 2.

Solution 5.8-14

(a) The signal X1 (z) =
1

1+ 13
6 z−1+ 1

6 z
−2− 1

3 z
−3 has three finite poles, of which at least one must be

real. Using the region of convergence, we know that a real root must be either 0.5, −0.5, 2, or
−2. Trying these values, we find that z = −0.5 and z = −2 are both roots of the denominator.
The remaining root can be found by noting that the denominator 1 + 13

6 z−1 + 1
6z

−2 − 1
3z

−3

must be equal to (1 + 0.5z−1)(1 + 2z−1)(1 + Az−1). Equating the power of z−3 on each
side yields −1/3 = A. Thus, X1[z] =

1
(1+0.5z−1)(1+2z−1)(1−z−1/3) . Expanding yields X1[z] =

−1/5
1+0.5z−1 + 8/7

1+2z−1 + 2/35
1−z−1/3 . Using the region of convergence (0.5 < |z| < 2) and tables, the

inverse is

x1[n] = −1

5
(−1/2)nu[n]− 8

7
(−2)nu[−n− 1] +

2

35
(1/3)nu[n].
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(b) X2 (z) = 1
z−3(2−z−1)(1+2z−1) = z3/2 1

(1−z−1/2)(1+2z−1) = z3/2
(

1/5
1−z−1/2 + 4/5

1+2z−1

)
. Using the

region of convergence (0.5 < |z| < 2) and tables, the inverse is

x2[n] =
1

10
(1/2)n+3u[n+ 3]− 2

5
(−2)n+3u[−n− 4].

Solution 5.8-15

(a) H1[z] =
z−1

(z− 1
2 )(1+

1
2 z

−1)
= z−1

z−1(z− 1
2 )(z+

1
2 )

=
(

1
z−1/2 + −1

z+1/2

)
= z−1

(
z

z−1/2 + −z
z+1/2

)
. Since

h1[n] is stable, the region of convergence for H1[z] must be |z| > 1/2. Using this ROC and
z-transform tables, the inverse transform is

h1[n] = (1/2)n−1u[n− 1]− (−1/2)n−1u[n− 1].

(b) H2[z] = z−3
(

z+1
(z−2)(z+1/2)

)
= z−3

(
6/5
z−2 + −1/5

z+1/2

)
= z−4

(
6z/5
z−2 + −z/5

z+1/2

)
. Since h2[n] is stable,

the region of convergence for H2[z] must be 1/2 < |z| < 2. Using this ROC and z-transform
tables, the inverse transform is

h2[n] =
−6

5
(2)n−4u[−n+ 3] +

−1

5
(−1/2)n−4u[n− 4].

Solution 5.8-16

Here,

H [z] =

∞∑

n=−∞
h[n]z−n =

∞∑

n=−∞

∞∑

k=0

δ[n−Nk]z−n

=

∞∑

k=0

∞∑

n=−∞
δ[n−Nk]z−n =

∞∑

k=0

z−Nk =

∞∑

k=0

(
1

zN

)k

.

For |z| > 1, this becomes

H [z] =
1

1− zN
; ROC |z| > 1.

Notice, H [z] has N poles that correspond to the N roots of unity. That is, the poles of H [z] satisfy
z = ej2πk/N for k = (0, 1, . . . , N − 1).

Solution 5.8-17

By inspection of the system difference equation, we know the transfer function is

H [z] =
1

1− 1
4z

−2
=

z2

z2 − 1
4

, |z| > 1

2
.

Writing the input as x[n] = 232n−3u[−(n− 3)− 1], we see that

X [z] = −8z−3 z

z − 2
, |z| < 2.

In the transform domain, we know that

Yzsr[z] = H [z]X [z]

=
−8

(z − 1
2 )(z +

1
2 )(z − 2)

= −8

[ − 2
3

z − 1
2

+
2
5

z + 1
2

+
4
15

z − 2

]

=
16

3
z−1 z

z − 1
2

− 16

5
z−1 z

z + 1
2

− 32

15
z−1 z

z − 2
,

1

2
< |z| < 2.
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Inverting, we obtain

yzsr[n] =
16
3 (12 )

n−1u[n− 1]− 16
5 (− 1

2 )
n−1u[n− 1] + 32

15 (2)
n−1 u[−(n− 1)− 1]︸ ︷︷ ︸

u[−n]

.

Solution 5.8-18

For causal signals, the region of convergence may be ignored. We shall consider it only for noncausal
inputs

(a)

Y [z] = X [z]H [z] =
z2

(z − e)(z + 0.2)(z − 0.8)

Modified partial fraction expansion of Y [z] yields

Y [z] = 0.477
z

z − e
− 0.068

z

z + 0.2
− 0.412

z

z − 0.8
.

Thus,

y [n] = [0.477en − 0.068(−0.2)n − 0.412(0.8)n]u [n] .

(b) Here,

X [z] =
−z

z − 2
|z| < 2,

H [z] =
z

(z + 0.2)(z − 0.8)
|z| > 0.8,

Y [z] =
−z2

(z + 0.2)(z − 0.8)(z − 2)
0.8 < |z| < 2,

and
Y [z]

z
=

−z

(z + 0.2)(z − 0.8)(z − 2)
=

1/11

z + 0.2
+

2/3

z − 0.8
− 0.758

z − 2
.

Therefore, Y [z] =
1

11

z

z + 0.2
+

2

3

z

z − 0.8
− 0.758

z

z − 2
0.8 < |z| < 2

and y [n] =

[
1

11
(−0.2)n +

2

3
(0.8)n

]
u [n] + 0.758(2)nu [−(n+ 1)] .

(c) The input in this case is the sum of the inputs in parts (a) and (b). Hence the response will
be the sum of the responses in part (a) and (b). That is,

y[n] = (0.477en + 0.0229(−0.2)n + 0.255(0.8)n)u[n] + 0.758(2)nu [−(n+ 1)] .

(d)

x [n] = 2nu [n]︸ ︷︷ ︸
x1[n]

+ u [−(n+ 1)]︸ ︷︷ ︸
x2[n]

X1[z] =
z

z − 2
|z| > 2

X2[z] =
−z

z − 1
|z| < 1
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There is no region of convergence common to X1[z] and X2[z], so we’ll need to compute the
output of the two components separately. Now,

H [z] =
z

(z + 0.2)(z − 0.8)
, |z| > 0.8.

The output to x1[n] is determined as

Y1[z] =
z2

(z − 2)(z + 0.2)(z − 0.8)
|z| > 2

The modified partial fractions of Y1[z] yield

Y1[z] = − 1

11

z

z + 0.2
− 2

3

z

z − 0.8
+ 0.758

z

z − 2
.

Thus,

y1 [n] =

[
− 1

11
(−0.2)n − 2

3
(0.8)n + 0.758(2)n

]
u [n] .

Similarly, the output to x2[n] is determined as

Y2[z] =
−25

6

z

z − 1
+

1

6

z

z + 0.2
+ 4

z

z − 0.8
0.8 < |z| < 1.

Thus,

y2 [n] =

[
1

6
(−0.2)n + 4(0.8)n

]
u [n] +

25

6
u [−(n+ 1)] .

Combining, we see that

y [n] = y1 [n] + y2 [n] =

[
5

66
(−0.2)n +

10

3
(0.8)n + 0.758(2)n

]
u [n] +

25

6
u [−(n+ 1)] .

(e) Here,

X [z] = − z

z − e−2
|z| < e−2

and

H [z] =
z

(z + 0.2)(z − 0.8)
|z| > 0.8.

No common region of convergence for X [z] and H [z] exists. Hence,

y [n] = ∞.

Solution 5.8-19

Let f [n] = y[−n] so that

cxy[n] =

∞∑

k=−∞
x[k]f [n− k] = x[n] ∗ f [n] = x[n] ∗ y[−n].

Using properties and taking the z-transform yield

Cxy[z] = X [z]Y [ 1z ], ROC is at least Rx

⋂
1
Ry

.
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Solution 5.8-20

To begin, let us perform polynomial division with z
z−1 .

1 + z−1 + z−2 + z−3 + · · ·
z − 1

)
z

z − 1

1
1 − z−1

z−1

z−1 − z−2

z−2

...

.

Thus,

z

z − 1
= 1 + z−1 + z−2 + z−3 + · · · =

∞∑

i=0

z−i.

Consequently,

z

z − 1
X [z] =

∞∑

i=0

z−iX [z].

But z−iX [z] ⇐⇒ x[n− i], so

z

z − 1
X [z] ⇐⇒

∞∑

i=0

x[n− i].

Letting k = n− i (so that limit i = 0 becomes k = n and i = ∞ becomes k = −∞), we obtain the
desired result of

z

z − 1
X [z] ⇐⇒

n∑

k=−∞
x[k].

Solution 5.10-1

(a) In this case,

Ha[z] =
z4 −

√
2z2 + 1

z4 + 0.4096
.

We use MATLAB to create the system pole-zero plot.

>> zz = roots([1,0,-sqrt(2),0,1]); zp = roots([1,0,0,0,0.4096]);

>> Omega = linspace(0,2*pi,1001); ucirc = exp(1j*Omega);

>> plot(real(zz),imag(zz),’ko’,real(zp),imag(zp),’kx’,...

>> real(ucirc),imag(ucirc),’k-’);

>> xlabel(’Re(z)’); ylabel(’Im(z)’);

>> axis equal; grid; axis([-1.1 1.1 -1.1 1.1]);

As shown in Fig. S5.10-1a, all the poles are inside the unit circle, so the system is stable.

(b) In this case,

Hb[z] =
−3z−1 + 3

4z
−3

3 + 3
2z

−2 + 2z−4
.

We use MATLAB to create the system pole-zero plot.
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Figure S5.10-1a

>> zz = roots([-3,0,3/4,0]); zp = roots([3,0,3/2,0,2]);

>> Omega = linspace(0,2*pi,1001); ucirc = exp(1j*Omega);

>> plot(real(zz),imag(zz),’ko’,real(zp),imag(zp),’kx’,...

>> real(ucirc),imag(ucirc),’k-’);

>> xlabel(’Re(z)’); ylabel(’Im(z)’);

>> axis equal; grid; axis([-1.1 1.1 -1.1 1.1]);

As shown in Fig. S5.10-1b, all the poles are inside the unit circle, so the system is stable.
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Figure S5.10-1b

Solution 5.10-2

Since the DT systems are stable, frequency response is found from the transfer function by substi-
tuting ejΩ for z.

(a) In this case,

Ha[z] =
cos(z)

z − 0.5
.

We use MATLAB to create the magnitude and phase response plots, as shown in Fig. S5.10-2a.

>> Ha = @(z) cos(z)./(z-0.5); Omega = linspace(-pi,pi,1001);
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>> subplot(1,2,1); plot(Omega,abs(Ha(exp(1j*Omega))),’k-’);

>> xlabel(’\Omega’); ylabel(’|H_a[e^{j\Omega}]|’); grid on;

>> axis([-pi pi 0 1.6]); set(gca,’xtick’,-pi:pi/2:pi);

>> subplot(1,2,2); plot(Omega,angle(Ha(exp(1j*Omega))),’k-’);

>> xlabel(’\Omega’); ylabel(’\angle H_a[e^{j\Omega}]’); grid on;

>> axis([-pi pi -pi pi]); set(gca,’xtick’,-pi:pi/2:pi);
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Figure S5.10-2a

(b) In this case,
Hb[z] = z3 sin(z−1).

We use MATLAB to create the magnitude and phase response plots, as shown in Fig. S5.10-2a.

>> Hb = @(z) z.^3.*sin(z.^(-1)); Omega = linspace(-pi,pi,1001);

>> subplot(1,2,1); plot(Omega,abs(Hb(exp(1j*Omega))),’k-’);

>> xlabel(’\Omega’); ylabel(’|H_b[e^{j\Omega}]|’); grid on;

>> axis([-pi pi 0 1.6]); set(gca,’xtick’,-pi:pi/2:pi);

>> subplot(1,2,2); plot(Omega,angle(Hb(exp(1j*Omega))),’k-’);

>> xlabel(’\Omega’); ylabel(’\angle H_b[e^{j\Omega}]’); grid on;

>> axis([-pi pi -pi pi]); set(gca,’xtick’,-pi:pi/2:pi);
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Figure S5.10-2a
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Solution 5.10-3

Taking the z-transform of 4y[n+ 2] − y[n] = x[n + 2] + x[n] yields Y [z]
(
4z2 − 1

)
= X [z]

(
z2 + 1

)
.

Thus, the system function is

H [z] =
Y [z]

X [z]
=

z2 + 1

4z2 − 1
= 0.25

1 + z−2

1− z−2/4
.

(a) By inspection of the transfer function, the system has

poles at z = 1
2 and z = − 1

2 and zeros at z = j and z = −j.

We use MATLAB to create the pole-zero plot shown in Fig. S5.10-3a.

>> zz = [1j,-1j]; pz = [1/2,-1/2]; ucirc = exp(1j*linspace(0,2*pi,201));

>> plot(real(zz),imag(zz),’ko’,real(pz),imag(pz),’kx’,...

>> real(ucirc),imag(ucirc),’k-’); grid on;

>> xlabel(’Re(z)’); ylabel(’Im(z)’); axis equal; axis([-1.1 1.1 -1.1 1.1]);
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Figure S5.10-3a

(b) Next, we use MATLAB to compute and plot the magnitude response, which is shown in
Fig. S5.10-3b.

>> Omega = linspace(-pi,pi,1001); H = @(z) (z.^2+1)./(4*z.^2-1);

>> plot(Omega,abs(H(exp(1j*Omega)))); grid on;

>> axis([-pi pi 0 .8]); xlabel(’\Omega’); ylabel(’|H[e^{j\Omega}]|’);

>> set(gca,’xtick’,-pi:pi/4:pi,’ytick’,0:1/3:1);
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Figure S5.10-3b
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(c) The pole-zero plot of Fig. S5.10-3a and the magnitude response plot of Fig. S5.10-3b confirm
that this is a band-stop system.

(d) Yes, the system is asymptotically stable. Referring to Fig. S5.10-3a, all the system poles are
within the unit circle.

(e) Yes, the system is real. Since the system is expressed as a constant-coefficient linear difference
equation with real coefficients, the impulse response h[n] and system are both real.

(f) For an input of the form x[n] = cos(Ωn), the greatest possible amplitude of the output cor-
responds to the greatest gain shown in the magnitude response plot of Fig. S5.10-3b. Thus,
2
3 is the greatest output amplitude given an input of x[n] = cos(Ωn). This output amplitude
occurs when Ω = kπ, for any integer k.

(g) InvertingH [z] = Y [z]
X[z] = 0.25 1+z−2

1−z−2/4 provides y[n]−0.25y[n−2] = 0.25x[n]+0.25x[n−2], which

is a convenient form for implementation. Figure S5.10-3g illustrates a TDFII implementation
of the system.
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1
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y[n]

Figure S5.10-3g

Solution 5.10-4

In this problem, the system transfer function is

H(z) = b0
z2 + 1

z2 − 4/9
.

(a) By direct substitution, we see that

b0
e−j2π + 1

e−j2π − 4
9

= b0
2
5
9

= −1.

Thus,

b0 = − 5

18
.

(b) We use MATLAB to create the pole-zero plot shown in Fig. S5.10-4b.

>> zz = roots([1 0 1]); pz = roots([1 0 -4/9]);

>> ucirc = exp(1j*linspace(0,2*pi,201));

>> plot(real(zz),imag(zz),’ko’,real(pz),imag(pz),’kx’,...

>> real(ucirc),imag(ucirc),’k-’); grid on;

>> xlabel(’Re(z)’); ylabel(’Im(z)’); axis equal; axis([-1.1 1.1 -1.1 1.1]);

>> set(gca,’xtick’,-1:1/2:1,’ytick’,-1:1/2:1);
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Figure S5.10-4b

(c), (d) Next, we use MATLAB to compute and plot the magnitude and phase responses, which
are shown in Figs. S5.10-4c and S5.10-4d.

>> Omega = linspace(-pi,pi,1001); H = @(z) -5/18*(z.^2+1)./(z.^2-4/9);

>> subplot(1,2,1); plot(Omega,abs(H(exp(1j*Omega)))); grid on;

>> axis([-pi pi 0 1.1]); xlabel(’\Omega’); ylabel(’|H[e^{j\Omega}]|’);

>> set(gca,’xtick’,-pi:pi/2:pi,’ytick’,0:1/4:1);

>> subplot(1,2,2); plot(Omega,angle(H(exp(1j*Omega)))); grid on;

>> axis([-pi pi -pi pi]); xlabel(’\Omega’); ylabel(’\angle H[e^{j\Omega}]’);

>> set(gca,’xtick’,-pi:pi/2:pi,’ytick’,-pi:pi/2:pi);
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Figures S5.10-4c and S5.10-4d

(c) As shown in Fig. S5.10-4c, the system has bandstop (notch) character.

(d) Since H [ej0] = H [ejπ] = −1 and H [ejπ/2] = H [e−jπ/2] = 0, the output in response to x[n] =
(−1− j) + (−j)n + (1− j) cos(πn+ 1

3 ) is

y[n] = (1 + j) + (j − 1) cos(πn+ 1
3 ).

(e) Figure S5.10-4g shows a TDFII realization of the system, which generally has the most desirable
characteristics of the basic structures (DFI, DFII, TDFI, and TDFII).
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Figure S5.10-4g

Solution 5.10-5

(a) Calling the output of the summing node v[n], we see that

v[n] = x[n− 1] + c1x[n] + c2y[n] and y[n] = v[n− 1].

Substituting the second expression into the first equation by delayed by 1 yields

y[n] = x[n− 2] + c1x[n− 1] + c2y[n− 1] or y[n]− c2y[n− 1] = x[n− 2] + c1x[n− 1].

Taking the z-transform yields

Y [z]
(
1− c2z

−1
)
= X [z]

(
c1z

−1 + z−2
)
.

Thus,

H [z] =
Y [z]

X [z]
=

c1z
−1 + z−2

1− c2z−1
=

c1z + 1

z2 − c2z
.

(b) As H [z] and the difference equation make clear,

the system has order N = 2.

(c) Based on inspection of H [z], we see that the system has

poles at z = 0 and z = c2 and zeros at z = − 1
c1

and z = ∞.

To generate the MATLAB pole-zero plot of Fig. S5.10-5c, let us set c1 = 1 and c2 = 0.9 [see
part (e)].

>> c1 = 1; c2 = 0.9; zz = roots([c1 1]); pz = roots([1 -c2 0]);

>> ucirc = exp(1j*linspace(0,2*pi,201));

>> plot(real(zz),imag(zz),’ko’,real(pz),imag(pz),’kx’,...

>> real(ucirc),imag(ucirc),’k-’); grid on;

>> xlabel(’Re(z)’); ylabel(’Im(z)’); axis equal;axis([-1.1 1.1 -1.1 1.1]);

>> set(gca,’xtick’,-1:1/2:1,’ytick’,-1:1/2:1);

(d) For causal systems (such as this one), stability requires that the poles be inside the unit circle.
Thus,

stability requires |c2| < 1; no restrictions on c1.
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Figure S5.10-5c

(e) To suppress high frequencies, we put a zero at z = −1 = − 1
c1
. To produce a relatively narrow

passband, we desire the pole inside the unit circle near z = 1, such as z = 0.9 = c2. Thus,

c1 = 1 and c2 = 0.9 will produce a LPF with narrow passband.

We use MATLAB to verify filter behavior (Fig. S5.10-5e).

>> Omega = linspace(-pi,pi,1001); H = @(z) (z+1)./(z.^2-0.9*z);

>> plot(Omega,abs(H(exp(1j*Omega)))); grid on;

>> axis([-pi pi 0 20]); xlabel(’\Omega’); ylabel(’|H[e^{j\Omega}]|’);

>> set(gca,’xtick’,-pi:pi/4:pi,’ytick’,0:5:20);
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Figure S5.10-5e

Notice, as the LPF becomes more peaked/narrow (c2 is closer to 1), the dc gain increases.

(f) No; Ms. Zeroine is not correct. Initial conditions in the system (non-zero values held in
memory) can produce a nonzero output even though x[n] = 0.

(g) No; Dr. Strange is not correct. Although c1 = −1 places a zero at z = 1 (dc), as would be
expected for a HPF, the pole is outside the unit circle at z = −2, which makes the system
unstable. An unstable system cannot properly act as any sort of filter.



Student use and/or distribution of solutions is prohibited 461

Solution 5.10-6

(a) H(z) = z2−j
z−0.9ej3π/4 = (z−ejπ/4)(z−e−j3π/4)

z−0.9ej3π/4 . As shown in Fig S5.10-6a, there are zeros at z =

ejπ/4 and z = e−j3π/4, and there are poles at z = 0.9ej3π/4 and z = ∞.

>> zz = roots([1 0 -1j]); pz = roots([1 -0.9*exp(3j*pi/4)]);

>> ucirc = exp(1j*linspace(0,2*pi,201));

>> plot(real(zz),imag(zz),’ko’,real(pz),imag(pz),’kx’,...

>> real(ucirc),imag(ucirc),’k-’); grid on;

>> xlabel(’Re(z)’); ylabel(’Im(z)’); axis equal;axis([-1.1 1.1 -1.1 1.1]);

>> set(gca,’xtick’,-1:1/2:1,’ytick’,-1:1/2:1);
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Figure S5.10-6a

Since this is a complex system, poles and zeros need not occur in complex conjugate pairs.

(b) Substituting z = ejΩ into H(z) = z2−j
z−0.9ej3π/4 , MATLAB is used to create the magnitude

response plot.

>> H = @(z) (z.^2-1j)./(z-0.9*exp(3j*pi/4));

>> Omega = linspace(-2*pi,2*pi,1001);

>> plot(Omega,abs(H(exp(1j*Omega)))); grid on;

>> axis([-2*pi 2*pi 0 22]); xlabel(’\Omega’); ylabel(’|H[e^{j\Omega}]|’);

>> set(gca,’xtick’,-2*pi:pi/2:2*pi,’ytick’,0:5:20);
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From Fig. S5.10-6b, the system appears to be a type of bandpass filter. This particular
filter tends to pass only positive frequency inputs near Ω = 3π/4; the corresponding negative
frequencies near Ω = −3π/4 are significantly attenuated. Since the magnitude response is not
an even function of Ω, the output of the filter will be complex-valued.

Solution 5.10-7

(a) H(z) = z4−1
2(z2+0.81j) has four finite zeros and two finite poles. The zeros are the four roots of

unity, and the poles are at z = 0.9ejπ/4 and z = 0.9e−j3π/4. MATLAB is used to compute the
pole-zero plot.

>> zz = roots([1 0 0 0 -1]); pz = roots([1 0 0.81j]);

>> ucirc = exp(1j*linspace(0,2*pi,201));

>> plot(real(zz),imag(zz),’ko’,real(pz),imag(pz),’kx’,...

>> real(ucirc),imag(ucirc),’k-’); grid on;

>> xlabel(’Re(z)’); ylabel(’Im(z)’); axis equal;axis([-1.1 1.1 -1.1 1.1]);

>> set(gca,’xtick’,-1:1/2:1,’ytick’,-1:1/2:1);
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Figure S5.10-7a

(b) MATLAB is used to plot the magnitude response.

>> H = @(z) (z.^4-1)./(2*(z.^2+0.81j));

>> Omega = linspace(-pi,pi,1001);

>> plot(Omega,abs(H(exp(1j*Omega)))); grid on;

>> axis([-pi pi 0 6]); xlabel(’\Omega’); ylabel(’|H[e^{j\Omega}]|’);

>> set(gca,’xtick’,-pi:pi/4:pi,’ytick’,0:6);

(c) Since H(z) is an improper rational function and has poles at infinity, the system is non-causal.
By dividing the numerator by the denominator (in such a way as to yield a right-sided impulse
response), an improper rational function H(z) will yield an impulse response h[n] that is
not zero for all negative n. Right-sided functions with poles at infinity are sometimes called
“not-quite causal” since they are not causal only by a finite shift.

(d) Adding two poles at zero (a = b = 0) corresponds to a simple right-shift by two and does not

affect the magnitude response. That is, |Hcausal(e
jΩ)| =

∣∣∣H(ejΩ)
(ejΩ)2

∣∣∣ = |H(ejΩ)|
|(ejΩ)2| = |H(ejΩ)|. By

adding two poles at zero to H(z), Hcausal(z) becomes a proper rational function with only
finite poles, and the corresponding impulse response function becomes causal.
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Figure S5.10-7b

(e) Noting that Hcausal(z) =
Y (z)
X(z) = 0.5z4−0.5

z4+0.81jz2 = 0.5−0.5z−4

1+0.81jz−2 , the corresponding difference equa-

tion is y[n] + 0.81jy[n− 2] = 0.5x[n] − 0.5x[n− 4]. Figure S5.10-7e shows the corresponding
TDFII implementation.
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Σ
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−
1

2

z−1

z−1

z−1

z−1

−0.81j

y[n]

Figure S5.10-7e

Solution 5.10-8

(a) From the block diagram, the corresponding difference equation is written directly.

y[n]− 0.5y[n− 2] = x[n].

(b) Taking the z-transform of y[n]− 0.5y[n− 2] = x[n] yields Y [z](1− 0.5z−2) = X [z]. Thus,

H [z] =
Y [z]

X [z]
=

1

1− 0.5z−2
=

z2

z2 − 0.5
.

MATLAB is used to plot the magnitude response.

>> Omega = linspace(-pi,pi,1001); H = @(z) (z.^2)./(z.^2-1/2);

>> plot(Omega,abs(H(exp(1j*Omega)))); grid on;

>> axis([-pi pi 0 2.25]); xlabel(’\Omega’); ylabel(’|H[e^{j\Omega}]|’);

>> set(gca,’xtick’,-pi:pi/4:pi,’ytick’,0:1/3:2);
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Figure S5.10-8b

Standard filter types do not provide a good description of this filter. The system appears most
like a bandstop filter, but its stopband attenuation is quite poor. The system boosts the gain
of low and high frequencies more than it attenuates the middle frequencies.

(c) Inverting H [z] = 1
1−0.5z−2 = 1/2

1−z−1/
√
2
+ 1/2

1+z−1/
√
2
yields

h[n] = 0.5
(
(1/

√
2)n + (−1/

√
2)n
)
u[n].

Solution 5.10-9

Label the first summation block output as v[n]. Thus, v[n] = x[n − 1] + 1
4y[n] or

V (z) = z−1X(z) + 1
4Y (z). The output of the second summation block is y[n + 1] =

x[n] + v[n − 1] or zY (z) = X(z) + z−1V (z). Combining the two equations yields
zY (z) = X(z) + z−1

(
z−1X(z) + 1

4Y (z)
)

or Y (z)
(
z − 1

4z
−1
)

= X(z)
(
1 + z−2

)
. Multiplying

both sides by z−1 yields Y (z)
(
1− 1

4z
−2
)
= X(z)

(
z−1 + z−3

)
. Thus, H(z) = Y (z)

X(z) = z−1+z−3

1− 1
4 z

−2 =

1+z2

z(z−1/2)(z+1/2) = −4
z + 5/2

z−1/2 + 5/2
z+1/2 = −4

z + z−1 5z/2
z−1/2 + z−1 5z/2

z+1/2 . Taking the inverse transform

yields

h[n] = −4δ[n− 1] +
5

2
(1/2)n−1u[n− 1] +

5

2
(−1/2)n−1u[n− 1].

Since h[n] = 0 for n < 0, the system is causal. Further, the system has three poles located at
z = 0, z = 1/2, and z = −1/2. Since all three poles are inside the unit circle, the system is stable.

Solution 5.10-10

Since h[n] = δ[n− 1] + δ[n+ 1], H(z) = z−1 + z and |H(ejΩ)| = 2
∣∣∣e

−jΩ+ejΩ

2

∣∣∣ = 2| cos(Ω)|.

>> Omega = linspace(-pi,pi,1001); Hm = 2*abs(cos(Omega));

>> plot(Omega,Hm,’k-’); grid on; axis([-pi pi 0 2.25]);

>> xlabel(’\Omega’); ylabel(’|H[e^{j\Omega}]|’);

>> set(gca,’xtick’,-pi:pi/4:pi,’ytick’,0:1/2:2);

Using Fig. S5.10-10, this system is best described as a bandstop filter with gain. That is, low
and high frequencies have a boosted gain of two and middle frequencies near Ω = π/2 are attenuated.
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Figure S5.10-10

Solution 5.10-11

(a) MATLAB is used to plot the magnitude response, shown in Fig. S5.10-11a. This system be-
haves somewhat like a bandpass filter. Frequencies near Ω = π/2 are boosted while frequencies
near Ω = kπ are somewhat attenuated.

>> Omega = linspace(-pi,pi,1001); H = @(z) cos(z.^(-1));

>> plot(Omega,abs(H(exp(1j*Omega))),’k-’); grid on;

>> axis([-pi pi 0 1.7]); xlabel(’\Omega’); ylabel(’|H[e^{j\Omega}]|’);

>> set(gca,’xtick’,-pi:pi/4:pi,’ytick’,0:1/4:1.5);
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Figure S5.10-11a

(b) A Maclaurin series expansion of cos(x) is
∑∞

k=0
(−x2)k

(2k)! . Substituting x = z−1 yields H(z) =

cos(z−1) =
∑∞

k=0
(−z−2)k

(2k)! . Inverting yields

h[n] =
∞∑

k=0

(−1)k

(2k)!
δ[n− 2k] = δ[n]− 1

2!
δ[n− 2] +

1

4!
δ[n− 4]− 1

6!
δ[n− 6] + . . . .

We use MATLAB to plot h[n] (Fig. S5.10-11b).

>> delta = @(n) 1.0.*(n==0); K = 10; n = [0:10]; h = @(n) 0;

>> for k = 0:K, h = @(n) h(n) + (-1).^k/gamma(2*k+1).*delta(n-2*k); end

>> stem(n,h(n),’k.’); xlabel(’n’); ylabel(’h[n]’);

>> axis([-.5 10.5 -.6 1.1]); grid on;

(c) Figure S5.10-11b shows that the impulse response quickly decays to zero. Thus, only the first
few terms from h[n] are needed for a good approximation. Note that h[n] ≈ δ[n]− δ[n−2]/2+
δ[n− 4]/24. An FIR difference equation is found by letting h[n] = y[n] and δ[n] = x[n]. That
is,

y[n] = x[n]− x[n− 2]/2 + x[n− 4]/24.

This is a fourth-order FIR filter with only three non-zero coefficients. The magnitude response
is easily computed using MATLAB.
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>> Omega = linspace(-pi,pi,1001); H = @(z) 1-z.^(-2)/2+z.^(-4)/24;

>> plot(Omega,abs(H(exp(1j*Omega))),’k-’); grid on;

>> axis([-pi pi 0 1.7]); xlabel(’\Omega’); ylabel(’|H[e^{j\Omega}]|’);

>> set(gca,’xtick’,-pi:pi/4:pi,’ytick’,0:1/4:1.5);
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Figure S5.10-11c

Visually, Fig. S5.10-11c is indistinguishable from Fig. S5.10-11b. Thus, this fourth-order FIR
filter closely approximates the original system.

Solution 5.10-12

Factored form is used to plot roots, and standard transfer function form is used to compute magni-
tude response plots.

(a) Order-8 Butterworth LPF with Ωc = π/3.

>> Omega_c = pi/3; Omega = linspace(-pi,pi,1001);

>> [z,p,k] = butter(8,Omega_c/pi);

>> subplot(121),plot(real(p),imag(p),’kx’,...

>> real(z),imag(z),’ko’,cos(Omega),sin(Omega),’k’);

>> axis equal; axis([-1.1 1.1 -1.1 1.1]);

>> xlabel(’Re(z)’); ylabel(’Im(z)’);

>> [B,A] = butter(8,Omega_c/pi);

>> HLP = polyval(B,exp(j*Omega))./polyval(A,exp(j*Omega));

>> subplot(122),plot(Omega,20*log10(abs(HLP)),’k’);

>> axis([-pi pi -40 2]); grid;

>> xlabel(’\Omega’); ylabel(’|H_{LP}[e^{j\Omega}]|’);

>> set(gca,’xtick’,[-pi:pi/3:pi],’xticklabel’,...

>> {’-\pi’,’ ’,’-\pi/3’,’ ’,’\pi/3’,’ ’,’\pi’})

(b) Order-8 Butterworth HPF with Ωc = π/3.

>> Omega_c = pi/3; Omega = linspace(-pi,pi,1001);

>> [z,p,k] = butter(8,Omega_c/pi,’high’);
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Figure S5.10-12a

>> subplot(121),plot(real(p),imag(p),’kx’,...

>> real(z),imag(z),’ko’,cos(Omega),sin(Omega),’k’);

>> axis equal; axis([-1.1 1.1 -1.1 1.1]);

>> xlabel(’Re(z)’); ylabel(’Im(z)’);

>> [B,A] = butter(8,Omega_c/pi,’high’);

>> HHP = polyval(B,exp(j*Omega))./polyval(A,exp(j*Omega));

>> subplot(122),plot(Omega,20*log10(abs(HHP)),’k’);

>> axis([-pi pi -40 2]); grid;

>> xlabel(’\Omega’); ylabel(’|H_{HP}[e^{j\Omega}]|’);

>> set(gca,’xtick’,[-pi:pi/3:pi],’xticklabel’,...

>> {’-\pi’,’ ’,’-\pi/3’,’ ’,’\pi/3’,’ ’,’\pi’})
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Figure S5.10-12b

(c) Order-8 Butterworth BPF with passband between 5π/24 and 11π/24. Notice that the com-
mand butter requires the parameter N = 4 to be used to obtain a (2N = 8)-order bandpass
filter.

>> Omega_c = [5*pi/24,11*pi/24]; Omega = linspace(-pi,pi,1001);

>> [z,p,k] = butter(4,Omega_c/pi);

>> subplot(121),plot(real(p),imag(p),’kx’,...

>> real(z),imag(z),’ko’,cos(Omega),sin(Omega),’k’);

>> axis([-1.1 1.1 -1.1 1.1]); axis equal;

>> xlabel(’Re(z)’); ylabel(’Im(z)’);

>> [B,A] = butter(4,Omega_c/pi);

>> HBP = polyval(B,exp(j*Omega))./polyval(A,exp(j*Omega));

>> subplot(122),plot(Omega,20*log10(abs(HBP)),’k’);

>> axis([-pi pi -40 2]); grid;



468 Student use and/or distribution of solutions is prohibited

>> xlabel(’\Omega’); ylabel(’|H_{BP}[e^{j\Omega}]|’);

>> set(gca,’xtick’,[-pi,-11*pi/24,-5*pi/24,0,5*pi/24,11*pi/24,pi],...

>> ’xticklabel’,{’-\pi’,’ ’,’ ’,’0’,’ ’,’ ’,’\pi’})
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Figure S5.10-12c

(d) Order-8 Butterworth BSF with stopband between 5π/24 and 11π/24. Notice that the com-
mand butter requires the parameter N = 4 to be used to obtain a (2N = 8)-order bandstop
filter.

>> Omega_c = [5*pi/24,11*pi/24]; Omega = linspace(-pi,pi,1001);

>> [z,p,k] = butter(4,Omega_c/pi,’stop’);

>> subplot(121),plot(real(p),imag(p),’kx’,...

>> real(z),imag(z),’ko’,cos(Omega),sin(Omega),’k’);

>> axis([-1.1 1.1 -1.1 1.1]); axis equal;

>> xlabel(’Re(z)’); ylabel(’Im(z)’);

>> [B,A] = butter(4,Omega_c/pi,’stop’);

>> HBS = polyval(B,exp(j*Omega))./polyval(A,exp(j*Omega));

>> subplot(122),plot(Omega,20*log10(abs(HBS)),’k’);

>> axis([-pi pi -40 2]); grid;

>> xlabel(’\Omega’); ylabel(’|H_{BS}[e^{j\Omega}]|’);

>> set(gca,’xtick’,[-pi,-11*pi/24,-5*pi/24,0,5*pi/24,11*pi/24,pi],...

>> ’xticklabel’,{’-\pi’,’ ’,’ ’,’0’,’ ’,’ ’,’\pi’})
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Figure S5.10-12d
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Solution 5.10-13

Factored form is used to plot roots, and standard transfer function form is used to compute magni-
tude response plots.

(a) Order-8 Chebyshev Type I LPF with Ωc = π/3.

>> Omega_c = pi/3; Omega = linspace(-pi,pi,1001);

>> [z,p,k] = cheby1(8,3,Omega_c/pi);

>> subplot(121),plot(real(p),imag(p),’kx’,...

>> real(z),imag(z),’ko’,cos(Omega),sin(Omega),’k’);

>> axis equal; axis([-1.1 1.1 -1.1 1.1]);

>> xlabel(’Re(z)’); ylabel(’Im(z)’);

>> [B,A] = cheby1(8,3,Omega_c/pi);

>> HLP = polyval(B,exp(j*Omega))./polyval(A,exp(j*Omega));

>> subplot(122),plot(Omega,20*log10(abs(HLP)),’k’);

>> axis([-pi pi -40 2]); grid;

>> xlabel(’\Omega’); ylabel(’|H_{LP}[e^{j\Omega}]|’);

>> set(gca,’xtick’,[-pi:pi/3:pi],’xticklabel’,...

>> {’-\pi’,’ ’,’-\pi/3’,’ ’,’\pi/3’,’ ’,’\pi’})
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Figure S5.10-13a

(b) Order-8 Chebyshev Type I HPF with Ωc = π/3.

>> Omega_c = pi/3; Omega = linspace(-pi,pi,1001);

>> [z,p,k] = cheby1(8,3,Omega_c/pi,’high’);

>> subplot(121),plot(real(p),imag(p),’kx’,...

>> real(z),imag(z),’ko’,cos(Omega),sin(Omega),’k’);

>> axis equal; axis([-1.1 1.1 -1.1 1.1]);

>> xlabel(’Re(z)’); ylabel(’Im(z)’);

>> [B,A] = cheby1(8,3,Omega_c/pi,’high’);

>> HHP = polyval(B,exp(j*Omega))./polyval(A,exp(j*Omega));

>> subplot(122),plot(Omega,20*log10(abs(HHP)),’k’);

>> axis([-pi pi -40 2]); grid;

>> xlabel(’\Omega’); ylabel(’|H_{HP}[e^{j\Omega}]|’);

>> set(gca,’xtick’,[-pi:pi/3:pi],’xticklabel’,...

>> {’-\pi’,’ ’,’-\pi/3’,’ ’,’\pi/3’,’ ’,’\pi’})

(c) Order-8 Chebyshev Type I BPF with passband between 5π/24 and 11π/24. Notice that the
command cheby1 requires the parameter N = 4 to be used to obtain a (2N = 8)-order
bandpass filter.
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Figure S5.10-13b

>> Omega_c = [5*pi/24,11*pi/24]; Omega = linspace(-pi,pi,1001);

>> [z,p,k] = cheby1(4,3,Omega_c/pi);

>> subplot(121),plot(real(p),imag(p),’kx’,...

>> real(z),imag(z),’ko’,cos(Omega),sin(Omega),’k’);

>> axis equal; axis([-1.1 1.1 -1.1 1.1]);

>> xlabel(’Re(z)’); ylabel(’Im(z)’);

>> [B,A] = cheby1(4,3,Omega_c/pi);

>> HBP = polyval(B,exp(j*Omega))./polyval(A,exp(j*Omega));

>> subplot(122),plot(Omega,20*log10(abs(HBP)),’k’);

>> axis([-pi pi -40 2]); grid;

>> xlabel(’\Omega’); ylabel(’|H_{BP}[e^{j\Omega}]|’);

>> set(gca,’xtick’,[-pi,-11*pi/24,-5*pi/24,0,5*pi/24,11*pi/24,pi],...

>> ’xticklabel’,{’-\pi’,’ ’,’ ’,’0’,’ ’,’ ’,’\pi’})
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Figure S5.10-13c

(d) Order-8 Chebyshev Type I BSF with stopband between 5π/24 and 11π/24. Notice that the
command cheby1 requires the parameter N = 4 to be used to obtain a (2N = 8)-order
bandstop filter.

>> Omega_c = [5*pi/24,11*pi/24]; Omega = linspace(-pi,pi,1001);

>> [z,p,k] = cheby1(4,3,Omega_c/pi,’stop’);

>> subplot(121),plot(real(p),imag(p),’kx’,...

>> real(z),imag(z),’ko’,cos(Omega),sin(Omega),’k’);

>> axis equal; axis([-1.1 1.1 -1.1 1.1]);

>> xlabel(’Re(z)’); ylabel(’Im(z)’);

>> [B,A] = cheby1(4,3,Omega_c/pi,’stop’);

>> HBS = polyval(B,exp(j*Omega))./polyval(A,exp(j*Omega));
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>> subplot(122),plot(Omega,20*log10(abs(HBS)),’k’);

>> axis([-pi pi -40 2]); grid;

>> xlabel(’\Omega’); ylabel(’|H_{BS}[e^{j\Omega}]|’);

>> set(gca,’xtick’,[-pi,-11*pi/24,-5*pi/24,0,5*pi/24,11*pi/24,pi],...

>> ’xticklabel’,{’-\pi’,’ ’,’ ’,’0’,’ ’,’ ’,’\pi’})
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Figure S5.10-13d

To demonstrate the effect of decreasing the passband ripple, consider magnitude response plots
for Chebyshev Type I LPFs with Rp = {0.1, 1.0, 3.0}.

>> LSS3eSMMATLABFigFormat(7,2,6);

>> Omega_c = pi/3; Omega = linspace(-pi,pi,1001);

>> [B,A] = cheby1(8,.1,Omega_c/pi);

>> HLP1 = polyval(B,exp(j*Omega))./polyval(A,exp(j*Omega));

>> [B,A] = cheby1(8,1,Omega_c/pi);

>> HLP2 = polyval(B,exp(j*Omega))./polyval(A,exp(j*Omega));

>> [B,A] = cheby1(8,3,Omega_c/pi);

>> HLP3 = polyval(B,exp(j*Omega))./polyval(A,exp(j*Omega));

>> plot(Omega,20*log10(abs(HLP1)),’k-’,...

>> Omega,20*log10(abs(HLP2)),’k--’,...

>> Omega,20*log10(abs(HLP3)),’k:’);

>> axis([-pi pi -15 2]); grid;

>> xlabel(’\Omega’); ylabel(’|H_{LP}[e^{j\Omega}]|’);

>> legend(’R_p = 0.1’,’R_p = 1.0’,’R_p = 3.0’);

>> set(gca,’xtick’,[-pi:pi/3:pi],’xticklabel’,...

>> {’-\pi’,’ ’,’-\pi/3’,’ ’,’\pi/3’,’ ’,’\pi’})
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Thus, reducing the allowable passband ripple Rp tends to broaden the transition bands of the
filter.

Solution 5.10-14

Factored form is used to plot roots, and standard transfer function form is used to compute magni-
tude response plots.

(a) Order-8 Chebyshev Type II LPF with Ωc = π/3.

>> Omega_c = pi/3; Omega = linspace(-pi,pi,1001);

>> [z,p,k] = cheby2(8,20,Omega_c/pi);

>> subplot(121),plot(real(p),imag(p),’kx’,...

>> real(z),imag(z),’ko’,cos(Omega),sin(Omega),’k’);

>> axis equal; axis([-1.1 1.1 -1.1 1.1]);

>> xlabel(’Re(z)’); ylabel(’Im(z)’);

>> [B,A] = cheby2(8,20,Omega_c/pi);

>> HLP = polyval(B,exp(j*Omega))./polyval(A,exp(j*Omega));

>> subplot(122),plot(Omega,20*log10(abs(HLP)),’k’);

>> axis([-pi pi -40 2]); grid;

>> xlabel(’\Omega’); ylabel(’|H_{LP}[e^{j\Omega}]|’);

>> set(gca,’xtick’,[-pi:pi/3:pi],’xticklabel’,...

>> {’-\pi’,’ ’,’-\pi/3’,’ ’,’\pi/3’,’ ’,’\pi’})
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Figure S5.10-14a

(b) Order-8 Chebyshev Type II HPF with Ωc = π/3.

>> Omega_c = pi/3; Omega = linspace(-pi,pi,1001);

>> [z,p,k] = cheby2(8,20,Omega_c/pi,’high’);

>> subplot(121),plot(real(p),imag(p),’kx’,...

>> real(z),imag(z),’ko’,cos(Omega),sin(Omega),’k’);

>> axis equal; axis([-1.1 1.1 -1.1 1.1]);

>> xlabel(’Re(z)’); ylabel(’Im(z)’);

>> [B,A] = cheby2(8,20,Omega_c/pi,’high’);

>> HHP = polyval(B,exp(j*Omega))./polyval(A,exp(j*Omega));

>> subplot(122),plot(Omega,20*log10(abs(HHP)),’k’);

>> axis([-pi pi -40 2]); grid;

>> xlabel(’\Omega’); ylabel(’|H_{HP}[e^{j\Omega}]|’);

>> set(gca,’xtick’,[-pi:pi/3:pi],’xticklabel’,...

>> {’-\pi’,’ ’,’-\pi/3’,’ ’,’\pi/3’,’ ’,’\pi’})

(c) Order-8 Chebyshev Type II BPF with passband between 5π/24 and 11π/24. Notice that
the command cheby2 requires the parameter N = 4 to be used to obtain a (2N = 8)-order
bandpass filter.
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Figure S5.10-14b

>> Omega_c = [5*pi/24,11*pi/24]; Omega = linspace(-pi,pi,1001);

>> [z,p,k] = cheby2(4,20,Omega_c/pi);

>> subplot(121),plot(real(p),imag(p),’kx’,...

>> real(z),imag(z),’ko’,cos(Omega),sin(Omega),’k’);

>> axis equal; axis([-1.1 1.1 -1.1 1.1]);

>> xlabel(’Re(z)’); ylabel(’Im(z)’);

>> [B,A] = cheby2(4,20,Omega_c/pi);

>> HBP = polyval(B,exp(j*Omega))./polyval(A,exp(j*Omega));

>> subplot(122),plot(Omega,20*log10(abs(HBP)),’k’);

>> axis([-pi pi -40 2]); grid;

>> xlabel(’\Omega’); ylabel(’|H_{BP}[e^{j\Omega}]|’);

>> set(gca,’xtick’,[-pi,-11*pi/24,-5*pi/24,0,5*pi/24,11*pi/24,pi],...

>> ’xticklabel’,{’-\pi’,’ ’,’ ’,’0’,’ ’,’ ’,’\pi’})
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Figure S5.10-14c

(d) Order-8 Chebyshev Type II BSF with stopband between 5π/24 and 11π/24. Notice that
the command cheby2 requires the parameter N = 4 to be used to obtain a (2N = 8)-order
bandstop filter.

>> Omega_c = [5*pi/24,11*pi/24]; Omega = linspace(-pi,pi,1001);

>> [z,p,k] = cheby2(4,20,Omega_c/pi,’stop’);

>> subplot(121),plot(real(p),imag(p),’kx’,...

>> real(z),imag(z),’ko’,cos(Omega),sin(Omega),’k’);

>> axis equal; axis([-1.1 1.1 -1.1 1.1]);

>> xlabel(’Re(z)’); ylabel(’Im(z)’);

>> [B,A] = cheby2(4,20,Omega_c/pi,’stop’);

>> HBS = polyval(B,exp(j*Omega))./polyval(A,exp(j*Omega));
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>> subplot(122),plot(Omega,20*log10(abs(HBS)),’k’);

>> axis([-pi pi -40 2]); grid;

>> xlabel(’\Omega’); ylabel(’|H_{BS}[e^{j\Omega}]|’);

>> set(gca,’xtick’,[-pi,-11*pi/24,-5*pi/24,0,5*pi/24,11*pi/24,pi],...

>> ’xticklabel’,{’-\pi’,’ ’,’ ’,’0’,’ ’,’ ’,’\pi’})
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Figure S5.10-14d

To demonstrate the effect of increasing Rs, consider magnitude response plots for Chebyshev
Type II LPFs with Rs = {10, 20, 30}.

>> Omega_c = pi/3; Omega = linspace(-pi,pi,1001);

>> [B,A] = cheby2(8,10,Omega_c/pi);

>> HLP1 = polyval(B,exp(j*Omega))./polyval(A,exp(j*Omega));

>> [B,A] = cheby2(8,20,Omega_c/pi);

>> HLP2 = polyval(B,exp(j*Omega))./polyval(A,exp(j*Omega));

>> [B,A] = cheby2(8,30,Omega_c/pi);

>> HLP3 = polyval(B,exp(j*Omega))./polyval(A,exp(j*Omega));

>> plot(Omega,20*log10(abs(HLP1)),’k-’,...

>> Omega,20*log10(abs(HLP2)),’k--’,...

>> Omega,20*log10(abs(HLP3)),’k:’);

>> axis([-pi pi -40 2]); grid;

>> xlabel(’\Omega’); ylabel(’|H_{LP}[e^{j\Omega}]|’);

>> legend(’R_s = 10’,’R_s = 20’,’R_s = 30’);

>> set(gca,’xtick’,[-pi:pi/3:pi],’xticklabel’,...

>> {’-\pi’,’ ’,’-\pi/3’,’ ’,’\pi/3’,’ ’,’\pi’})
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Thus, increasing Rs tends to broaden the transition bands of the filter.
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Solution 5.10-15

Factored form is used to plot roots, and standard transfer function form is used to compute magni-
tude response plots.

(a) Order-8 Elliptic LPF with Ωc = π/3.

>> Omega_c = pi/3; Omega = linspace(-pi,pi,1001);

>> [z,p,k] = ellip(8,3,20,Omega_c/pi);

>> subplot(121),plot(real(p),imag(p),’kx’,...

>> real(z),imag(z),’ko’,cos(Omega),sin(Omega),’k’);

>> axis equal; axis([-1.1 1.1 -1.1 1.1]);

>> xlabel(’Re(z)’); ylabel(’Im(z)’);

>> [B,A] = ellip(8,3,20,Omega_c/pi);

>> HLP = polyval(B,exp(j*Omega))./polyval(A,exp(j*Omega));

>> subplot(122),plot(Omega,20*log10(abs(HLP)),’k’);

>> axis([-pi pi -40 2]); grid;

>> xlabel(’\Omega’); ylabel(’|H_{LP}[e^{j\Omega}]|’);

>> set(gca,’xtick’,[-pi:pi/3:pi],’xticklabel’,...

>> {’-\pi’,’ ’,’-\pi/3’,’ ’,’\pi/3’,’ ’,’\pi’})
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Figure S5.10-15a

(b) Order-8 Elliptic HPF with Ωc = π/3.

>> Omega_c = pi/3; Omega = linspace(-pi,pi,1001);

>> [z,p,k] = ellip(8,3,20,Omega_c/pi,’high’);

>> subplot(121),plot(real(p),imag(p),’kx’,...

>> real(z),imag(z),’ko’,cos(Omega),sin(Omega),’k’);

>> axis equal; axis([-1.1 1.1 -1.1 1.1]);

>> xlabel(’Re(z)’); ylabel(’Im(z)’);

>> [B,A] = ellip(8,3,20,Omega_c/pi,’high’);

>> HHP = polyval(B,exp(j*Omega))./polyval(A,exp(j*Omega));

>> subplot(122),plot(Omega,20*log10(abs(HHP)),’k’);

>> axis([-pi pi -40 2]); grid;

>> xlabel(’\Omega’); ylabel(’|H_{HP}[e^{j\Omega}]|’);

>> set(gca,’xtick’,[-pi:pi/3:pi],’xticklabel’,...

>> {’-\pi’,’ ’,’-\pi/3’,’ ’,’\pi/3’,’ ’,’\pi’})

(c) Order-8 Elliptic BPF with passband between 5π/24 and 11π/24. Notice that the command
ellip requires the parameter N = 4 to be used to obtain a (2N = 8)-order bandpass filter.

>> Omega_c = [5*pi/24,11*pi/24]; Omega = linspace(-pi,pi,1001);
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Figure S5.10-15b

>> [z,p,k] = ellip(4,3,20,Omega_c/pi);

>> subplot(121),plot(real(p),imag(p),’kx’,...

>> real(z),imag(z),’ko’,cos(Omega),sin(Omega),’k’);

>> axis equal; axis([-1.1 1.1 -1.1 1.1]);

>> xlabel(’Re(z)’); ylabel(’Im(z)’);

>> [B,A] = ellip(4,3,20,Omega_c/pi);

>> HBP = polyval(B,exp(j*Omega))./polyval(A,exp(j*Omega));

>> subplot(122),plot(Omega,20*log10(abs(HBP)),’k’);

>> axis([-pi pi -40 2]); grid;

>> xlabel(’\Omega’); ylabel(’|H_{BP}[e^{j\Omega}]|’);

>> set(gca,’xtick’,[-pi,-11*pi/24,-5*pi/24,0,5*pi/24,11*pi/24,pi],...

>> ’xticklabel’,{’-\pi’,’ ’,’ ’,’0’,’ ’,’ ’,’\pi’})

-1 0 1

Re(z)

-1

-0.5

0

0.5

1

Im
(z

)

-π   0   π

Ω

-40

-30

-20

-10

0

|H
B

P
[e

jΩ
]|

Figure S5.10-15c

(d) Order-8 Elliptic BSF with stopband between 5π/24 and 11π/24. Notice that the command
ellip requires the parameter N = 4 to be used to obtain a (2N = 8)-order bandstop filter.

>> Omega_c = [5*pi/24,11*pi/24]; Omega = linspace(-pi,pi,1001);

>> [z,p,k] = ellip(4,3,20,Omega_c/pi,’stop’);

>> subplot(121),plot(real(p),imag(p),’kx’,...

>> real(z),imag(z),’ko’,cos(Omega),sin(Omega),’k’);

>> axis equal; axis([-1.1 1.1 -1.1 1.1]);

>> xlabel(’Re(z)’); ylabel(’Im(z)’);

>> [B,A] = ellip(4,3,20,Omega_c/pi,’stop’);

>> HBS = polyval(B,exp(j*Omega))./polyval(A,exp(j*Omega));

>> subplot(122),plot(Omega,20*log10(abs(HBS)),’k’);

>> axis([-pi pi -40 2]); grid;



Student use and/or distribution of solutions is prohibited 477

>> xlabel(’\Omega’); ylabel(’|H_{BS}[e^{j\Omega}]|’);

>> set(gca,’xtick’,[-pi,-11*pi/24,-5*pi/24,0,5*pi/24,11*pi/24,pi],...

>> ’xticklabel’,{’-\pi’,’ ’,’ ’,’0’,’ ’,’ ’,’\pi’})
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Chapter 6 Solutions

Solution 6.1-1

In the following problems when Cn = 0, MATLAB phase computations may not be meaningful and
can rightfully be ignored; see, for example, part (a) and the phase computed at n = 4. While not
done here, phase plots often ignore computed phase and use 0 when Cn = 0 (or is nearly 0).

(a) T0 = 4, ω0 = 2π
T0

= π
2 . Because of even symmetry, all sine terms are zero.

x(t) = a0 +

∞∑

n=1

an cos
(nπ

2
t
)

a0 = 0 (by inspection)

an =
4

4

[∫ 1

0

cos
(nπ

2
t
)
dt−

∫ 2

1

cos
(nπ

2
t
)
dt

]
=

4

nπ
sin

nπ

2

Therefore, the Fourier series for x(t) is

x(t) =
4

π

(
cos

πt

2
− 1

3
cos

3πt

2
+

1

5
cos

5πt

2
− 1

7
cos

7πt

2
+ · · ·

)
.

Since bn = 0, Cn = |an| and θn = ∠an, both shown in Fig. S6.1-1a. The corresponding
frequency ω is easily computed as ω0n = πn

2 .

>> n = 1:15; an = 4./(pi*n).*sin(pi*n/2); bn = zeros(size(n));

>> Cn = [0,sqrt(an.^2+bn.^2)]; thetan = [atan(0),atan2(-bn,an)];n = [0,n];

>> subplot(121); stem(n,Cn,’k.’); xlabel(’n’); ylabel(’|C_n|’);

>> axis([-.5 15.5 0 1.4]); grid on

>> subplot(122); stem(n,thetan,’k.’); xlabel(’n’); ylabel(’\theta_n’);

>> axis([-.5 15.5 -1.1*pi 1.1*pi]); grid on; set(gca,’ytick’,-pi:pi/2:pi);
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(b) Here, T0 = 10π, ω0 = 2π
T0

= 1
5 . Because of even symmetry, all the sine terms are zero.

x(t) = a0 +
∞∑

n=1

an cos
(n
5
t
)
+ bn sin

(n
5
t
)

a0 =
1

5
(by inspection)

an =
2

10π

∫ π

−π

cos
(n
5
t
)
dt =

1

5π
(
5

n
) sin

(n
5
t
)∣∣∣∣

π

−π

=
2

πn
sin
(nπ

5

)

bn =
2

10π

∫ π

−π

sin
(n
5
t
)
dt = 0 (integrand is an odd function of t)

Since bn = 0, Cn = |an| and θn = ∠an, both shown in Fig. S6.1-1b. The corresponding
frequency ω is easily computed as ω0n = n

5 .

>> n = 1:15; an = 2./(pi*n).*sin(pi*n/5); bn = zeros(size(n));

>> Cn = [1/5,sqrt(an.^2+bn.^2)]; thetan = [atan(0),atan2(-bn,an)];n = [0,n];

>> subplot(121); stem(n,Cn,’k.’); xlabel(’n’); ylabel(’|C_n|’);

>> axis([-.5 15.5 0 0.5]); grid on

>> subplot(122); stem(n,thetan,’k.’); xlabel(’n’); ylabel(’\theta_n’);

>> axis([-.5 15.5 -1.1*pi 1.1*pi]); grid on; set(gca,’ytick’,-pi:pi/2:pi);
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(c) In this case, T0 = 2π, ω0 = 1. Thus,

x(t) = a0 +

∞∑

n=1

an cosnt+ bn sinnt with a0 = 0.5 (by inspection),

an =
1

π

∫ 2π

0

t

2π
cosnt dt = 0, bn =

1

π

∫ 2π

0

t

2π
sinnt dt = − 1

πn

and

x(t) = 0.5− 1

π

(
sin t+

1

2
sin 2t+

1

3
sin 3t+

1

4
sin 4t+ · · ·

)

= 0.5 +
1

π

[
cos
(
t+

π

2

)
+

1

2
cos
(
2t+

π

2

)
+

1

3
cos
(
3t+

π

2

)
+ · · ·

]
.

The reason the cosine terms vanish is that when 0.5 (the dc component) is subtracted from
x(t), the remaining function has odd symmetry. Hence, the Fourier series contains dc and
sine terms only. Since an = 0, Cn = |bn| and θn = ∠bn, both shown in Fig. S6.1-1c. The
corresponding frequency ω is easily computed as ω0n = n.
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>> n = 1:15; bn = -1./(pi*n); an = zeros(size(n));

>> Cn = [1/2,sqrt(an.^2+bn.^2)]; thetan = [atan(0),atan2(-bn,an)];n = [0,n];

>> subplot(121); stem(n,Cn,’k.’); xlabel(’n’); ylabel(’|C_n|’);

>> axis([-.5 15.5 0 0.6]); grid on

>> subplot(122); stem(n,thetan,’k.’); xlabel(’n’); ylabel(’\theta_n’);

>> axis([-.5 15.5 -1.1*pi 1.1*pi]); grid on; set(gca,’ytick’,-pi:pi/2:pi);
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Figure S6.1-1c

(d) Now, T0 = π, ω0 = 2 and x(t) = 4
π t. a0 = 0 (by inspection). Thus,

an = 0 (n > 0) because of odd symmetry,

bn =
4

π

∫ π/4

0

4

π
t sin 2nt dt =

2

πn

(
2

πn
sin

πn

2
− cos

πn

2

)
,

and

x(t) =
4

π2
sin 2t+

1

π
sin 4t− 4

9π2
sin 6t− 1

2π
sin 8t+ · · ·

=
4

π2
cos
(
2t− π

2

)
+

1

π
cos
(
4t− π

2

)
+

4

9π2
cos
(
6t+

π

2

)
+

1

π
cos
(
8t+

π

2

)
+ · · · .

Since an = 0, Cn = |bn| and θn = ∠bn, both shown in Fig. S6.1-1d. The corresponding
frequency ω is easily computed as ω0n = 2n.

>> n = 1:15; bn = 2./(pi*n).*(2./(pi*n).*sin(pi*n/2)-cos(pi*n/2));

>> an = zeros(size(n)); Cn = [0,sqrt(an.^2+bn.^2)];

>> thetan = [atan(0),atan2(-bn,an)];n = [0,n];

>> subplot(121); stem(n,Cn,’k.’); xlabel(’n’); ylabel(’|C_n|’);

>> axis([-.5 15.5 0 0.45]); grid on

>> subplot(122); stem(n,thetan,’k.’); xlabel(’n’); ylabel(’\theta_n’);

>> axis([-.5 15.5 -1.1*pi 1.1*pi]); grid on; set(gca,’ytick’,-pi:pi/2:pi);
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(e) Here, T0 = 3, ω0 = 2π/3. Thus,

a0 =
1

3

∫ 1

0

t dt =
1

6

an =
2

3

∫ 1

0

t cos
2nπ

3
tdt =

3

2π2n2
[cos

2πn

3
+

2πn

3
sin

2πn

3
− 1]

bn =
2

3

∫ 1

0

t sin
2nπ

3
tdt =

3

2π2n2
[sin

2πn

3
− 2πn

3
cos

2πn

3
].

Therefore, C0 = 1
6 and

Cn =
3

2π2n2

[√
2 +

4π2n2

9
− 2 cos

2πn

3
− 4πn

3
sin

2πn

3

]

and

θn = tan−1

( 2πn
3 cos 2πn

3 − sin 2πn
3

cos 2πn
3 + 2πn

3 sin 2πn
3 − 1

)
.

Both Cn and θn are shown in Fig. S6.1-1e. The corresponding frequency ω is easily computed
as ω0n = 2πn

3 .

>> n = 1:15; an = 3./(2*pi^2*n.^2).*(cos(2*pi*n/3)+2*pi*n/3.*sin(2*pi*n/3)-1);

>> bn = 3./(2*pi^2*n.^2).*(sin(2*pi*n/3)-2*pi*n/3.*cos(2*pi*n/3))

>> Cn = [1/6,sqrt(an.^2+bn.^2)]; thetan = [atan(0),atan2(-bn,an)];n = [0,n];

>> subplot(121); stem(n,Cn,’k.’); xlabel(’n’); ylabel(’|C_n|’);

>> axis([-.5 15.5 0 0.45]); grid on

>> subplot(122); stem(n,thetan,’k.’); xlabel(’n’); ylabel(’\theta_n’);

>> axis([-.5 15.5 -1.1*pi 1.1*pi]); grid on; set(gca,’ytick’,-pi:pi/2:pi);
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(f) For this case, T0 = 6, ω0 = π/3, a0 = 0.5 (by inspection). Since the signal has even symmetry,
bn = 0. Further,

an =
4

6

∫ 3

0

x(t) cos
nπ

3
dt

=
2

3

[∫ 1

0

cos
nπ

3
dt+

∫ 2

1

(2− t) cos
nπ

3
t dt

]

=
6

π2n2

[
cos

nπ

3
− cos

2nπ

3

]

and

x(t) = 0.5 +
6

π2

(
cos

π

3
t− 2

9
cosπt+

1

25
cos

5π

3
t+

1

49
cos

7π

3
t+ · · ·

)
.
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Observe that this signal does not have even harmonics. The reason is that if the dc component
(0.5) is subtracted from x(t), the resulting function has half-wave symmetry (see Prob. 6.1-
6). Since bn = 0, Cn = |an| and θn = ∠an, both shown in Fig. S6.1-1f. The corresponding
frequency ω is easily computed as ω0n = πn

3 .

>> n = 1:15; an = 6./(pi^2*n.^2).*(cos(pi*n/3)-cos(2*n*pi/3)); bn = zeros(size(n));

>> Cn = [1/2,sqrt(an.^2+bn.^2)]; thetan = [atan(0),atan2(-bn,an)];n = [0,n];

>> subplot(121); stem(n,Cn,’k.’); xlabel(’n’); ylabel(’|C_n|’);

>> axis([-.5 15.5 0 0.75]); grid on

>> subplot(122); stem(n,thetan,’k.’); xlabel(’n’); ylabel(’\theta_n’);

>> axis([-.5 15.5 -1.1*pi 1.1*pi]); grid on; set(gca,’ytick’,-pi:pi/2:pi);
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Solution 6.1-2

(a) Here, T0 = π and ω0 = 2π
T0

= 2. Therefore,

y(t) = a0 +

∞∑

n=1

an cos 2nt+ bn sin 2nt.

To compute the coefficients, we shall use the interval π to 0 for integration. Thus,

a0 =
1

π

∫ 0

−π

et/2 dt = 0.504

an =
2

π

∫ 0

−π

et/2 cos 2nt dt = 0.504

(
2

1 + 16n2

)

bn =
2

π

∫ 0

−π

et/2 sin 2nt dt = −0.504

(
8n

1 + 16n2

)
.

Therefore,

C0 = a0 = 0.504

Cn =
√
a2n + b2n = 0.504

(
2√

1 + 16n2

)

θn = tan−1

(−bn
an

)
= tan−1 4n

y(t) = 0.504 + 0.504

∞∑

n=1

2√
1 + 16n2

cos (2nt+ tan−1 4n).

(b) This Fourier series is identical to that in Eq. (6.11) with t replaced by −t. That is,

y(t) = x(−t) = 0.504 + 0.504

∞∑

n=1

2√
1 + 16n2

cos (−2nt− tan−1 4n).
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Since cosine is an even function, this is equivalent to

y(t) = 0.504 + 0.504

∞∑

n=1

2√
1 + 16n2

cos (2nt+ tan−1 4n).

This matches the Fourier series derived in part (a).

(c) If x(t) = C0 +
∑

Cn cos(nω0t+ θn), then

x(−t) = C0 +
∑

Cn cos(−nω0t+ θn) = C0 +
∑

Cn cos(nω0t− θn).

Thus, time inversion of a signal merely changes the sign of the phase θn. Everything else
remains unchanged. This result is consistent with the earlier results of parts (a) and (b).

Solution 6.1-3

(a) Here, T0 = π/2 and ω0 = 2π
T0

= 4. Therefore,

y(t) = a0 +

∞∑

n=1

an cos 4nt+ bn sin 4nt,

where

a0 =
2

π

∫ π/2

0

e−t dt = 0.504,

an =
4

π

∫ π/2

0

e−t cos 4nt dt = 0.504

(
2

1 + 16n2

)
,

and

bn =
4

π

∫ π/2

0

e−t sin 4nt dt = 0.504

(
8n

1 + 16n2

)
.

Therefore C0 = a0 = 0.504, Cn =
√
a2n + b2n = 0.504

(
2√

1+16n2

)
, and θn = − tan−1 4n.

(b) This Fourier series is identical to that in Eq. (6.11) with t replaced by 2t. That is,

y(t) = x(2t) = 0.504 + 0.504
∞∑

n=1

2√
1 + 16n2

cos (4nt− tan−1 4n).

Notice that the Fourier series coefficients themselves are unchanged when a periodic signal is
compressed or expanded.

(c) If x(t) = C0 +
∑

Cn cos(nω0t+ θn), then

x(at) = C0 +
∑

Cn cos(n(aω0)t+ θn)

Thus, time scaling by a factor a merely scales the fundamental frequency by the same factor a.
Everything else remains unchanged. If we time scale (compress or expand) a periodic signal by
a factor a, its fundamental frequency increases by the same factor a. This result is consistent
with the earlier results of parts (a) and (b).
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Solution 6.1-4

(a) Here, T0 = 2 and ω0 = 2π
T0

= π. Also g(t) is an even function of t. Therefore,

g(t) = a0 +

∞∑

n=1

an cos nπt,

where, by inspection, a0 = 0 and [see Eq. (6.14)]

an =
4

2

∫ 1

0

A(−2t+ 1) cos nπt dt = − 4

π2n2
(cosnπt− 1)|10 =

{
0 n even
8A

n2π2 n odd
.

Therefore,

g(t) =
8A

π2

[
cos πt+

1

9
cos 3πt+

1

25
cos 5πt+

1

49
cos 7πt+ · · ·

]
.

(b) We know that g(t) = x(t+ 0.5). From Eq. (6.12), we know that

x(t) =
8A

π2

[
sinπt− 1

9
sin 3πt+

1

25
sin 5πt− 1

49
sin 7πt+ · · ·

]

Thus,

g(t) = x(t+ 0.5)

=
8A

π2

[
sinπ(t+ 0.5)− 1

9
sin 3π(t+ 0.5) +

1

25
sin 5π(t+ 0.5)− 1

49
sin 7π(t+ 0.5) + · · ·

]
.

Using trigonometry properties, this simplifies to

g(t) =
8A

π2

[
cos πt+

1

9
cos 3πt+

1

25
cos 5πt+

1

49
cos 7πt+ · · ·

]
.

Clearly, this result matches that in part (a).

(c) If x(t) = C0 +
∑

Cn cos(nω0t+ θn), then

x(t + T ) = C0 +
∑

Cn cos[nω0(t+ T ) + θn] = C0 +
∑

Cn cos[nω0t+ (θn + nω0T )].

Thus, time shifting by T merely changes the phase of the nth harmonic by nω0T .

Solution 6.1-5

Recall that the trigonometric form of the Fourier series is

x(t) = a0 +

∞∑

n=1

an cosnω0t+ bn sinnω0t.

(a) For xa(t) = cos(3πt), we see that

an =

{
1 n = 1
0 otherwise

, bn = 0, and ω0 = 3π.

(b) For xb(t) = sin(7πt),

an = 0, bn =

{
1 n = 1
0 otherwise

, and ω0 = 7π.
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(c) For xc(t) = 2 + 4 cos(3πt)− 2j sin(7πt),

an =





2 n = 0
4 n = 3
0 otherwise

, bn =

{
−2j n = 7
0 otherwise

, and ω0 = π.

(d) For xd(t) = (1+j) sin(3πt) + (2−j) cos(7πt)

an =

{
2− j n = 7
0 otherwise

, bn =

{
1 + j n = 3
0 otherwise

, and ω0 = π.

(e) To begin, we express xe(t) = sin(3πt+ 1) + 2 cos(7πt− 2) as

xe(t) = sin(3πt) cos(1) + cos(3πt) sin(1) + 2 cos(7πt) cos(2) + 2 sin(7πt) sin(2).

Thus,

an =





sin(1) n = 3
2 cos(2) n = 7

0 otherwise
, bn =





cos(1) n = 3
2 sin(2) n = 7

0 otherwise
, and ω0 = π.

(f) For xf(t) = sin(6πt) + 2 cos(14πt),

an =

{
2 n = 7
0 otherwise

, bn =

{
1 n = 3
0 otherwise

, and ω0 = 2π.

Solution 6.1-6

For half wave symmetry

x(t) = −x

(
t± T0

2

)

and

an =
2

T0

∫ T0

0

x(t) cosnω0t dt =
2

T0

∫ T0/2

0

x(t) cosnω0t dt+

∫ T0

T0/2

x(t) cosnω0t dt.

Let τ = t− T0/2 in the second integral. This gives

an =
2

T0

[∫ T0/2

0

x(t) cosnω0t dt+

∫ T0/2

0

x

(
τ +

T0

2

)
cosnω0

(
τ +

T0

2

)
dτ

]

=
2

T0

[∫ T0/2

0

x(t) cosnω0t dt+

∫ T0/2

0

−x(τ)[− cosnω0τ ] dτ

]

=
4

T0

[∫ T0/2

0

x(t) cosnω0t dt

]
.

In a similar way, we can show that

bn =
4

T0

∫ T0/2

0

x(t) sinnω0t dt.

Next, we apply these results to the waveforms in Fig. P6.1-6.
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(a) For the waveform in Fig. P6.1-6a, T0 = 8, ω0 = π
4 , and a0 = 0 (by inspection). Since the

waveform has half-wave symmetry,

x(t) =

∞∑

n=1,3,5,···
an cos

nπ

4
t+ bn sin

nπ

4
t,

where

an =
4

8

[∫ 4

0

x(t) cos
nπ

4
t dt

]
=

1

2

[∫ 2

0

t

2
cos

nπ

4
t dt

]

=
4

n2π2

(
cos

nπ

2
+

nπ

2
sin

nπ

2
− 1
)

(n odd)

=
4

n2π2

(nπ
2

sin
nπ

2
− 1
)

(n odd),

or

an =

{
4

n2π2

(
nπ
2 − 1

)
n = 1, 5, 9, 13, . . .

− 4
n2π2

(
nπ
2 + 1

)
n = 3, 7, 11, 15, . . .

,

and

bn =
1

2

∫ 2

0

t

2
sin

nπ

4
t dt =

4

n2π2

(
sin

nπ

2
− nπ

2
cos

nπ

2

)
=

4

n2π2
sin
(nπ

2

)
(n odd).

(b) For the waveform in Fig. P6.1-6b, T0 = 2π, ω0 = 1, and a0 = 0 (by inspection). Since the
waveform has half-wave symmetry,

x(t) =

∞∑

n=1,3,5,···
an cosnt+ bn sinnt,

where

an =
2

π

∫ π

0

e−t/10 cosnt dt

=
2

π

[
e−t/10

n2 + 0.01
(−0.1 cosnt+ n sinnt)

]π

0

(n odd)

=
2

π

[
e−π/10

n2 + 0.01
(0.1)− 1

n2 + 0.01
(−0.1)

]

=
2

10π(n2 + 0.01)
(e−π/10 − 1) =

0.0465

n2 + 0.01

and

bn =
2

π

∫ π

0

e−t/10 sinnt dt

=
2

π

[
e−t/10

n2 + 0.01
(−0.1 sinnt− n cosnt)

]π

0

(n odd)

=
2n

(n2 + 0.01)
(e−π/10 − 1) =

1.461n

n2 + 0.01
.
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Solution 6.1-7

(a) Here, we need only cosine terms and ω0 = π
2 . Hence, we must construct a pulse such that it is

an even function of t, has a value t over the interval 0 ≤ t ≤ 1, and repeats every 4 seconds as
shown in Fig. S6.1-7a. We selected the pulse width W = 2 seconds. But it can be anywhere
from 2 to 4, and still satisfy these conditions. Each value of W results in different series. Yet
all of them converge to t over 0 to 1, and satisfy the other requirements. Clearly, there are
infinite number of Fourier series that will satisfy the given requirements. The present choice
yields

x(t) = a0 +

∞∑

n=1

an cos
(nπ

2

)
t.

By inspection, we find a0 = 1/4. Because of symmetry bn = 0 and

an =
4

4

∫ 1

0

t cos
nπ

2
t dt =

4

n2π2

[
cos
(nπ

2

)
+

nπ

2
sin
(nπ

2

)
− 1
]
.
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Figure S6.1-7a

(b) Here, we need only sine terms and ω0 = 2. Hence, we must construct a pulse with odd
symmetry, which has a value t over the interval 0 ≤ t ≤ 1, and repeats every π seconds as
shown in Fig. S6.1-7b. Similar to the case (a), the pulse width can be anywhere from 1 to π.
For the present case

x(t) =
∞∑

n=1

bn sin 2nt.

Because of odd symmetry, an = 0 and

bn =
4

π

∫ 1

0

t sin 2nt dt =
1

πn2
(sin 2n− 2n cos 2n).

-2π -π -1 0 1 π 2π

t
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0

1

x b
(t

)

Figure S6.1-7b



488 Student use and/or distribution of solutions is prohibited

(c) Here, we need both sine and cosine terms and ω0 = π
2 . Hence, we must construct a pulse such

that it has no symmetry of any kind, has a value t over the interval 0 ≤ t ≤ 1, and repeats
every 4 seconds as shown in Fig. S6.1-7c. As usual, the pulse width can be have any value in
the range 1 to 4.

x(t) = a0 +
∞∑

n=1

an cos
(nπ

2

)
t+ bn sin

(nπ
2

)
t.

By inspection, a0 = 1/8 and

an =
2

4

∫ 1

0

t cos
nπ

2
t dt =

2

n2π2

[
cos
(nπ

2

)
+

nπ

2
sin
(nπ

2

)
− 1
]

bn =
2

4

∫ 1

0

t sin
nπ

2
t dt =

2

n2π2

[
sin
(nπ

2

)
− nπ

2
cos
(nπ

2

)]
.
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Figure S6.1-7c

(d) Here, we need only cosine terms with ω0 = 1 and odd harmonics only. Hence, we must
construct a pulse such that it is an even function of t, has a value t over the interval 0 ≤ t ≤ 1,
repeats every 2π seconds and has half-wave symmetry as shown in Fig. S6.1-7d. Observe that
the first half cycle (from 0 to π) and the second half cycle (from π to 2π) are negatives of each
other as required in half-wave symmetry. This will cause even harmonics to vanish. The pulse
has an even and half-wave symmetry. This yields

x(t) = a0 +

∞∑

n=1

n odd

an cosnt.

By inspection, a0 = 0. Because of even symmetry bn = 0. Because of half-wave symmetry (see
Prob. 6.1-6),

an =
4

2π

[∫ π/2

0

t cosnt dt−
∫ π

π/2

(t− π) cosnt dt

]
=

2

πn2
(cosnπ − 1) +

2

n
sin

nπ

2
n odd.

-2π -π 0 π 2π

t

-π/2

0

π/2

x d
(t

)

Figure S6.1-7d
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(e) Here, we need only sine terms with ω0 = π and odd harmonics only. Hence, we must construct
a pulse such that it is an odd function of t, has a value t over the interval 0 ≤ t ≤ 1, repeats
every 4 seconds and has half-wave symmetry as shown in Fig. S6.1-7e. Observe that the first
half cycle (from 0 to 2) and the second half cycle (from 2 to 4) are negatives of each other as
required in half-wave symmetry. This will cause even harmonics to vanish. The pulse has an
odd and half-wave symmetry. This yields

x(t) =

∞∑

n=1

n odd

bn sin
nπ

2
t.

By inspection, a0 = 0. Because of odd symmetry an = 0. Because of half-wave symmetry (see
Prob. 6.1-6),

bn =
4

4

∫ 1

0

t sin
nπ

2
t dt+

∫ 2

1

(−t+ 2) sin
nπ

2
t dt =

8

n2π2
sin

nπ

2
n odd.
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Figure S6.1-7e

(f) Here, we need both sine and cosine terms with ω0 = 1 and odd harmonics only. Hence, we must
construct a pulse such that it has half-wave symmetry, but neither odd nor even symmetry,
has a value t over the interval 0 ≤ t ≤ 1, and repeats every 2π seconds as shown in Fig. S6.1-7f.
Observe that the first half cycle from 0 to π) and the second half cycle (from π to 2π) are
negatives of each other as required in half-wave symmetry. By inspection, a0 = 0. This yields

x(t) =

∞∑

n=1

n odd

an cosnt+ bn sinnt.

Because of half-wave symmetry (see Prob. 6.1-6),

an =
4

2π

∫ 1

0

t cosnt dt =
2

πn2
(cosn+ n sinn− 1)

bn =
4

2π

∫ 1

0

t sinnt dt =
2

πn2
(sinn− n cosn) n odd.
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Figure S6.1-7f

Solution 6.1-8

In each case the signal is periodic, it is because x(t) = x(t+ T ) for all t. If x(t) 6= x(t+ T ) for all t,
then the signal is not periodic.

(a) (b) (c) (d) (e) (f) (g) (h) (i)
Periodic? Yes Yes No Yes No Yes Yes Yes Yes

ω0 1 1 π 1
70

3
4 1 2

Period T 2π 2π 2 140π 8π
3 2π π

Solution 6.3-1

In each case, the exponential Fourier series is given as

x(t) =

∞∑

n=−∞
Dne

jω0nt.

(a) Here, T0 = 4, ω0 = π/2, and D0 = 0 (by inspection). For |n| ≥ 1, we have

Dn =
1

2π

∫ 1

−1

e−j(nπ/2)t dt−
∫ 3

1

e−j(nπ/2)t dt =
2

πn
sin

nπ

2
.

We use MATLAB to plot the spectrum, which is shown in Fig. S6.3-1a.

>> n = -10:10; Dn = 2./(pi*n).*sin(n*pi/2); Dn(n==0) = 0;

>> subplot(121); stem(n,abs(Dn),’k.’); xlabel(’n’); ylabel(’|D_n|’);

>> axis([-10 10 0 .7]); set(gca,’xtick’,-10:5:10); grid on

>> subplot(122); stem(n,angle(Dn),’k.’); xlabel(’n’); ylabel(’\angle D_n’);

>> axis([-10 10 -1.1*pi 1.1*pi]); set(gca,’xtick’,-10:5:10,’ytick’,-pi:pi/2:pi);

>> set(gca,’yticklabel’,{’-\pi’,’-\pi/2’,’0’,’\pi/2’,’\pi’}); grid on
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Figure S6.3-1a

(b) In this case, T0 = 10π, ω0 = 2π/10π = 1/5, and D0 = 1
5 . For |n| ≥ 1, we have

Dn =
1

10π

∫ π

π

e−j n
5 t dt =

j

2πn

(
−2j sin

nπ

5

)
=

1

πn
sin
(nπ

5

)
.
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More compactly, we see that (for all n)

Dn =
1

5
sinc

(nπ
5

)
.

We use MATLAB to plot the spectrum, which is shown in Fig. S6.3-1b.

>> n = -20:20; Dn = 1/5*sinc(n/5);

>> subplot(121); stem(n,abs(Dn),’k.’); xlabel(’n’); ylabel(’|D_n|’);

>> axis([-20 20 0 .22]); set(gca,’xtick’,-20:10:20); grid on

>> subplot(122); stem(n,angle(Dn),’k.’); xlabel(’n’); ylabel(’\angle D_n’);

>> axis([-20 20 -1.1*pi 1.1*pi]); set(gca,’xtick’,-20:10:20,’ytick’,-pi:pi/2:pi);

>> set(gca,’yticklabel’,{’-\pi’,’-\pi/2’,’0’,’\pi/2’,’\pi’}); grid on
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Figure S6.3-1b

(c) By inspection, T0 = 2π, ω0 = 1, and D0 = 0.5. For |n| ≥ 1, we have

Dn =
1

2π

∫ 2π

0

t

2π
e−jnt dt =

j

2πn
,

so that

|Dn| =
1

2πn
and ∠Dn =

{
π
2 n > 0
−π
2 n < 0

.

We use MATLAB to plot the spectrum, which is shown in Fig. S6.3-1c.

>> n = -10:10; Dn = 1j./(2*pi*n); Dn(n==0) = 0.5;

>> subplot(121); stem(n,abs(Dn),’k.’); xlabel(’n’); ylabel(’|D_n|’);

>> axis([-10 10 0 .55]); set(gca,’xtick’,-10:5:10); grid on

>> subplot(122); stem(n,angle(Dn),’k.’); xlabel(’n’); ylabel(’\angle D_n’);

>> axis([-10 10 -1.1*pi 1.1*pi]); set(gca,’xtick’,-10:5:10,’ytick’,-pi:pi/2:pi);

>> set(gca,’yticklabel’,{’-\pi’,’-\pi/2’,’0’,’\pi/2’,’\pi’}); grid on
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Figure S6.3-1c

(d) Here, T0 = π, ω0 = 2, and Dn = 0. For |n| ≥ 1,

Dn =
1

π

∫ π/4

−π/4

4t

π
e−j2nt dt =

−j

πn

(
2

πn
sin

πn

2
− cos

πn

2

)
.

We use MATLAB to plot the spectrum, which is shown in Fig. S6.3-1d.
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>> n = -10:10; Dn = -1j./(pi*n).*(2./(pi*n).*sin(pi*n/2)-cos(pi*n/2)); Dn(n==0) = 0;

>> subplot(121); stem(n,abs(Dn),’k.’); xlabel(’n’); ylabel(’|D_n|’);

>> axis([-10 10 0 .25]); set(gca,’xtick’,-10:5:10); grid on

>> subplot(122); stem(n,angle(Dn),’k.’); xlabel(’n’); ylabel(’\angle D_n’);

>> axis([-10 10 -1.1*pi 1.1*pi]); set(gca,’xtick’,-10:5:10,’ytick’,-pi:pi/2:pi);

>> set(gca,’yticklabel’,{’-\pi’,’-\pi/2’,’0’,’\pi/2’,’\pi’}); grid on
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Figure S6.3-1d

(e) In this case, T0 = 3, ω0 = 2π
3 , and D0 = 1

6 . For |n| ≥ 1, we have

Dn =
1

3

∫ 1

0

t e−j 2πn
3 t dt =

3

4π2n2

[
e−j 2πn

3

(
j2πn

3
+ 1

)
− 1

]
.

We use MATLAB to plot the spectrum, which is shown in Fig. S6.3-1e.

>> n = -10:10; Dn = 3./(4*pi.^2.*n.^2).*(exp(-1j*2*pi*n/3).*(1j*2*pi*n/3+1)-1);

>> Dn(n==0) = 1/6; subplot(121); stem(n,abs(Dn),’k.’); xlabel(’n’);

>> ylabel(’|D_n|’); axis([-10 10 0 .2]); set(gca,’xtick’,-10:5:10); grid on

>> subplot(122); stem(n,angle(Dn),’k.’); xlabel(’n’); ylabel(’\angle D_n’);

>> axis([-10 10 -1.1*pi 1.1*pi]); set(gca,’xtick’,-10:5:10,’ytick’,-pi:pi/2:pi);

>> set(gca,’yticklabel’,{’-\pi’,’-\pi/2’,’0’,’\pi/2’,’\pi’}); grid on
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Figure S6.3-1e

(f) By inspection, T0 = 6, ω0 = π/3, and D0 = 0.5. For |n| ≥ 1, we have

Dn =
1

6

[∫ −1

−2

(t+ 2)e−
jπnt

3 dt+

∫ 1

−1

e−
jπnt

3 dt+

∫ 2

1

(−t+ 2)e−
jπnt

3 dt

]

=
3

π2n2

(
cos

nπ

3
− cos

2πn

3

)
.

We use MATLAB to plot the spectrum, which is shown in Fig. S6.3-1f.

>> n = -10:10; Dn = 3./(pi^2*n.^2).*(cos(n*pi/3)-cos(2*pi*n/3)); Dn(n==0) = 0.5;

>> subplot(121); stem(n,abs(Dn),’k.’); xlabel(’n’); ylabel(’|D_n|’);

>> axis([-10 10 0 .55]); set(gca,’xtick’,-10:5:10); grid on

>> subplot(122); stem(n,angle(Dn),’k.’); xlabel(’n’); ylabel(’\angle D_n’);

>> axis([-10 10 -1.1*pi 1.1*pi]); set(gca,’xtick’,-10:5:10,’ytick’,-pi:pi/2:pi);

>> set(gca,’yticklabel’,{’-\pi’,’-\pi/2’,’0’,’\pi/2’,’\pi’}); grid on
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Figure S6.3-1f

Solution 6.3-2

Note that the signal x(t) is defined as

x(t) =





1
A t 0 ≤ t < A
1 A ≤ t < π
0 π ≤ t < 2π
x(t + 2π) otherwise

.

The exponential Fourier series coefficients are determined by

Dn =
1

T0

∫

T0

x(t)e−jnω0tdt.

Since T0 = 2π, ω0 = 2π
T0

= 1. For n = 0,

D0 =
1

T0

∫

T0

x(t)dt =
1

2π

(∫ A

0

t

A
dt+

∫ π

A

dt

)

=
1

2π

(
t2

2A

∣∣∣∣
A

t=0

t|πt=A

)
=

1

2π

(
A

2
+ π −A

)

=
2π −A

4π
.

For n 6= 0,

Dn =
1

T0

∫

T0

e−jnω0tx(t)dt

=
1

2π

(∫ A

0

t

A
e−jnω0tdt+

∫ π

A

e−jnω0tdt

)

=
1

2π

(
te−jnt

−jAn

∣∣∣∣
A

t=0

−
∫ A

0

e−jnt

jAn
dt+

e−jnt

−jn

∣∣∣∣
π

t=A

)

=
1

2π

(
e−jnA

−jn
− e−jnt

−An2

∣∣∣∣
A

t=0

+
e−jnπ − e−jnA

−jn

)

=
1

2π

(
je−jnπ

n
+

e−jnA − 1

An2

)

=
1

2πn

(
e−jnA − 1

An
+ je−jnπ

)
.

Thus,

Dn =

{
2π−A
4π n = 0
1

2πn

(
e−jnA−1

nA + je−jnπ
)

otherwise
.
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Solution 6.3-3

(a) Here,

x(t) = 3 cos t+ sin
(
5t− π

6

)
− 2 cos

(
8t− π

3

)
.

For a compact trigonometric form, all terms must have cosine form and amplitudes must be
positive. For this reason, we rewrite x(t) as

x(t) = 3 cos t+ cos
(
5t− π

6
− π

2

)
+ 2 cos

(
8t− π

3
− π

)

= 3 cos t+ cos

(
5t− 2π

3

)
+ 2 cos

(
8t− 4π

3

)
.

In the preceding expression, we could have expressed the term 2 cos
(
8t− 4π

3

)
as 2 cos

(
8t+ 2π

3

)
.

Fig. S6.3-3a shows amplitude and phase spectra.
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Figure S6.3-3a

(b) By inspection of the trigonometric spectra in Fig. S6.3-3a, we plot the exponential spectra as
shown in Fig. S6.3-3b.
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Figure S6.3-3b

(c) By inspection of exponential spectra in Fig. S6.3-3a, we obtain

x(t) = 3
2 (e

jt + e−jt) + 1
2

[
ej(5t−

2π
3 ) + e−j(5t− 2π

3 )
]
+
[
ej(8t−

4π
3 ) + e−j(8t− 4π

3 )
]

=
(
ej

4π
3

)
e−j8t +

(
1
2e

j 2π
3

)
e−j5t + 3

2e
−jt + 3

2e
jt +

(
1
2e

−j 2π
3

)
ej5t +

(
e−j 4π

3

)
ej8t.

(d) By inspection of the first line in part (c), we can immediately write x(t) in the trigonometric
form as

x(t) = 3 cos t+ cos

(
5t− 2π

3

)
+ 2 cos

(
8t− 4π

3

)

= 3 cos t+ sin
(
5t− π

6

)
− 2 cos

(
8t− π

3

)
.

Clearly, this result matches the trigonometric series for x(t) given in part (a).



Student use and/or distribution of solutions is prohibited 495

Solution 6.3-4

(a) In compact trigonometric form, all terms are of cosine form and amplitudes are positive. We
can express x(t) as

x(t) = 3 + 2 cos
(
2t− π

6

)
+ cos

(
3t− π

2

)
+

1

2
cos
(
5t+

π

3
− π

)

= 3 + 2 cos
(
2t− π

6

)
+ cos

(
3t− π

2

)
+

1

2
cos

(
5t− 2π

3

)
.

From this expression we sketch the trigonometric Fourier spectra as shown in Fig. S6.3-4a.
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Figure S6.3-4a

(b) By inspection of trigonometric spectra, we sketch the exponential Fourier spectra shown in
Fig. S6.3-4b.
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Figure S6.3-4b

(c) From these exponential spectra, we can now write the exponential Fourier series as

x(t) = 3 + ej(2t−
π
6 ) + e−j(2t−π

6 ) +
1

2
ej(3t−

π
2 ) +

1

2
e−j(3t−π

3 ) +
1

4
ej(5t−

2π
3 ) +

1

4
e−j(5t− 2π

3 ).

(d) By inspection of the first line in part (c), we can immediately write x(t) in the trigonometric
form as

x(t) = 3 + 2 cos
(
2t− π

6

)
+ cos

(
3t− π

2

)
+

1

2
cos

(
5t− 2π

3

)

= 3 + 2 cos
(
2t− π

6

)
+ sin 3t− 1

2
cos
(
5t+

π

3

)
.

Clearly, this result matches the trigonometric series for x(t) given in the original problem
statement.
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Solution 6.3-5

(a) The exponential Fourier series can be expressed with coefficients in polar form as

x(t) = (2
√
2ejπ/4)e−j3t + 2ejπ/2e−jt + 3 + 2e−jπ/2ejt + (2

√
2e−jπ/4)ej3t.

From this expression the exponential spectra are sketched as shown in Fig. S6.3-5a.
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Figure S6.3-5a

(b) By inspection of the exponential spectra in Fig. S6.3-5a, we sketch the trigonometric spectra
as shown in Fig. S6.3-5b. From these spectra, we can write the compact trigonometric Fourier
series as

x(t) = 3 + 4 cos
(
t− π

2

)
+ 4

√
2 cos

(
3t− π

4

)
.
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(c) Since, the trigonometric series in part (b) is obtained from the exponential series in part (a),
the two series are equivalent.

(d) The lowest frequency in the spectrum is 0 and the highest frequency is 3 rad/s. Therefore, the
bandwidth is 3 rad/s or 3

2π Hz.

Solution 6.3-6

(a) By inspection of the spectra given in Fig. P6.3-6, the trigonometric Fourier series is

x(t) = 2 + 2 cos(2t− π) + cos(3t− π

2
)

= 2− 2 cos 2t+ sin 3t

(b) The exponential spectra are shown in Fig. S6.3-6b.

(c) By inspection of Fig. S6.3-6b, the exponential Fourier series is

x(t) = 2 +
[
e(2t−π) + e−j(2t−π)

]
+

1

2

[
ej(3t−

π
2 ) + e−j(3t−π

2 )
]

= 2 + 2 cos (2t− π) + cos
(
3t− π

2

)
.
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(d) Parts (a) and (c) demonstrate that the trigonometric and exponential Fourier series are equiv-
alent.

-6 -4 -2 0 2 4 6

n

0
0.5

1
1.5

2
|D

n
|
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n

-π

-π/2
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π/2

π

 D
n

Figure S6.3-6b

Solution 6.3-7

(a) By inspection of the spectra given in Fig. P6.3-7, the exponential Fourier series is

x(t) = 2 + 2ej(t+
2π
3 ) + 2e−j(t+ 2π

3 ) + ej(2t+
π
3 ) + e−j(2t+π

3 ).

(b) Using Table 6.1, we convert the exponential Fourier series coefficients to the trigonometric
Fourier series coefficients. The corresponding spectrum is shown in Fig. S6.3-7b.
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n
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π

θ
n

Figure S6.3-7b

(c) By inspection of Fig. S6.3-7b, the trigonometric Fourier series is

x(t) = 2 + 4 cos

(
t+

2π

3

)
+ 2 cos

(
2t+

π

3

)
.

(d) To show that the trigonometric and exponential Fourier series are equivalent, we simply use
Euler’s formula to express the trigonometric series as

x(t) = 2 + 4 cos

(
t+

2π

3

)
+ 2 cos

(
2t+

π

3

)

= 2 + 2ej(t+
2π
3 ) + 2e−j(t+ 2π

3 ) + ej(2t+
π
3 ) + e−j(2t+π

3 ).

Clearly the two forms (trigonometric and exponential) are equivalent.

Solution 6.3-8

In this problem, periodic signal x(t) has exponential Fourier series spectrum

Dn =
1

T0

∫ T0

0

x(t) e−jnω0t dt.
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(a) If x(t) has even symmetry, we know that x(t) = x(−t). Thus,

Dn =
1

T0

∫ T0

0

x(t) e−jnω0t dt

=
1

T0

∫ T0

0

x(−t) e−jnω0t dt.

Letting t′ = −t, we obtain

Dn =
1

T0

∫ −T0

0

x(t′) e−jnω0(−t′) (−dt′)

=
1

T0

∫ 0

−T0

x(t′) e−j(−n)ω0t
′

dt′

= D−n.

This proves that if x(t) has even symmetry, then Dn also has even symmetry.

(b) If x(t) has odd symmetry, we know that x(t) = −x(−t). Thus,

Dn =
1

T0

∫ T0

0

x(t) e−jnω0t dt

= − 1

T0

∫ T0

0

x(−t) e−jnω0t dt.

Letting t′ = −t, we obtain

Dn = − 1

T0

∫ −T0

0

x(t′) e−jnω0(−t′) (−dt′)

= − 1

T0

∫ 0

−T0

x(t′) e−j(−n)ω0t
′

dt′

= −D−n.

This proves that if x(t) has odd symmetry, then Dn also has odd symmetry.

(c) To begin, we note that

Dn =
1

T0

∫ T0

0

x(t) e−jnω0t dt.

Taking the conjugate reflection of Dn, we obtain

D∗
−n =

1

T0

∫ T0

0

x∗(t) ej(−n)ω0t dt.

Since x(t) is real, we know that x(t) = x∗(t). Hence

D∗
−n =

1

T0

∫ T0

0

x(t) e−jnω0t dt

= Dn.

This proves that if x(t) is real, then Dn is conjugate symmetric (Dn = D∗
−n).
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(d) To begin, we note that

Dn =
1

T0

∫ T0

0

x(t) e−jnω0t dt.

Conjugating, negating, and reflecting Dn, we obtain

−D∗
−n = − 1

T0

∫ T0

0

x∗(t) ej(−n)ω0t dt.

Since x(t) is imaginary, we know that x(t) = −x∗(t). Hence

−D∗
−n =

1

T0

∫ T0

0

x(t) e−jnω0t dt

= Dn.

This proves that if x(t) is imaginary, then Dn is conjugate antisymmetric (Dn = −D∗
−n).

Solution 6.3-9

(a) By inspection, T0 = 8, ω0 = π/4, and D0 = 0. For n 6= 0,

Dn =
1

8

[∫ 0

−4

(
t

2
+ 1

)
e−jn(π/4)t dt+

∫ 4

0

(
− t

2
+ 1

)
e−jn(π/4)t dt

]

=
1

8

∫ 4

0

(
− t

2
+ 1

)(
ejn(π/4)t + e−jn(π/4)t

)
dt

=
1

8

∫ 4

0

2

(
− t

2
+ 1

)
cos(nπt/4) dt

= −1

8

∫ 4

0

t cos(nπt/4) dt

= − 1

8(nπ/4)2

(
cos(nπt/4) +

nπt

4
sin(nπt/4)

∣∣∣∣
4

t=0

)

= −frac2π2n2 (cos(nπ)− 1)

=
2

π2n2
(1− cos(nπ)) .

Therefore, the exponential Fourier series is

x(t) =

∞∑

n=−∞
Dne

jnω0t

=

∞∑

n=−∞

2

π2n2
(1− cos(nπ)) ejn

π
4 t.

Notice that since Dn = 0 for all even-values of n, this summation can be simplified to

x(t) =

∞∑

n=1

n odd

4

π2n2
ejn

π
4 t.
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(b) Observe that x̂(t) is the same as x(t) in Fig. P6.3-9a delayed by 2 seconds. Therefore,

x̂(t) = x(t− 2) =
∞∑

n=−∞

2

π2n2
(1− cos(nπ)) ejn

π
4 (t−2)

=
∞∑

n=−∞

2

π2n2
(1− cos(nπ)) e−jnπ

2 ejn
π
4 t.

As expected, the Fourier series coefficients D̂n for x̂(t) are related to the Fourier series coeffi-
cients Dn for x(t) through a simple (complex exponential) multiplicative factor. That is,

D̂n = Dne
−jn π

2 .

(c) Observe that x̃(t) is the same as x(t) in Fig. P6.3-9a time-compressed by a factor 2. Therefore,

x̃(t) = x(2t) =

∞∑

n=−∞

2

π2n2
(1− cos(nπ)) ejn

π
4 2t)

=

∞∑

n=−∞

2

π2n2
(1− cos(nπ)) ejn

π
2 t.

As expected, the Fourier series coefficients D̃n for x̃(t) exactly equal the Fourier series coeffi-
cients Dn for x(t). That is,

D̃n = Dn.

Notice, however, that the fundamental frequency ω̃0 = π
2 of x̃(t) is double the fundamental

frequency ω0 = π
4 of x(t).

Solution 6.3-10

Periodic signal x(t) is expressed as an exponential Fourier series

x(t) =

∞∑

n=−∞
Dne

jnω0t

(a) Now, the exponential Fourier series of x(t − T ) is given as

x̂(t) = x(t− T ) =

∞∑

n=−∞
Dne

jnω0(t−T ) =

∞∑

n=−∞
(Dne

−jnω0T )ejnω0t =

∞∑

n=−∞
D̂ne

jnω0t.

Clearly,

D̂n = Dne
−jnω0t so that |D̂n| = |Dn|, and ∠D̂n = ∠Dn − jnω0T.

Thus, time-shifting of a periodic signal by T seconds merely changes the phase spectrum by
nω0T . The amplitude spectrum is unchanged.

(b) Next, the exponential Fourier series of x(at) is given as

x̂(t) = x(at) =

∞∑

n=−∞
Dne

jnω0(at) =

∞∑

n=−∞
Dne

jn(aω0)t

Clear, the Fourier series of x(at) is identical to the Fourier series of x(t) except that frequency
is scaled by a factor a. If x(t) is compressed (|a| > 1), the Fourier spectra expands by the
same factor a. If x(t) is expanded (|a| < 1), then the Fourier spectra is compressed by the
same factor a. This makes sense. Time compression makes a signal change faster (have higher
frequency), while time expansion makes a signal change slower (have lower frequency).
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Solution 6.3-11

(a) From Drill 6.1a,

x(t) =
1

3
+

4

π2

∞∑

n=1

(−1)n

n2
cosnπt, −1 ≤ t ≤ 1.

The power of x(t) is

Px =
1

2

∫ 1

−1

t4 dt =
1

5

Moreover, Parseval’s theorem [Eq. (6.26)] states

Px = C2
0 +

∞∑

1

C2
n

2
=

(
1

3

)2

+
1

2

∞∑

n=1

(
4(−1)n

π2n2

)2

=
1

9
+

8

π4

∞∑

n=1

1

n4
=

1

9
+

8

90
=

1

5
.

Clearly Parseval’s theorem holds.

(b) If the N -term Fourier series is denoted by w(t), then

w(t) =
1

3
+

4

π2

N−1∑

n=1

(−1)n

n2
cosnπt, −1 ≤ t ≤ 1.

To make the power of the error signal less that 1% of Px, the power Pw is required to be at
least 0.99Px = 0.198. Therefore,

Pw =
1

9
+

8

π4

N−1∑

n=1

1

n4
≥ 0.198.

For N = 1, Pw = 0.1111, and for N = 2, Pw = 0.19323. For N = 3, Pw = 0.19837, which is
greater than 0.198. Thus, N = 3.

Solution 6.3-12

(a) From Drill 6.1b

x(t) =
2A

π
(−1)n+1

∞∑

n=1

1

n
sinnπt, −π ≤ t ≤ π.

The power of x(t) is

Px =
1

2

∫ 1

−1

(At)2 dt =
A2

3
.

Moreover, Parseval’s theorem [Eq. (6.26)] states

Px = C2
0 +

∞∑

1

C2
n

2
=

1

2

∞∑

1

4A2

π2n2
=

2A2

π2

∞∑

1

1

n2
=

A2

3
.

Clearly Parseval’s theorem holds.

(b) If the N -term Fourier series is denoted by w(t), then

w(t) =
2A

π
(−1)n+1

N∑

n=1

1

n
sinnπt, −π ≤ t ≤ π.
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The power Pw is required to be no less than 0.90A2

3 = 0.3A2. Therefore,

Pw =
1

2

N∑

1

4A2

π2n2
≥ 0.3A2.

For N = 1, Pw = 0.2026A2, and for N = 2, Pw = 0.2533A2. Continuing to N = 5, Pw =
0.29658A2. For N = 6, Pw = 0.30222A2, which is greater than 0.3A2. Thus, N = 6.

Solution 6.3-13

The power of a rectified sine wave is the same as that of a sine wave, that is, 1/2. Thus, Px = 0.5.
Let the 2N + 1 term truncated Fourier series be denoted as x̂(t). The power Px̂ is required to be
no less than 0.9975Px = 0.49875. Using the Fourier series coefficients in Drill 6.5, we have

Px̂ =

N∑

n=−N

|Dn|2 =
4

π2

N∑

n=−N

1

(1 − 4n2)2
≥ 0.49875.

Direct calculations using the above equation gives Px̂ = 4/π2 = 0.4053 for N = 0 (only dc),
Px̂ = 0.49535 for N = 1 (3 terms), and Px̂ = 0.49895 for N = 2 (5 terms). Thus, a 5-term Fourier
series yields a signal whose power is 99.79% of the power of the rectified sine wave. The power of
the error in the approximation of x(t) by x̂(t) is only 0.21% of the signal power Px.

Solution 6.3-14

(a) An ω0 = 2 rad/s periodic signal x1(t) has Fourier series specturm X1[n]. Using Fourier series
properties,

x1(t) ⇐⇒ X1[n]

x1(t− 5) ⇐⇒ e−jnω05X1[n]

x1(−t− 5) ⇐⇒ ejnω05X1[−n]

1

3
x1(−t− 5) ⇐⇒ 1

3
ejnω05X1[−n]

Since x2(t) =
1
3x1(−t− 5) and ω0 = 2, we therefore see that

X2[n] =
1

3
ej10nX1[−n].

(b) An ω0 = 2 rad/s periodic signal x1(t) has Fourier series specturm X1[n]. Using Fourier series
properties,

x1(t) ⇐⇒ X1[n]

1

2
ej10tx1(t) =

1

2
ej5ω0tx(t) ⇐⇒ 1

2
X1[n− 5]

1

2
e−j10tx1(t) =

1

2
e−j5ω0tx(t) ⇐⇒ 1

2
X1[n+ 5]

1

2

(
ej10t + e−j10t

)
x1(t) = cos(10t)x1(t) ⇐⇒ 1

2
(X1[n− 5] +X1[n+ 5])

Since x2(t) = cos(10t)x1(t), we therefore see that

X2[n] =
1

2
(X1[n− 5] +X1[n+ 5]) .
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(c) An ω0 = 3 rad/s periodic signal x1(t) has Fourier series specturm X1[n]. Using Fourier series
properties,

x1(t) ⇐⇒ X1[n]

x1(−t) ⇐⇒ X1[−n]

x1(t+ 2) ⇐⇒ ejn2ω0X1[n]

x1(−t)− 3x1(t+ 2) ⇐⇒ X1[−n]− 3ejn2ω0X1[n]

Since x2(t) = x1(−t)− 3x1(t+ 2) and ω0 = 3, we therefore see that

X2[n] = X1[−n]− 3ej6nX1[n].

Solution 6.3-15

This problem defines a 2-periodic signal x(t) as

x(t) =





−t2 − t+ 0.25 −1 ≤ t < 0
t2 − t+ 0.25 0 ≤ t < 1
x(t+ 2) ∀t

Since x(t) is 2-periodic, we know that ω0 = π.

(a) We use MATLAB to plot x(t) over −2 ≤ t ≤ 2.

>> xT = @(t) (-t.^2-t+0.25).*((-1<=t)&(t<0))+(t.^2-t+0.25).*((0<=t)&(t<1));

>> x = @(t) xT(mod(t+1,2)-1);

>> t = -2:.001:2; plot(t,x(t),’k’); xlabel(’t’); ylabel(’x(t)’);

>> axis([-2 2 -.05 .55]); set(gca,’xtick’,-2:2,’ytick’,-.5:.25:.5); grid on

As shown in Fig. S6.3-15a, x(t) looks quite similar to 1
4 − 1

4 sin(πt).

-2 -1 0 1 2

t

0

0.25

0.5

x(
t)

Figure S6.3-15a

(b) Next, we determine the dc content, D0.

D0 =
1

T0

∫

T0

x(t)e−jnω0t dt

∣∣∣∣
n=0

=
1

2

[∫ 0

−1

(−t2 − t+
1

4
) dt+

∫ 1

0

(t2 − t+
1

4
) dt

]

=
1

2

[
− t3

3
− t2

2
+

t

4

∣∣∣∣
0

−1

+
t3

3
− t2

2
+

t

4

∣∣∣∣
1

0

]
=

1

2

[
−1

3
+

1

2
+

1

4
+

1

3
− 1

2
+

1

4

]
.

Thus,

D0 =
1

4
.
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(c) Over the period −1 ≤ t < 1, we see that

d

dt
{x(t)} =

{
−2t− 1 −1 ≤ t < 0
2t− 1 0 ≤ t < 1

.

Differentiating again, we obtain

d2

dt2
{x(t)} =

{
−2 −1 ≤ t < 0
2 0 ≤ t < 1

.

Differentiating a third time, we obtain

d3

dt3
{x(t)} = −4δ(t+ 1) + 4δ(t), −1 ≤ t < 1.

From Ex. 6.9, the Fourier series coefficients of a 2-periodic impulse train is known to be
1
T0

= 1
2 . Using this fact and appropriate Fourier series properties, we transform the expression

for d3

dt3 {x(t)} to the frequency domain as

(jnπ)3Dn =
1

2

(
−4ejnπ + 4

)
.

Thus,

Dn =
2− 2ejnπ

(jnπ)3
, n 6= 0.

(d) We use MATLAB to plot Dn over −10 ≤ n ≤ 10.

>> n = -10:10; Dn = (2-2*exp(j*n*pi))./((j*n*pi).^3); Dn(n==0) = 1/4;

>> stem(n,abs(Dn),’k.’); xlabel(’n’); ylabel(’|D_n|’); grid on

>> axis([-10 10 0 0.3]); set(gca,’xtick’,-10:2:10,’ytick’,[0:1/8:.3]);
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Figure S6.3-15c

(e) As shown in Fig. S6.3-15c,Dn is dominated by dc and first harmonic content. This is consistent
with the observation of part (a) that x(t) looks quite similar to 1

4 − 1
4 sin(πt). Thus, we expect

Dn to have D0 close to 1
4 (it does exactly) and |D±1| close to 1

8 (|D±1| is slightly greater than
1
8 ). The 2-periodic signal y(t) = cos(πt) also has spectral content at the first harmonic (12 at
n = ±1) but is zero everywhere else. The magnitude spectrum of 4x(t) − 1 ≈ sin(πt) would
be nearly identical to the magnitude spectrum of y(t) = cos(πt).
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Solution 6.3-16

This problem defines a 3-periodic signal x(t) as

x(t) =





|t| −1 ≤ t ≤ 1
0 1 < |t| ≤ 1.5

x(t+ 3) ∀t

Since x(t) is 3-periodic, we know that ω0 = 2π
3 .

(a) We use MATLAB to plot x(t) over −3 ≤ t ≤ 3 (see Fig. S6.3-16a).

>> xT = @(t) abs(t).*((-1<=t)&(t<1)); x = @(t) xT(mod(t+1.5,3)-1.5);

>> t = -3:.001:3; plot(t,x(t),’k’); xlabel(’t’); ylabel(’x(t)’);

>> axis([-3 3 -.1 1.1]); set(gca,’xtick’,-3:3,’ytick’,0:.5:1); grid on

-3 -2 -1 0 1 2 3

t

0

0.5

1

x(
t)

Figure S6.3-16a

(b) Next, we determine the dc content, D0.

D0 =
1

T0

∫

T0

x(t) dt =
1

3

∫ 1

−1

|t| dt = 2

3

∫ 1

0

t dt =
2t2

6

∣∣∣∣
1

0

=
1

3
.

(c) Let y(t) = d
dt {x(t)}. We obtain y(t), shown left in Fig. S6.3-16b, by graphically differentiating

Fig. S6.3-16a. Over −1.5 ≤ t < 1.5, we see that

y(t) = δ(t+ 1)− δ(t− 1) +−u(t+ 1) + 2u(t)− u(t− 1)︸ ︷︷ ︸
ynon−δ(t)

.

Next, let

z(t) =
d

dt
{ynon−δ(t)} = −δ(t+ 1) + 2δ(t)− δ(t− 1).

Signal z(t) is shown right in Fig. S6.3-16b.

-1 0 1

t

-1
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2

y(
t)

-1 0 1

t

-1

0

1

2

z(
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Figure S6.3-16b

From Ex. 6.9, the Fourier series coefficients of a 3-periodic impulse train is known to be
1
T0

= 1
3 . Using this fact and appropriate Fourier series properties, we transform the expression

for z(t) = d
dt {ynon−δ(t)} to the frequency domain as

Z[n] = jnω0Ynon−δ[n] =
1

3

(
−ejω0n + 2− e−jω0n

)
.
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Thus,

Ynon−δ[n] =
1

3jnω0

(
−ejω0n + 2− e−jω0n

)
.

Similar transformation of y(t) = δ(t+ 1)− δ(t− 1) + ynon−δ(t) yields

Y [n] =
ejω0n − e−jω0n

3
+

1

3jnω0

(
−ejω0n + 2− e−jω0n

)
.

Since y(t) = d
dt {x(t)}, it follows that the Fourier coefficients Dn of x(t) are Dn = 1

jω0n
Y [n].

Thus, for n 6= 0,

Dn =
ejω0n − e−jω0n

3jω0n
+

−ejω0n + 2− e−jω0n

−3n2ω2
0

, ω0 =
2π

3
.

(d) We use MATLAB to plot Dn over −10 ≤ n ≤ 10.

>> n = -10:10; omega0 = 2*pi/3;

>> Dn = (exp(1j*omega0*n)-exp(-1j*omega0*n))./(3j*omega0*n)+...

>> (-exp(1j*omega0*n)+2-exp(-j*omega0*n))./(-3*n.^2*omega0^2);

>> Dn(n==0) = 1/3;

>> stem(n,abs(Dn),’k.’); xlabel(’n’); ylabel(’|D_n|’); grid on

>> axis([-10 10 0 0.35]); set(gca,’xtick’,-10:2:10,’ytick’,[0:.05:.3]);
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Figure S6.3-16d

From Fig. S6.3-16d, we see that the dc component (n = 0) is the most dominant component
of this signal followed by the second harmonic (n = ±2).

Solution 6.4-1

The input shown in Fig. 6.2a has period T0 = π and ω0 = 2. From Drill 6.6, this signal has Fourier
series coefficients

Dn =
0.504

1 + j4n
.

The system frequency response is

H(jω) =
jω

(−ω2 + 3) + j2ω
.

Therefore,

y(t) =

∞∑

n=−∞
DnH(jnω0)e

jnω0t =

∞∑

n=−∞

j1.08n

(1 + j4n)(−4n2 + 3 + j4n)
ej2nt.
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Solution 6.4-2

This problem considers the periodic signal x(t) = 1 + 2 cos(5πt) + 3 sin(14πt).

(a) To be periodic, x(t) must equal x(t+T0) for all t. Since sinusoids are 2π-periodic, this requires
that

5πT0 = 2πk1 and 14πT0 = 2πk2.

This requires that T0 = 2k1

5 = k2

7 or that 14k1 = 5k2, which is satisfied (smallest T0) by

choosing k1 = 5 and k2 = 14. Thus, T = 2(5)
5 = 2 and

ω0 =
2π

T0
= π and f0 =

1

T0
=

1

2
.

(b) Using Euler’s formula and ω0 = π, we write x(t) as

x(t) = 1ej0ω0t + ej5ω0t + e−j5ω0t +
3

2j
ej14ω0t − 3

2j
e−j14ω0t.

By inspection, the exponential Fourier series coefficients Dn are

Dn =





1 n = 0, 5,−5
3
2j n = 14

− 3
2j n = −14

.

In terms of Hertzian frequencies, we see that x(t) has content at 0, ±2.5, and ±7 Hz.

(c) If x(t) is applied to an ideal lowpass filter with cutoff frequency fc = 2 Hz, the dc content is
passed and the ±2.5 and ±7 Hz components are rejected. The output in this case is thus

y(t) = 1.

(d) If x(t) is applied to an ideal highpass filter with cutoff frequency fc = 2 Hz, the dc content is
rejected and the ±2.5 and ±7 Hz components are passed. The output in this case is thus

y(t) = 2 cos(5πt) + 3 sin(14πt).

(e) An ideal bandpass filter with a 4 Hz passband centered at 4 Hz has passband from 2 to 6 Hz.
If x(t) is applied to this system, the ±2.5 Hz is passed and the dc and ±7 Hz components are
rejected. Thus, the output is

y(t) = 2 cos(5πt).

(f) An ideal bandstop filter with a 5 Hz stopband centered at 10 Hz has stopband from 7.5 to 12.5
Hz. Since no components of x(t) fall within this stopband, the system will not change x(t) at
all. That is, the output is

y(t) = 1 + 2 cos(5πt) + 3 sin(14πt).

(g) There are infinitely many filters whose frequency response will produce the output y(t) =
4 cos(5πt) − 9 sin(14πt) in response to input x(t) = 1 + 2 cos(5πt) + 3 sin(14πt). All such
systems share the following characteristics.

System must: reject dc; pass ±2.5 Hz with gain 2; pass ±7 Hz with gain -3.

One way to achieve this behavior is to subtract the output of gain-3 bandpass filter with 1 Hz
bandwidth centered at 7 Hz from the output of a gain-2 bandpass filter with 1 Hz bandwidth
centered at 2.5 Hz. The frequency response of this (example) filter is shown in Fig. S6.4-2g.
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Solution 6.4-3

This problem considers a T0 = 1 periodic signal x(t) defined as

x(t) =

{
1− t2 0 < t ≤ 1
x(t+ 1) ∀t

(a) MATLAB is well suited to plot x(t) over −2 ≤ t ≤ 2 (see Fig. S6.4-3a).

>> xT = @(t) (1-t.^2).*((t>=0)&(t<1)); x = @(t) xT(mod(t,1));

>> t = -2:.001:2; plot(t,x(t),’k’); xlabel(’t’); ylabel(’x(t)’);

>> axis([-2 2 -.1 1.1]); set(gca,’xtick’,-2:2,’ytick’,0:.5:1); grid on

-2 -1 0 1 2

t

0

0.5

1

x(
t)

Figure S6.4-3a

(b) Let y(t) = d
dt {x(t)}. We obtain y(t), shown left in Fig. S6.4-3b, by graphically differentiating

Fig. S6.4-3a. Over 0 ≤ t < 1, we see that

y(t) = δ(t) +−2t(u(t)− u(t− 1))︸ ︷︷ ︸
ynon−δ(t)

.

Letting z(t) = d
dt {ynon−δ(t)}, we see over 0 ≤ t < 1 that

z(t) =
d

dt
{ynon−δ(t)} = 2δ(t)− 2.

Signal z(t) is shown right in Fig. S6.4-3b.

From Ex. 6.9, the Fourier series coefficients of a 1-periodic impulse train is known to be
1
T0

= 1. Using this fact and appropriate Fourier series properties, we transform the expression

for z(t) = d
dt {ynon−δ(t)} to the frequency domain as

Z[n] = jnω0Ynon−δ[n] = 2− 2δ[n].

The 2δ[n] term in unimportant since dc is computed separately, and it will be therefore ignored.
Thus,

Ynon−δ[n] =
2

jnω0
.
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Figure S6.4-3b

Similar transformation of y(t) = δ(t) + ynon−δ(t) yields

Y [n] = 1 +
2

jnω0
.

Since y(t) = d
dt {x(t)}, it follows that the Fourier coefficients Dn of x(t) are Dn = 1

jω0n
Y [n].

Thus, for n 6= 0,

Dn =
1

jnω0
− 2

n2ω2
0

, ω0 = 2π.

Next, we compute the dc portion.

D0 =

∫ 1

0

(1− t2) dt = t− t3

3

∣∣∣∣
1

0

=
2

3
.

Putting everything together, we obtain

Dn =

{ 2
3 n = 0

1
j2πn − 1

2n2π2 n 6= 0
.

(c) Since x(t) is 1-periodic, it has content at dc, 1 Hz, 2 Hz, 3 Hz, and so forth. An ideal bandpass
filter with 1 Hz passband centered at 3 Hz will only let the 3 Hz components (n = ±3) through.
Thus, the ideal bandpass filter output is

y(t) = H(j2π3)D3e
j2π3t +H(−j2π3)D−3e

−j2π3t

= 1

(
1

6πj
− 1

18π2

)
ej6πt + 1

(
1

6πj
− 1

18π2

)
ej6πt

Simplifying, the final result is

y(t) =
1

3π
sin(6πt)− 1

9π2
cos(6πt).

Solution 6.4-4

(a) Using trigonometric properties, we obtain

cos 5t sin 3t =
1

2
[sin 8t− sin 2t]

=
1

4j

[
ej8t − e−j8t − ej2t + e−j2t

]

=
1

4

[
ejπ/2e−j8t + e−jπ/2e−j2t + ejπ/2ej2t + e−jπ/2ej8t

]

=
ejπ/2

4
e−j4ω0t +

e−jπ/2

4
e−jω0t +

ejπ/2

4
ejω0t +

e−jπ/2

4
ej4ω0t.

This is the desired exponential Fourier series, where ω0 = 2.
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(b) There are four non-zero spectral components, located at n = ±1 and ±4 (ω = ±2 and ±8).
The phases are either π

2 or −π
2 , as shown in the spectrum in Fig. S6.4-4b.
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Figure S6.4-4b

(c) Since none of the spectral components of x(t) appear in the pass-band of the filter, the output
is y(t) = 0.

Solution 6.4-5

(a) For x(t) in this problem, ω0 = 2π and

Dn =

∫ 1

0

e−te−jnω0tdt ==
e−1−jnω0 − 1

−1− jnω0
=

1− e−1

1 + j2πn
.

Hence, the exponential Fourier series of x(t) is

x(t) =

∞∑

n=−∞

1− e−1

1 + j2πn
ej2πnt.

(b) The transfer function of the RC circuit is

H(jω) =
1

1 + ( 1
jω )

=
jω

jω + 1

Using H(jω) and the exponential Fourier series of x(t), the output y(t) is given by

y(t) =

∞∑

n=−∞
DnH(j2πn)ej2πnt

=
∞∑

n=−∞

(
1− e−1

1 + j2πn

)(
j2πn

j2πn+ 1

)
ej2πnt

=
∞∑

n=−∞

j2πn(1− e−1)

(1 + j2πn)2
ej2πnt.

Solution 6.4-6

In this problem, a T -periodic τ/T duty-cycle square wave p(t) is defined as

p(t) =





1 |t| < τ
2

0 τ
2 < |t| < T

2
p(t+ T ) ∀t

,

where 0 < τ < T . Of interest is the frequency response H(ω) of a low-pass communications channel
with 10 rad/s bandwidth (e.g., |H(ω)| ≈ 0 for ω > 10. If T and τ are properly chosen, we can
estimate H(ω) at points ω = nω0 as Ĥ(nω0) =

1
P0

Yn, where Yn is the exponential FS spectrum of
the channel output y(t) in response to input p(t) and P0 is the dc component of p(t).
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(a) Here, we use direct integration to determine the exponential Fourier series coefficients Pn of
signal p(t). For k = 0 (the dc component),

P0 =
1

T

∫

T

p(t) dt =
1

T

∫ τ/2

−τ/2

dt =
τ

T
.

For k 6= 0,

Pk =
1

T

∫

T

p(t)e−jkω0t dt =
1

T

∫ τ/2

−τ/2

e−jkω0t dt

=
e−jkω0t

−jkω0T

∣∣∣∣
τ/2

−τ/2

=
e−jkω0τ/2 − ejkω0τ/2

T
τ kω0

τ
2 (−2j)

=
τ

T

(
sin(kω0τ/2)

kω0τ/2

)
=

τ

T
sinc(kω0τ/2).

Since ω0 = 2π
T , we see that

Pk =

{
τ
T sinc

(
kπτ
T

)
k 6= 0

τ
T k = 0

.

(b) Next, we determine a value T so that p(t) applied to systemH(ω) has 21 component frequencies
over the system bandwidth 0 ≤ ω ≤ 10. This requires a spacing of ω0 = 1

2 . Since T = 2π
ω0

, we
see that a suitable value of T is

T = 4π.

(c) Assuming T is properly chosen, we next determine a suitable duty cycle τ/T so that H(nω0) ≈
Yn. To this end, we desire Pk, whose shape follow sinc(kπτ/T ), to be approximately flat over
0 ≤ ω ≤ 10 or, using the discussion in part (b), 0 ≤ k ≤ 20. Given the nature of the
sinc function, this requires the first zero crossing of Pk occur at approximately a 10× higher
frequency, or k = 200. The first zero crossing of Pk occurs at kπτ/T = π. Substituting
k = 200, we thus see that

a ratio τ
T = 1

200 should work nicely to ensure H(nω0) ≈ Yn.

In fact, this ratio gives a maximum relative error of about 1.8%.

(d) From the perspective of using p(t) to help measure the system frequency response H(ω), two
primary things happen if T is properly chosen but τ/T is chosen too small.

• Pro: small τ
T flattens the sinc function for low frequencies, which ideally improves our

ability to estimate the channel response over these frequencies.

• Con: small τ
T reduces the power of p(t), which makes channel response estimates more

susceptible to measurement noise.

(e) From the perspective of using p(t) to help measure the system frequency response H(ω), two
primary things happen if T is properly chosen but τ/T is chosen too large:

• Pro: large τ
T increases the power of p(t), which makes channel response estimates less

susceptible to measurement noise.

• Con: large τ
T makes the spectrum Pk roll off faster, which reduces the accuracy of channel

response estimates, especially at higher frequencies.
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Solution 6.5-1

We can find the minimum of |e|2 = |x|2 + c2|y|2 − 2cx · y by differentiating with respect to c and
setting the result equal to zero:

2c|y|2 = 2x · y.
Solving for c, we obtain the desired result of

c =
1

|y|2 x · y.

Solution 6.5-2

(a) Here,
e(t) = x(t) − cy(t).

Next, we consider the inner product between y(t) and e(t),

∫ t2

t1

y(t)[x(t)− cy(t)] dt =

∫ t2

t1

y(t)x(t) dt − c

∫ t2

t1

y2(t) dt.

But since c is chosen to minimize the error energy, we know from Eq. (6.32) that c =
∫ t2
t1

x(t)y(t)dt
∫ t2
t1

y2(t) dt
. Substituting this expression for c into the expression of the inner product between

y(t) and e(t) yields

∫ t2

t1

y(t)[x(t) − cy(t)] dt =

∫ t2

t1

y(t)x(t) dt− c

∫ t2

t1

y2(t) dt

=

∫ t2

t1

y(t)x(t) dt−
(∫ t2

t1
x(t)y(t) dt

∫ t2
t1

y2(t) dt

)∫ t2

t1

y2(t) dt

=

∫ t2

t1

y(t)x(t) dt−
∫ t2

t1

y(t)x(t) dt = 0

Since
∫ t2
t1

y(t)e(t) dt = 0, y(t) and e(t) = x(t)− cy(t) are orthogonal.

(b) We can readily see the result in a signal-vector analogy using Fig. 6.21. The error vector e is
orthogonal (at right angles) to vector y.

(c) In this case,

e(t) =

{
1− 4

π sin t 0 ≤ t ≤ π
−1− 4

π sin t π ≤ t ≤ 2π
.

To show this error signal is orthogonal to sin(t), we compute the inner product between e(t)
and c sin(t) as

∫ 2π

0

e(t)c sin(t) dt = c

∫ π

0

(
1− 4

π
sin t

)
sin(t) dt+ c

∫ 2π

π

(
−1− 4

π
sin t

)
sin(t) dt

= c

∫ π

0

sin(t) dt− c

∫ 2π

π

sin(t) dt− 4c

π

∫ 2π

0

sin2(t) dt

= −c cos(t)|π0 +c cos(t)|2ππ − 4c

π

[
t

2
− sin(2t)

4

∣∣∣∣
2π

0

]
.

= c

[
−(−1− 1) + 1− (−1)− 4

π
(π − 0− (0− 0))

]
= 4c− 4c = 0.

Since the inner product is 0, e(t) and cy(t) are orthogonal.
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Solution 6.5-3

For real constants c1 and c2, the energy of c1x(t)± c2y(t) is

E =

∫ ∞

−∞
|c1x(t)± c2y(t)|2 dt

= c21

∫ ∞

−∞
|x(t)|2 dt+ c22

∫ ∞

−∞
|y(t)|2 dt±

∫ ∞

−∞
c1x(t)c2y

∗(t) dt±
∫ ∞

−∞
c2y(t)c1x

∗(t) dt

= c21Ex + c22Ey .

The last result follows from the fact that because of orthogonality, the two integrals of the cross
products x(t)y∗(t) and x∗(t)y(t) are zero. Clearly, the energies of c1x(t)+ c2y(t) and c1x(t)− c2y(t)
both equal c21Ex + c22Ey.

Solution 6.5-4

(a) In this case Ey =
∫ 1

0 dt = 1, and

c =
1

Ey

∫ 1

0

x(t)y(t) dt =
1

1

∫ 1

0

t dt = 0.5.

Thus, x(t) ≈ 0.5y(t).

(b) For x(t) ≈ 0.5y(t), the error is e(t) = t − 0.5 over (0 ≤ t ≤ 1), and zero outside this interval.
Also Ex and Ee (the energy of the error) are

Ex =

∫ 1

0

x2(t) dt =

∫ 1

0

t2 dt = 1/3 and Ee =

∫ 1

0

(t− 0.5)2 dt = 1/12.

The error (t− 0.5) is orthogonal to y(t) because

∫ 1

0

(t− 0.5)(1) dt = 0.

Using all our previous calculations, we see that

c2Ey + Ee =
1

4
+

1

12
=

1

3
= Ex.

To explain these results in terms of vector concepts we observe from Fig. 6.21 that the error
vector e is orthogonal to the component cy. Because of this orthogonality, the length-square
of x [energy of x(t)] is equal to the sum of the square of the lengths of cy and e [sum of the
energies of cy(t) and e(t)].

Solution 6.5-5

In this case Ex =
∫ 1

0
x2(t) dt =

∫ 1

0
t2 dt = 1/3, and

c =
1

Ex

∫ 1

0

y(t)x(t) dt = 3

∫ 1

0

t dt = 1.5.

Thus, y(t) ≈ 1.5x(t). The error is e(t) = y(t) − 1.5x(t) = 1 − 1.5t over (0 ≤ t ≤ 1) and is zero

outside this interval. The energy of the error is Ee =
∫ 1

0 (1− 1.5t)2 dt = 1/4. As expected,

c2Ex + Ee =
9

4

(
1

3

)
+

1

4
=

4

4
= Ey.
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Solution 6.5-6

The trigonometric Fourier series of x(t) (over 0 to 1 with ω0 = 2π) is

x(t) = a0 +

∞∑

n=1

an cos 2πnt+ bn sin 2πnt

(
ω0 =

2π

1

)
,

where

a0 = 1

∫ 1

0

x(t) dt =

∫ 1

0

t dt =
1

2
,

an = 2

∫ 1

0

t cos 2πnt dt = 0,

and

bn = 2

∫ 1

0

t sin 2πnt dt =
−1

πn
.

Hence,

x(t) =
1

2
− 1

π

(
sin 2πt+

1

2
sin 4πt+

1

3
sin 6πt+ · · ·

)
=

1

2
− 1

π

∞∑

n=1

1

n
sin 2πnt.

From Eq. (6.44)

Ee =

∫ 1

0

x2(t) dt−
[(

1

2

)2

+
1

2

[(
1

π

)2

+

(
1

2π

)2

+ · · ·+
(

1

(k − 1)π

)2
]]

Thus,

Ee =

∫ 1

0

t2 dt− 1

4
=

1

3
− 1

4
=

1

12
= 0.08333, N = 1

Ee =
1

3
− 1

4
− 1

2π2
= 0.03267, N = 2

Ee =
1

3
− 1

4
− 1

2π2
− 1

8π2
= 0.02, N = 3

Ee =
1

3
− 1

4
− 1

2π2
− 1

8π2
− 1

18π2
= 0.014378, N = 4.

Solution 6.5-7

(a) Figure S6.5-7a shows xa(t) that is a periodic extension of x(t) to yield a series with ω0 = 2π
and only sine terms. This requires T0 = 2π/2ω = 1 and odd symmetry. By inspection, the dc
component is 0.5. If we subtract dc (0.5) from xa(t), the remaining signal xa(t)− 0.5 has odd
symmetry (only sine terms). Therefore,

xa(t) = 0.5 +

∞∑

n=1

bn sin 2πnt,

where

bn = 2

∫ 1

0

t sin 2πnt dt = − 1

πn
.

That is,

xa(t) =
1

2
− 1

π

∞∑

n=1

1

n
sin 2πnt.
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Figure S6.5-7a

(b) In this case, ω0 = π and T0 = 2π/π = 2. For sine terms only, we need odd symmetry.
Figure S6.5-7b shows a suitable function xb(t). Since the dc component is zero, we see that

xb(t) =

∞∑

n=1

bn sinnπt,

where

bn =
4

2

∫ 1

0

t sinnπt dt = (−1)n+1 2

nπ
.
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Figure S6.5-7b

(c) Here, ω0 = π and T0 = 2π/ω0 = 2. For cosine terms only, we need an even function. Fig-
ure S6.5-7c shows a suitable function xc(t). By inspection, the dc component is 0.5. Therefore,

xc(t) =
1

2
+

∞∑

n=1

an cosnπt,

where

an =
4

2

∫ 1

0

t cosnπt dt = − 4

π2n2
, n = 1, 3, 5, . . ..

-2 -1 0 1 2

t

0

1

x c(t
)

Figure S6.5-7c
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Solution 6.5-8

(a) The signal g(t) is the same as the signal x(t) in Ex. 6.15 time-expanded by a factor π. Substi-
tuting t/π for t in the results of that example yields

g(t) = x

(
t

π

)
= −3

2

(
t

π

)
+

7

8

[
5

2

(
t

π

)3

− 3

2

(
t

π

)]
+ · · ·

(b) Returning to the signal x(t) in Ex. 6.15, we see that

∫ 1

−1

x2(t) dt = 2.

From Eq. (6.44), we see that

Ee =

∫
x2(t) dt− 2

3
c21 = 2− 3

2
= 0.5, N = 1,

and

Ee =

∫
x2(t) dt− 2

3
c21 −

2

7
c23 = 0.28125, N = 2.

Since g(t) is the same as x(t) time-expanded by a factor π, all energies are increased by the
same factor (π). Therefore,

Ee = 0.5π for N = 1 and Ee = 0.28125π for N = 2.

Solution 6.5-9

The 8-term Walsh Fourier series is given as

x(t) = c0x0(t) + c1x1(t) + · · ·+ c7x7(t).

The energy En of xn(t), for all n = 1, 2, 3, . . . , 8, is given by

En =

∫ 1

0

x2
n(t) dt = 1.

Hence

c0 =

∫ 1

0

x(t)x0(t) dt =
1

2

c1 =

∫ 1

0

x(t)x1(t) dt = −1

4

c2 = c4 = c5 = c6 = 0

c3 =

∫ 1

0

x(t)x3(t) dt = −1

8

c7 =

∫ 1

0

x(t)x7(t) dt = − 1

16

Hence

x(t) ≃ 1

2
x0(t)−

1

4
x1(t)−

1

8
x3(t)−

1

16
x7(t).

Also, ∫ 1

0

x2(t) dt =
1

3
and En = 1.
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If Ee(N) is the energy of the error signal in the approximation using first N terms, then from Eq.
(6.44)

Ee(1) =
1

3
− c20 =

1

12
= 0.0833

Ee(2) =
1

3
− c20 − c21 =

1

48
= 0.0204

Ee(3) =
1

3
− c20 − c21 − c23 =

1

192
= 0.0052

Ee(4) =
1

3
− c20 − c21 − c23 − c27 =

1

768
= 0.001302

The error energies of the corresponding trigonometric Fourier series found in Prob. 6.5-6 are
0.0833, 0.03267, 0.02, 0.014378. Clearly, the Walsh Fourier series gives smaller error than the
corresponding trigonometric Fourier series for the same number of terms in the approximation.

Solution 6.5-10

For the four-dimensional real space R4, the Walsh basis is given by: φ1 = [1, 1, 1, 1],
φ2 = [1, 1,−1,−1], φ3 = [1,−1,−1, 1], and φ4 = [1,−1, 1,−1]. For vectors x and y, the problem

defines orthogonality as
∑4

k=1 xky
∗
k = 0. Lastly, the problem defines vector z = [−4, 0, 1,−7].

(a) Here, we show that the four Walsh basis functions are mutually orthogonal.

4∑

k=1

φ1[k]φ2[k]
∗ = 1(1) + 1(1) + 1(−1) + 1(−1) = 0

4∑

k=1

φ1[k]φ3[k]
∗ = 1(1) + 1(−1) + 1(−1) + 1(1) = 0

4∑

k=1

φ1[k]φ4[k]
∗ = 1(1) + 1(−1) + 1(1) + 1(−1) = 0

4∑

k=1

φ2[k]φ3[k]
∗ = 1(1) + 1(−1)− 1(−1)− 1(1) = 0

4∑

k=1

φ2[k]φ4[k]
∗ = 1(1) + 1(−1)− 1(1)− 1(−1) = 0

4∑

k=1

φ3[k]φ4[k]
∗ = 1(1)− 1(−1)− 1(1) + 1(−1) = 0

Since the inner products of φi and φj are zero for all i 6= j, the Walsh basis functions are
mutually orthogonal.

(b) To see if the Walsh basis functions are normal, notice that

4∑

k=1

φi[k]φi[k]
∗ = 1 + 1 + 1 + 1 = 4 6= 1.

Since the inner product of any Walsh basis function with itself does not equal one, the Walsh
basis functions are not normal.
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(c) Here, we determine the coefficients [c1, c2, c3, c4] to represent z using Walsh basis functions as

ẑ =
∑4

k=1 ckφk. Since the basis functions φk are mutually orthogonal, the ck coefficients are
easy to compute.

c1 =

∑4
k=1 xφ1[k]

∗
∑4

k=1 φ1[k]φ1[k]∗
=

−4 + 0 + 1− 7

4
= −2.5

c2 =

∑4
k=1 xφ2[k]

∗
∑4

k=1 φ2[k]φ2[k]∗
=

−4 + 0− 1 + 7

4
= 0.5

c3 =

∑4
k=1 xφ3[k]

∗
∑4

k=1 φ3[k]φ3[k]∗
=

−4 + 0− 1− 7

4
= −3

c4 =

∑4
k=1 xφ4[k]

∗
∑4

k=1 φ4[k]φ4[k]∗
=

−4 + 0 + 1 + 7

4
= 1

Since {φ1, φ2, φ3, φ4} span R4, we know that ẑ = z = [−4, 0, 1,−7] (no error).

(d) The best three-dimensional approximation ẑ3D to z is found by using the 3 largest coefficients
from part (c). Thus,

ẑ3D = −2.5φ1 − 3φ3 + φ4 = [−4.5,−0.5, 1.5,−6.5].

This estimate has the smallest (mean-square) error of any three-term Walsh approximation to
z.

Solution 6.5-11

This problem considers the Laguerre expansion of signal x(t), which is given by x(t) =
∑∞

k=0 ckLk(t),

where L0(t) = 1, L1(t) = (1 − t), . . ., Lk(t) = et dk

dtk

(
tke−t

)
.

(a) For L0(t) = 1, we see that
∫ ∞

0

e−tL0(t)L
∗
0(t)dt =

∫ ∞

0

e−t dt = −e−t
∣∣∞
0

= 0− (−e0) = 1.

Since
∫∞
0 e−tL0(t)L

∗
0(t)dt = 1, we see that L0(t) is normal (unit size).

(b) For L1(t) = 1− t, we see that
∫ ∞

0

e−tL1(t)L
∗
1(t)dt =

∫ ∞

0

(1− t)2e−t dt =

∫ ∞

0

(1− 2t+ t2)e−t dt

=

∫ ∞

0

e−t dt− 2

∫ ∞

0

te−t dt+

∫ ∞

0

t2e−t dt.

From part (a), we know the first integral is 1. Using integration by parts, the second integral
is

−2

∫ ∞

0

te−t dt = 2te−t
∣∣∞
0

+ 2

∫ ∞

0

e−t dt = 0− 0 + 2(0− (−1)) = 2.

Using integration by parts as well as previous results, the third integral is
∫ ∞

0

t2e−t dt = −t2e−t
∣∣∞
0

+ 2

∫ ∞

0

te−t dt = 0− 0− 2 = −2.

Combining these results, we see that
∫ ∞

0

e−tL1(t)L
∗
1(t)dt =

∫ ∞

0

e−t dt− 2

∫ ∞

0

te−t dt+

∫ ∞

0

t2e−t dt = 1 + 2− 2 = 1.

Since
∫∞
0

e−tL1(t)L
∗
1(t)dt = 1, we see that L1(t) is normal (unit size).
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(c) Here, ∫ ∞

0

e−tL0(t)L
∗
1(t)dt =

∫ ∞

0

(1− t)e−t dt =

∫ ∞

0

e−t dt−
∫ ∞

0

te−t dt.

Using the results from part (b), these integrals evaluate to

∫ ∞

0

e−tL0(t)L
∗
1(t)dt = 1− 1

2
(2) = 0.

Since
∫∞
0 e−tL0(t)L

∗
1(t)dt = 0, L0(t) is orthogonal to L1(t).

(d) Since the basis functions are orthonormal, we can compute the coefficient c0 as the inner
product between x(t) and L0(t). That is,

c0 =

∫ ∞

0

e−tx(t)L0(t) dt =

∫ ∞

0

e−te−t dt =
−e−2t

−2

∣∣∣∣
∞

0

= 0− (−1

2
) =

1

2
.

Thus,

x̂0(t) = c0L0(t) =
1
2 is the one-term Laguerre approximation of x(t) = e−tu(t).

(e) Because Laguerre basis functions Lk(t) are mutually orthogonal, the coefficients have the
finality property, which is to say that Laguerre expansion coefficients are each computed in-
dependently of one another. For the best estimate x̂1(t) = c0L0(t) + c1L1(t) of the function
x(t) = e−tu(t), coefficients c0 and c1 are determined independently. From part (d), we know
that c0 = 1

2 . To verify c1 = 1
4 , we begin with

c1 =

∫ ∞

0

e−tx(t)L1(t) dt =

∫ ∞

0

e−te−t(1− t) dt =

∫ ∞

0

e−2t dt−
∫ ∞

0

te−2t dt.

From part (d), we know the first integral is 1
2 . Using integration by parts and previous

integration results, the second integral is

−
∫ ∞

0

te−2t dt =
te−2t

2

∣∣∣∣
∞

0

−
∫ ∞

0

e−2t

2
dt = 0− 0− 1

2
(
1

2
) = −1

4
.

Combining these results, we see that

c1 =

∫ ∞

0

e−2t dt−
∫ ∞

0

te−2t dt =
1

2
− 1

4
=

1

4
.

This is the result we sought to prove.

Solution 6.7-1

A periodic signal x(t) has ω0 = 2
3π and exponential Fourier series spectrum Dn =

j cos(πn/10) (u[n+ 10]− u[n− 11]).

(a) Since ω0 = 2π
T0

= 2π
3 , we see that

T0 = 3.

(b) By inspection, we see that Dn = −D∗
−n, which is to say that the spectrum Dn is conjugate

antisymmetric (skew-Hermitian). Using properties to express this relationship in the time
domain, we see that

x(t) = −x∗(t), meaning that signal x(t) is imaginary.
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(c) By inspection, we see that Dn = D−n, which is to say that the spectrum Dn is even. Using
properties to express this relationship in the time domain, we see that

x(t) = x(−t), meaning that signal x(t) is even.

(d) Since Dn is zero outside the finite interval −10 ≤ n ≤ 10, it is straightforward to reconstruct
x(t) exactly; no approximation is required. The resulting plot, shown in Fig. S6.7-1d, helps
confirm that x(t) is 3-periodic, imaginary, and even.

>> T0 = 3; omega0 = 2*pi/T0; t = -T0:2*T0/2001:T0; x = zeros(size(t));

>> D = @(n) 1j*cos(pi*n/10).*((n>=-10)&(n<=10));

>> for n = -10:10, x = x+D(n)*exp(1j*omega0*n*t); end

>> plot(t,imag(x),’k’); xlabel(’t’); ylabel(’Im\{x(t)\}’); grid on

>> axis([-T0,T0,-4,12]); set(gca,’ytick’,-4:4:12,’xtick’,-T0:T0/2:T0);

-3 -1.5 0 1.5 3

t

-4

0

4

8

12

Im
{x

(t
)}

Figure S6.7-1d

Solution 6.7-2

A periodic signal x(t) has ω0 = 3
2π and exponential Fourier series spectrum Dn =

2 sin(πn/10)(u[n+ 10]− u[n− 11]).

(a) Since ω0 = 2π
T0

= 2π
3π/2 , we see that

T0 =
4

3
.

(b) By inspection, we see that Dn = −D∗
−n, which is to say that the spectrum Dn is conjugate

antisymmetric (skew-Hermitian). Using properties to express this relationship in the time
domain, we see that

x(t) = −x∗(t), meaning that signal x(t) is imaginary.

(c) By inspection, we see that Dn = −D−n, which is to say that the spectrum Dn is odd. Using
properties to express this relationship in the time domain, we see that

x(t) = −x(−t), meaning that signal x(t) is odd.

(d) Since Dn is zero outside the finite interval −10 ≤ n ≤ 10, it is straightforward to reconstruct
x(t) exactly; no approximation is required. The resulting plot, shown in Fig. S6.7-2d, helps
confirm that x(t) is 4

3 -periodic, imaginary, and odd.

>> T0 = 4/3; omega0 = 2*pi/T0; t = -T0:2*T0/2001:T0; x = zeros(size(t));

>> D = @(n) 2*sin(pi*n/10).*((n>=-10)&(n<=10));

>> for n = -10:10, x = x+D(n)*exp(1j*omega0*n*t); end

>> plot(t,imag(x),’k’); xlabel(’t’); ylabel(’Im\{x(t)\}’); grid on

>> axis([-T0,T0,-22,22]); set(gca,’ytick’,-20:5:20,’xtick’,-T0:T0/4:T0);
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Figure S6.7-2d

Solution 6.7-3

This problem considers a T0 = 1 periodic signal x(t) defined as

x(t) =

{
2t− t2 0 < t ≤ 1
x(t+ 1) ∀t .

(a) MATLAB is well suited to plot x(t) over −2 ≤ t ≤ 2 (see Fig. S6.7-3a).

>> xT = @(t) (2*t-t.^2).*((t>=0)&(t<1)); x = @(t) xT(mod(t,1));

>> t = -2:.001:2; plot(t,x(t),’k’); xlabel(’t’); ylabel(’x(t)’);

>> axis([-2 2 -.1 1.1]); set(gca,’xtick’,-2:2,’ytick’,0:.5:1); grid on
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0.5

1

x(
t)

Figure S6.7-3a

(b) Let y(t) = d
dt {x(t)}. We obtain y(t), shown left in Fig. S6.7-3b, by graphically differentiating

Fig. S6.7-3a. Over 0 ≤ t < 1, we see that

y(t) = −δ(t) + 2− 2t(u(t)− u(t− 1))︸ ︷︷ ︸
ynon−δ(t)

.

Letting z(t) = d
dt {ynon−δ(t)}, we see over 0 ≤ t < 1 that

z(t) =
d

dt
{ynon−δ(t)} = 2δ(t)− 2.

Signal z(t) is shown right in Fig. S6.7-3b.

From Ex. 6.9, the Fourier series coefficients of a 1-periodic impulse train is known to be
1
T0

= 1. Using this fact and appropriate Fourier series properties, we transform the expression

for z(t) = d
dt {ynon−δ(t)} to the frequency domain as

Z[n] = jnω0Ynon−δ[n] = 2− 2δ[n].

The 2δ[n] term in unimportant since dc is computed separately, and it will be therefore ignored.
Thus,

Ynon−δ[n] =
2

jnω0
.
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Similar transformation of y(t) = −δ(t) + ynon−δ(t) yields

Y [n] = −1 +
2

jnω0
.

Since y(t) = d
dt {x(t)}, it follows that the Fourier coefficients Dn of x(t) are Dn = 1

jω0n
Y [n].

Thus, for n 6= 0,

Dn = − 1

jnω0
− 2

n2ω2
0

, ω0 = 2π.

Next, we compute the dc portion.

D0 =

∫ 1

0

(2t− t2) dt = t2 − t3

3

∣∣∣∣
1

0

=
2

3
.

Putting everything together, we obtain

Dn =

{ 2
3 n = 0

− 1
j2πn − 1

2n2π2 n 6= 0
.

(c) Next, we use MATLAB to synthesize x(t) as x10(t) from the Fourier series coefficients Dn over
−10 ≤ n ≤ 10. As shown in Fig. S6.7-3c, the synthesized signal x10(t) (solid line) is a close
approximation to the true signal x(t) (dashed line), thereby confirming the correctness of the
Fourier series coefficients Dn derived in part (b).

>> LSS3eSMMATLABFigFormat(6,1.25,10);

>> xT = @(t) (2*t-t.^2).*((t>=0)&(t<1)); x = @(t) xT(mod(t,1));

>> t = -2:.001:2; xhat = zeros(size(t)); T0 = 1; omega0 = 2*pi/T0; n = -10:10;

>> Dn = -1./(2j*pi*n)-1./(2*n.^2*pi^2); Dn(n==0) = 2/3;

>> for nval = n,

>> xhat = xhat+Dn(nval==n)*exp(j*nval*omega0*t);

>> end

>> plot(t,real(xhat),’k’,t,x(t),’k--’); xlabel(’t’); ylabel(’x_{10}(t)’);

>> axis([-2 2 -.1 1.1]); set(gca,’xtick’,-2:2,’ytick’,0:.5:1); grid on
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Figure S6.7-3c
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(d) Since x(t) is 1-periodic, it has content at dc, 1 Hz, 2 Hz, 3 Hz, and so forth. An ideal bandpass
filter with 1 Hz passband centered at 3 Hz will only let the 3 Hz components (n = ±3) through.
Thus, the ideal bandpass filter output is

y(t) = H(j2π3)D3e
j2π3t +H(−j2π3)D−3e

−j2π3t

= 1

(
− 1

6πj
− 1

18π2

)
ej6πt + 1

(
− 1

6πj
− 1

18π2

)
ej6πt

Simplifying, the final result is

y(t) = − 1

3π
sin(6πt)− 1

9π2
cos(6πt).

Solution 6.7-4

(a) To determine a suitable set of N = 10 frequencies ωn, we first determine ten points logarith-
mically spaced from 1 to 100.

>> N = 10; f = logspace(0,2,N)

f = 1.0000 1.6681 2.7826 4.6416 7.7426

12.9155 21.5443 35.9381 59.9484 100.0000

The problem with these points is that they are not all rational, and the resulting signal m(t)
is thus aperiodic. Truncating to the four decimal places shown makes the frequencies rational,
but the resulting period T0 is excessively long. An approximately logarithmic sequence that
results in smaller T0 is generated by rounding the logarithmic frequencies to the nearest tenths
of a hertz.

>> f = round(10*logspace(0,2,N))/10

f = 1.0000 1.7000 2.8000 4.6000 7.7000

12.9000 21.5000 35.9000 59.9000 100.0000

With these frequencies, the signal m(t) =
∑N

n=1 cos (ωnt+ θn) has period T0 = 10. Thus, one
reasonable choice of frequencies is

ωn = 2π[1, 1.7, 2.8, 4.6, 7.7, 12.9, 21.5, 35.9, 59.9, 100] for which m(t) has period T0 = 10.

MATLAB is used to plot m(t) when all θn are set to zero.

>> m = @(theta,t,omega) sum(cos(omega*t+theta*ones(size(t))));

>> omega = 2*pi*f’; theta = zeros(size(omega));

>> t = (-5:.01:5); plot(t,m(theta,t,omega),’k’);

>> xlabel(’t [sec]’); ylabel(’m(t) [volts]’);

As expected, this worst-case version of m(t) has a maximum amplitude of 10, which is also
the number of sinusoids comprising the signal.

(b) MATLAB is used to try and find an optimal set of phases θn that minimizes the maximum
amplitude of m(t). The procedure followed is the same as that presented in Sec. 6.7. To
proceed, the code from part ?? needs to be first executed.

>> maxmagm = @(theta,t,omega) max(abs(sum(cos(omega*t+theta*ones(size(t))))));

>> t = [-5:.001 :5]; rng(0); theta_init = 2*pi*rand(N,1);

>> theta_opt = fminsearch(maxmagm,theta_init,[],t,omega);

>> mmag = max(abs(m(theta_opt,t,omega)))

mmag = 6.8734
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Figure S6.7-4a

The result of 6.8734 shows a reasonable reduction in maximum amplitude from the worst-case
value of 10. Notice, a finely-spaced time vector t is required for the function fminsearch to
determine a reliable result.

To make sure the result is good and not just a local minimum, the sequence is run again with
a different initial guess for the phases.

>> theta_init = 2*pi*rand(N,1);

>> theta_opt = fminsearch(maxmagm,theta_init,[],t,omega);

>> mmag = max(abs(m(theta_opt,t,omega)))

mmag = 6.8049

Although the second result coincides well with the first, it is not exactly the same. To be safe,
the sequence is therefore run several times, and the best solution is preserved.

>> mmag_opt = mmag; mmag = [mmag,zeros(1,9)];

>> for trial = 2:10;

>> theta_init = 2*pi*rand(N,1);

>> theta = fminsearch(maxmagm,theta_init,[],t,omega);

>> mmag(trial) = max(abs(m(theta,t,omega)));

>> if (mmag(trial)<mmag_opt),

>> theta_opt = theta; mmag_opt = mmag(trial);

>> end

>> end

>> mmag, theta_opt’

mmag = 6.8049 6.6543 6.5756 6.4074 6.4805

6.5585 6.7437 6.3758 6.5909 6.6296

theta_opt = 2.0243 5.5845 4.0227 3.3761 5.5536

1.7900 4.5281 4.9452 2.1278 3.8349

Thus, a good (but unlikely globally best) choice of phases is

θn = [2.0243, 5.5845, 4.0227, 3.3761, 5.5536, 1.7900, 4.5281, 4.9452, 2.1278, 3.8349].

In this case, the maximum value of m(t) is 6.3758, as shown in Fig. S6.7-4b.
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Figure S6.7-4b

>> plot(t,m(theta_opt,t,omega),’k’);

>> xlabel(’t [sec]’); ylabel(’m(t) [volts]’);

(c) For environments with 1/f noise, it is appropriate to have lower frequency components have
greater strength than higher frequency components. One simple possibility is to adjust the
magnitude of each sinusoidal component to match the noise power at that frequency. In this
way, the signal-to-noise ratio is kept constant for any frequency bin of the signal.

m(t) =
N∑

n=1

k√
ωn

cos (ωnt+ θn) .

The constant k is selected to achieve the final desired signal power for the entire signal m(t).



Chapter 7 Solutions

Solution 7.1-1

Let us define a signal z(t) = 2x(t − 1), which has Fourier transform Z(ω) = 2e−jωX(ω). In this
way, y(t) is a simple 3-periodic replication of z(t),

y(t) =

∞∑

n=−∞
z(t− 3n).

In this case, as shown in Sec. 7.1, the Fourier series coefficients Yk are just a scaled (by 1
T0
) and

sampled (by kω0) version of the Fourier transform Z(ω). Using Eq. (7.5), we therefore see that

Yk =
1

T0
Z(kω0).

Noting T0 = 3 and ω0 =
2π
3 and substituting for Z(ω), the final result is

Yk =
2

3
e−j2πk/3X

(
2πk

3

)
.

Solution 7.1-2

From Eq. (7.10),

x(t) =
1

2π

∫ ∞

−∞
X(ω)ejωt dω =

1

2π

∫ ∞

−∞
|X(ω)| ej∠X(ω)ejωt dω

=
1

2π

[∫ ∞

−∞
|X(ω)| cos[ωt+ ∠X(ω)] dω + j

∫ ∞

−∞
|X(ω)| sin[ωt+ ∠X(ω)] dω

]
.

As shown by Eq. (7.12), a real signal x(t) has a conjugate-symmetric spectrum X(ω). Consequently,
|X(ω)| is an even function and ∠X(ω) is an odd function of ω. Therefore, the integrand in the
second integral is an odd function of ω, and the integral evaluates to zero. Moreover, the integrand
in the first integral is an even function of ω, and therefore

x(t) =
1

π

∫ ∞

0

|X(ω)| cos[ωt+ ∠X(ω)] dω.

This form is very similar to the compact trigonometric Fourier series of Eq. (6.9), except integrals
replace summations.

Solution 7.1-3

By definition,

X(ω) =

∫ ∞

−∞
x(t)e−jωt dt =

∫ ∞

−∞
x(t) cosωt dt− j

∫ ∞

−∞
x(t) sinωt dt.

526
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If x(t) is an even function of t, x(t) sinωt is an odd function of t, and the second integral vanishes.
Moreover, x(t) cosωt is an even function of t, and the first integral is twice the integral over the
interval 0 to ∞. Thus,

X(ω) = 2

∫ ∞

0

x(t) cosωt dt, when x(t) is even.

If x(t) is also real (in addition to being even), the integral for X(ω) is real, and

X(−ω) = 2

∫ ∞

0

x(t) cosωt dt = X(ω)

Hence, if x(t) is a real and even function of t, then X (ω) is a real and even function of ω.

Now if x(t) is an odd function of t, x(t) cosωt is an odd function of t, and the first integral
vanishes. Moreover, x(t) sinωt is an even function of t, and the second integral is twice the integral
over the interval 0 to ∞. Thus,

X(ω) = −2j

∫ ∞

0

x(t) sinωt dt, when x(t) is odd.

If x(t) is also real (in addition to being odd), the integral for X(ω) is imaginary, and

X(−ω) = −2j

∫ ∞

0

x(t) sin(−ωt) dt = 2j

∫ ∞

0

x(t) sin(ωt) dt = −X(ω).

Hence, if x(t) is a real and odd function of t, then X (ω) is an imaginary and odd function of ω.

Solution 7.1-4

(a) Because x(t) = xo(t) + xe(t) and e−jωt = cosωt+ j sinωt,

X(ω) =

∫ ∞

−∞
[xo(t) + xe(t)]e

−jωt dt

=

∫ ∞

−∞
[xo(t) + xe(t)] cosωt dt− j

∫ ∞

−∞
[xo(t) + xe(t)] sinωt dt.

Because xe(t) cosωt and xo(t) sinωt are even functions and xo(t) cosωt and xe(t) sinωt are odd
functions of t, these integrals reduce to

X(ω) = 2

∫ ∞

0

xe(t) cosωt dt− 2j

∫ ∞

0

xo(t) sinωt dt.

From Prob. 7.1-4, we know

Xe(ω) = 2

∫ ∞

0

xe(t) cosωt dt and Xo(ω) = −2j

∫ ∞

0

xo(t) sinωt dt

Combining, we obtain the result for real x(t) that

xe(t) ⇐⇒ Re[X(ω)]

and

xo(t) ⇐⇒ j Im[X(ω)].
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(b) (i) We can express u(t) in terms of its even and odd components as follows

u(t) =
1

2
[u(t) + u(−t)] +

1

2
[u(t)− u(−t)]

=
1

2︸︷︷︸
xe(t)

+
1

2
sgn(t)
︸ ︷︷ ︸

xo(t)

and

Xe(ω) = πδ(ω) and Xo(ω) =
1

jω
.

Clearly, Xe(ω) is the real part and Xo(ω) is the odd part of X(ω).
(ii) We follow the same procedure for x(t) = e−atu(t). First, we note that

e−atu(t) =
1

2
[e−atu(t) + e−atu(−t)]
︸ ︷︷ ︸

xe(t)

+
1

2
[e−atu(t)− e−atu(−t)]
︸ ︷︷ ︸

xo(t)

.

Also

Xe(ω) =
1

2

[
1

jω + a
− 1

jω − a

]
=

2a

ω2 + a2

and

Xo(ω) =
1

2

[
1

jω + a
+

1

jω − a

]
=

2jω

ω2 + a2
.

Clearly, Xe(ω) is the real part and Xo(ω) is the odd part of X(ω).

Solution 7.1-5

(a)

X(ω) =

∫ T

0

e−ate−jωt dt =

∫ T

0

e−(jω+a)t dt =
1− e−(jω+a)T

jω + a

(b)

X(ω) =

∫ T

0

eate−jωt dt =

∫ T

0

e−(jω−a) dt =
1− e−(jω−a)T

jω − a

Solution 7.1-6

(a)

X(ω) =

∫ 1

0

4e−jωt dt+

∫ 2

1

2e−jωt dt =
4− 2e−jω − 2e−j2ω

jω

(b)

X(ω) =

∫ 0

−τ

− t

τ
e−jωt dt+

∫ τ

0

t

τ
e−jωt dt =

2

τω2
[cosωτ + ωτ sinωτ − 1]

This result could also be derived by observing that x(t) is an even function. Using the results
in Prob. 7.1-4, we therefore see that

X(ω) =
2

τ

∫ τ

0

t cosωt dt =
2

τω2
[cosωτ + ωτ sinωτ − 1].
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Solution 7.1-7

(a)

x(t) =
1

2π

∫ ω0

−ω0

ω2ejωt dω =
1

2π

ejωt

(jt)3
[−ω2t2 − 2jωt+ 2]

∣∣∣∣
ω0

−ω0

=
(ω2

0t
2 − 2) sinω0t+ 2ω0t cosω0t

πt3

(b) The derivation can be simplified by observing that X(ω) can be expressed as a sum of two
gate functions X1(ω) and X2(ω) as shown in Fig. S7.1-7b. Therefore,

x(t) =
1

2π

∫ 2

−2

[X1(ω) +X2(ω)]e
jωt dω =

1

2π

{∫ 2

−2

ejωt dω +

∫ 1

−1

ejωt dω

}

=
sin 2t+ sin t

πt
.

-2 -1 0 1 2

ω

0

1

2

X
(ω

)

-2 -1 0 1 2

ω

0

1

2

X
1
(ω

)

-2 -1 0 1 2

ω

0

1

2

X
2
(ω

)
Figure S7.1-7b

Solution 7.1-8

(a)

x(t) =
1

2π

∫ π/2

−π/2

cosωejωt dω

=
ejωt

2π(1− t2)
(jt cosω + sinω)

∣∣∣∣
π/2

−π/2

=
1

π(1− t2)
cos

(
πt

2

)

(b)

x(t) =
1

2π

∫ π/2

−π/2

X(ω)ejωt dω

=
1

2π

[∫ π/2

−π/2

X(ω) cosωt dω + j

∫ π/2

−π/2

X(ω) sinωt dω

]

Because X(ω) is even function, the second integral on the right-hand side vanishes. Also the
integrand of the first term is an even function. Therefore,

x(t) =
1

π

∫ π/2

0

ω

ω0
cos tω dω =

1

πω0

[
cos tω + tω sin tω

t2

]∣∣∣∣
ω0

0

=
1

πω0t2
[cosω0t+ ω0t sinω0t− 1].
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Solution 7.1-9

Since X(ω) =
∫∞
−∞ x(t)e−jωt dt, we see for ω = 0 that

X(0) =

∫ ∞

−∞
x(t) dt.

Since x(t) = 1
2π

∫∞
−∞ X(ω)ejωt dω, we see for t = 0 that

x(0) =
1

2π

∫ ∞

−∞
X(ω) dω.

Because sinc (t) ↔ πrect
(
ω
2

)
,

πrect(0) = π =

∫ ∞

−∞
sinc(t) dt.

Since sinc2(t) ↔ π∆
(
ω
4

)
, we see that

π∆(0) = π =

∫ ∞

−∞
sinc2(t) dt.

Solution 7.2-1

-1 0 1

t

0

1

x a
(t

)

-50/3 0 50/3

ω

0

1

x b
(ω

)

0 6 10 14

t

0

1

x c(t
)

-10 -5 0 5 10

ω

0

1

x d
(ω

)

0 5π 10π 15π 20π

ω

0

1

x e
(ω

)

-5π 0 5π

t

0

1

x f(t
)

Figure S7.2-1

(a) As shown in Fig S7.2-1a, xa(t) = rect (t/2) is a gate function centered at the origin and of
width 2.

(b) As shown in Fig S7.2-1b, xb(ω) = △(3ω/100) is a triangle function centered at the origin and
of width 100

3 .

(c) As shown in Fig S7.2-1c, xc(t) = rect ((t− 10)/8) is a gate function rect
(
t
8

)
delayed by 10. In

other words it is a gate pulse centered at t = 10 and of width 8.
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(d) As shown in Fig S7.2-1d, xd(ω) = sinc (πω/5) a sinc pulse centered at the origin and the first
zero occurring at πω

5 = π, that is at ω = 5.

(e) As shown in Fig S7.2-1e, xe(ω) = sinc ((ω/5)− 2π) is a sinc pulse sinc
(
ω
5

)
delayed by 10π.

For the sinc pulse sinc
(
ω
5

)
, the first zero occurs at ω

5 = π, that is at ω = 5π. Therefore the
function is a sinc pulse centered at ω = 10π and its zeros spaced at intervals of 5π.

(f) As shown in Fig S7.2-1f, xf(t) = sinc (t/5) rect (t/10π) is a product of a gate pulse (centered
at the origin) or width 10π and a sinc pulse (also centered at the origin) with zeros spaced at
intervals of 5π. This results in the sinc pulse truncated beyond the interval ±5π (|t| ≥ 5π).

Solution 7.2-2

X(ω) =

∫ 5.5

4.5

e−jωt dt = − 1

jω
e−jωt

∣∣∣∣
5.5

4.5

=
1

jω
[e−j4.5ω − e−j5.5ω ]

=
e−j5ω

jω
(ejω/2 − e−jω/2) =

e−j5ω

jω

(
2j sin

ω

2

)

= sinc
(ω
2

)
e−j5ω

Figure S7.2-2 displays the resulting magnitude and phase spectra.

-4π -2π 0 2π 4π

ω

0

1

|X
(ω

)|

-4π -2π 0 2π 4π

ω

-20π

-10π

0

10π

20π

 X
(ω

)

Figure S7.2-2

Solution 7.2-3

x(t) =
1

2π

∫ 10+π

10−π

ejωt dω =
ejωt

2π(jt)

∣∣∣∣
10+π

10−π

=
1

j2πt

[
ej(10+π)t − ej(10−π)t

]

=
ej10t

πt
[sinπt] = sinc(πt)ej10t

Solution 7.2-4

(a)

x(t) =
1

2π

∫ ω0

−ω0

e−jωt0ejωt dω =
1

2π

∫ ω0

−ω0

ejω(t−t0) dω

=
1

(2π)j(t− t0)
ejω(t−t0)

∣∣∣∣
ω0

−ω0

=
sinω0(t− t0)

π(t− t0)
=

ω0

π
sin[ω0(t− t0)]

(b)

x(t) =
1

2π

[∫ 0

−ω0

jejωt dω +

∫ ω0

0

−jejωt dω

]

=
1

2πt
ejωt

∣∣∣∣
0

−ω0

− 1

2πt
ejωt

∣∣∣∣
ω0

0

=
1− cosω0t

πt
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Solution 7.2-5

(a) When a > 0, we cannot find the Fourier transform of eatu(t) by setting s = jω in the Laplace
transform of eatu(t) because the ROC Re{s} > a does not include the ω-axis.

(b) In this case, the Laplace transform of x(t) is

X(s) =

∫ T

0

eate−st dt =

∫ T

0

e−(s−a)t dt =
1

s− a

[
1− e−(s−a)T

]
.

Interestingly, because x(t) has a finite duration, the ROC of X(s) is the entire s-plane, which
includes ω-axis. Hence, the Fourier transform is can be obtained from the Laplace transform
as

X(ω) = X(s)|s=jω =
1

s− a

[
1− e−(jω−a)T

]
.

To verify this result, we directly find the Fourier transform of x(t) as

X(ω) =

∫ T

0

eate−jωt dt =

∫ T

0

e−(jω−a)t dt =
1

jω − a

[
1− e−(jω−a)T

]
.

Solution 7.3-1

(a) From Table 7.1,

u(t)︸︷︷︸
x(t)

⇐⇒ πδ(ω) +
1

jω︸ ︷︷ ︸
X(ω)

.

Application of duality property yields

πδ(t) +
1

jt︸ ︷︷ ︸
X(t)

⇐⇒ 2πu(−ω)︸ ︷︷ ︸
2πx(−ω)

or
1

2

[
δ(t) +

1

jπt

]
⇐⇒ u(−ω).

Application of Eq. (7.27) yields

1

2

[
δ(−t)− 1

jπt

]
⇐⇒ u(ω).

But δ(t) is an even function, that is δ(−t) = δ(t), and

1

2

[
δ(t) +

j

πt

]
⇐⇒ u(ω).

(b) From Table 7.1,
cosω0t︸ ︷︷ ︸

x(t)

⇐⇒ π[δ(ω + ω0) + δ(ω − ω0)]︸ ︷︷ ︸
X(ω)

.

Application of duality property yields

π[δ(t+ ω0) + δ(t− ω0)]︸ ︷︷ ︸
X(t)

⇐⇒ 2π cos(−ω0ω)︸ ︷︷ ︸
2πx(−ω)

= 2π cos(ω0ω).

Setting ω0 = T yields
δ(t+ T ) + δ(t− T ) ⇐⇒ 2 cosTω.
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(c) From Table 7.1,

sinω0t︸ ︷︷ ︸
x(t)

⇐⇒ jπ[δ(ω + ω0)− δ(ω − ω0)]︸ ︷︷ ︸
X(ω)

.

Application of duality property yields

jπ[δ(t+ ω0)− δ(t− ω0)]︸ ︷︷ ︸
X(t)

⇐⇒ 2π sin(−ω0ω)︸ ︷︷ ︸
2πx(−ω)

= −2π sin(ω0ω).

Setting ω0 = T yields

δ(t+ T )− δ(t− T ) ⇐⇒ 2j sinTω.

Solution 7.3-2

We can determine the desired Fourier transforms by applying various Fourier transform properties
in sequence.

(a)

x(t) ⇐⇒ X(ω) (start)

x(−2t) ⇐⇒ 1

2
X
(
−ω

2

)
(time scaling)

x(−2(t− 3/2)) ⇐⇒ e−j3ω/2

2
X
(
−ω

2

)
(time shifting)

y(t) =
1

5
x(−2(t− 3/2)) ⇐⇒ e−j3ω/2

10
X
(
−ω

2

)
(amplitude scaling)

Thus,

Y (ω) =
e−j3ω/2

10
X
(
−ω

2

)
.

(b)

x(t) ⇐⇒ X(ω) (start)

x(−3t) ⇐⇒ 1

3
X
(
−ω

3

)
(time scaling)

x∗(−3t) ⇐⇒ 1

3
X∗
(ω
3

)
(conjugation)

x∗(−3(t+ 2)) ⇐⇒ ej2ω

3
X∗
(ω
3

)
(time shifting)

y(t) = e2jtx∗(−3(t+ 2))) ⇐⇒ ej2(ω−2)

3
X∗
(
ω − 2

3

)
(frequency shifting)

Thus,

Y (ω) =
ej2(ω−2)

3
X∗
(
ω − 2

3

)
.

Solution 7.3-3

We can determine the desired Fourier transforms by applying various Fourier transform properties
in sequence.
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(a)

x(t) ⇐⇒ X(ω) (start)

x(−3t) ⇐⇒ 1

3
X
(
−ω

3

)
(time scaling)

x(−3(t− 2/3)) ⇐⇒ 1

3
e−j2ω/3X

(
−ω

3

)
(time shifting)

y(t) = 4x(−3(t− 2/3)) ⇐⇒ 4

3
e−j2ω/3X

(
−ω

3

)
(amplitude scaling)

Thus,
y(t) = 4x(−3t+ 2).

(b)

x(t) ⇐⇒ X(ω) (start)

x(−3t) ⇐⇒ 1

3
X
(
−ω

3

)
(time scaling)

x∗(−3t) ⇐⇒ 1

3
X∗
(ω
3

)
(conjugation)

x∗(−3(t+ 2)) ⇐⇒ ej2ω

3
X∗
(ω
3

)
(time shifting)

y(t) = e2jtx∗(−3(t+ 2))) ⇐⇒ ej2(ω−2)

3
X∗
(
ω − 2

3

)
(frequency shifting)

Thus,
y(t) = e2jtx∗(−3t− 6)).

Solution 7.3-4

From the problem statement, we know that

X(ω) = 1
ω2 (e

−jω + jωe−jω − 1).

(a) Inspecting Fig. P7.3-4, we know

x1(t) = x(t+ 1) + x(−t+ 1).

Using the time-shift and time-reflection properties yields

X1(ω) = X(ω)ejω +X(−ω)e−jω.

(b) Inspecting Fig. P7.3-4, we know

x2(t) = x( t2 + 1
2 ) + x(− t

2 + 1
2 ).

Thus,
X2(ω) = 2X(2ω)ejω + 2X(−2ω)e−jω.

(c) Inspecting Fig. P7.3-4, we know

x3(t) = x( t
4 + 1

2 ) + x(− t
4 + 1

2 ) + x( t
2 ) + x(− t

2 ).

Thus,
X3(ω) = 4X(4ω)ej2ω + 4X(−4ω)e−j2ω + 2X(2ω) + 2X(−2ω).
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(d) Inspecting Fig. P7.3-4, we know

x4(t) =
4
3x(

t
2 + 1) + 4

3x(− t
2 + 1)− 1

3x(
t
4 + 1

2 )− 1
3x(− t

4 + 1
2 ).

Thus,

X4(ω) =
8
3X(2ω)ej2ω + 8

3X(−2ω)e−j2ω − 4
3X(4ω)ej2ω − 4

3X(−4ω)e−j2ω.

(e) Inspecting Fig. P7.3-4, we know

x5(t) = x(t + 1
2 ) + x(−t+ 1

2 ) + x(t+ 1.5) + x(−t+ 1.5).

Thus,
X5(ω) = X(ω)ejω/2 +X(−ω)e−jω/2 +X(ω)ej1.5ω + (−ω)e−j1.5ω.

Other forms are possible since the signal decompositions in terms of x(t) are not unique. For
example, we can represent x3(t) differently as 2

[
x( t

4 + 1
2 ) + x(− t

2 )
]
. The evaluation of the

expressions, however apparently different, must be the same.

Solution 7.3-5

Each case uses only the time-shifting property and Table 7.1 to find the Fourier transforms of the
signals.

(a) Here,

x(t) = rect

(
t+ T/2

T

)
− rect

(
t− T/2

T

)
.

From Table 7.1,

rect

(
t

T

)
⇐⇒ T sinc

(
ωT

2

)
.

Applying the time-shift property we obtain

rect

(
t± T/2

T

)
⇐⇒ T sinc

(
ωT

2

)
e±jωT/2.

Thus,

X(ω) = T sinc

(
ωT

2

)
[ejωT/2 − e−jωT/2]

= 2jT sinc

(
ωT

2

)
sin

ωT

2

=
j4

ω
sin2

(
ωT

2

)
.

(b) In this case,
x(t) = sin tu(t) + sin(t− π)u(t− π).

Now,
sin tu(t) ⇐⇒ π

2j [δ(ω − 1)− δ(ω + 1)] + 1
1−ω2

and
sin(t− π)u(t− π) ⇐⇒

{
π
2j [δ(ω − 1)− δ(ω + 1)] + 1

1−ω2

}
e−jπω.

Therefore

X(ω) =

{
π

2j
[δ(ω − 1)− δ(ω + 1)] +

1

1− ω2

}
(1 + e−jπω).
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Recall that g(x)δ(x− x0) = g(x0)δ(x− x0). Therefore, δ(ω ± 1)(1 + e−jπω) = 0, and

X(ω) =
1

1− ω2
(1 + e−jπω).

(c) In this case,

x(t) = cos t
[
u(t)− u

(
t− π

2

)]
= cos tu(t)− cos tu

(
t− π

2

)
.

But sin
(
t− π

2

)
= − cos t. Therefore,

x(t) = cos tu(t) + sin
(
t− π

2

)
u
(
t− π

2

)

and

X(ω) =
π

2
[δ(ω − 1) + δ(ω + 1)] +

jω

1− ω2
+

{
π

2j
[δ(ω − 1)− δ(ω + 1)] +

1

1− ω2

}
e−jπω/2.

Also because g(x)δ(x − x0) = g(x0)δ(x − x0),

δ(ω ± 1)e−jπω/2 = δ(ω ± 1)e±jπω/2 = ±jδ(ω ± 1).

Therefore,

X(ω) =
jω

1− ω2
+

e−jπω/2

1− ω2
=

1

1− ω2
[jω + e−jπω/2].

(d) Here,

x(t) = e−at[u(t)− u(t− T )] = e−atu(t)− e−atu(t− T )

= e−atu(t)− e−aT e−a(t−T )u(t− T ).

Thus,

X(ω) =
1

jω + a
− e−aT

jω + a
e−jωT =

1

jω + a
[1− e−(a+jω)T ].

Solution 7.3-6

From the problem statement, we know that

τ

4π
sinc2

(
tτ

4

)
⇐⇒ Λ

(ω
τ

)
.

Setting τ = 1 and using the duality property, we see that

y(t) = X(t) = Λ(t) ⇐⇒ Y (ω)2πx(−ω) =
1

2
sinc2

(
−ω

4

)
.

Since sinc is an even function, we obtain

Y (ω) =
1

2
sinc2

(ω
4

)
.

This result matches entry 19 of Table 7.1.

Solution 7.3-7

From time-shifting property
x(t± T ) ⇐⇒ X(ω)e±jωT

Therefore
x(t+ T ) + x(t− T ) ⇐⇒ X(ω)ejωT +X(ω)e−jωT = 2X(ω) cosωT

We can use this result to derive transforms of signals in Fig. P7.3-7.
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(a) Define the gate pulse xa(t) as shown in Fig. S7.3-7. From entry 17 of Table 7.1,

xa(t) = rect

(
t

2

)
⇐⇒ 2sinc(ω).

Using T = 3, the signal in Fig. P7.3-7a is xa(t+ 3) + xa(t− 3), and

xa(t+ 3) + xa(t− 3) ⇐⇒ 4sinc(ω) cos 3ω.

(b) Define the triangle pulse xb(t) as shown in Fig. S7.3-7. From entry 19 of Table 7.1,

xb(t) = Λ

(
t

2

)
⇐⇒ sinc2

(ω
2

)

Using T = 3, the signal in Fig. P7.3-7b is xb(t+ 3) + xb(t− 3), and

xb(t+ 3) + xb(t− 3) ⇐⇒ 2sinc2
(ω
2

)
cos 3ω.
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1
x b

(t
)

Figure S7.3-7

Solution 7.3-8

The frequency-shifting property states that x(t)e±jω0t ⇐⇒ X(ω ∓ ω0). Therefore,

x(t) sinω0t =
1

2j
[x(t)ejω0t + x(t)e−jω0t] =

1

2j
[X(ω − ω0) +X(ω − ω0)].

The time-shifting property states that x(t± T ) ⇐⇒ X(ω)e±jωT . Therefore,

x(t+ T )− x(t− T ) ⇐⇒ X(ω)ejωT −X(ω)e−jωT = 2jX(ω) sinωT

and
1

2j
[x(t+ T )− x(t− T )] ⇐⇒ X(ω) sinTω.

The signal in Fig. S7.3-8 is x(t+ 3)− x(t− 3) where

x(t) = rect

(
t

2

)
⇐⇒ 2sinc(ω).

Therefore,
x(t+ 3)− x(t− 3) ⇐⇒ 2j[2sinc(ω) sin 3ω] = 4jsinc(ω) sin 3ω.
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Solution 7.3-9

(a) The signal xa(t) in this case is a triangle pulse Λ( t
2π ) multiplied by cos(10t). That is,

xa(t) = Λ

(
t

2π

)
cos(10t).

From pair 19 of Table 7.1 we know that Λ( t
2π ) ⇐⇒ π sinc2(ωπ

2 ). Using the modulation property
of Eq. (7.32), it follows that

xa(t) = Λ

(
t

2π

)
cos(10t) ⇐⇒ π

2

{
sinc2

[
π
ω − 10

2

]
+ sinc2

[
π
ω + 10

2

]}
= Xa(ω).

The Fourier transform in this case is a real and positive function and thus Xa(ω) = |Xa(ω)|,
which is plotted using MATLAB and shown in Fig. S7.3-9.

>> Xa = @(omega) pi/2*(sinc((omega-10)/2).^2+sinc((omega+10)/2).^2);

>> omega = -20:.01:20; subplot(121); plot(omega,Xa(omega),’k’); grid on

>> axis([-20 20 0 .6*pi]); xlabel(’\omega’); ylabel(’X_a(\omega)=|X_b(\omega)|’);

>> set(gca,’xtick’,-20:10:20,’ytick’,[0,pi/2],’yticklabel’,{’0’,’\pi/2’});
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Figure S7.3-9

(b) The signal xb(t) is just xa(t) delayed by 2π. From time shifting property, its Fourier transform
is the same as in part (a) multiplied by e−jω(2π). Therefore,

Xb(ω) = Xa(ω)e
−jω(2π) =

π

2

{
sinc2

[
π
ω − 10

2

]
+ sinc2

[
π
ω + 10

2

]}
e−jω(2π).

Since Xb(ω) differs from Xa(ω) only by a phase term, we see that |Xb(ω)| = |Xa(ω)| (see
Fig. S7.3-9). The multiplier e−j2πω represents a linear phase spectrum ∠Xb(ω) = −2πω,
which is plotted using MATLAB and is also shown in Fig. S7.3-9.
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>> Xb = @(omega) Xa(omega).*exp(-omega*2j*pi);

>> subplot(122); plot(omega,unwrap(angle(Xb(omega)))+40*pi,’k’); grid on

>> axis([-20 20 -40*pi 40*pi]); xlabel(’\omega’); ylabel(’\angle X_b(\omega)’);

>> set(gca,’xtick’,-20:10:20,’ytick’,[-40*pi:20*pi:40*pi]);

>> set(gca,’yticklabel’,{’-40\pi’,’-20\pi’,’0’,’20\pi’,’40\pi’});

Note: In the above solution, we first multiplied the triangle pulse Λ( t
2π ) by cos(10t) and then

delayed the result by 2π. This means the signal in (b) is expressed as Λ( t−2π
2π ) cos[10(t− 2π)].

Alternatively, we could have interchanged the operation in this particular case, that is, the
triangle pulse Λ( t

2π ) is first delayed by 2π and then the result is multiplied by cos(10t). In
this alternate procedure, the signal in (b) is expressed as Λ( t−2π

2π ) cos(10t). This interchange
of operation is permissible here only because the sinusoid cos(10t) executes integral number of
cycles in the interval 2π. Because of this, both expressions are equivalent since cos[10(t−2π)] =
cos(10t).

(c) The signal xc(t) is identical to xb(t) except that the rectangular pulse Π
(

t
2π

)
is applied instead

of the triangular pulse Λ( t
2π ). From pair 17 of Table 7.1 we know that

rect

(
t

2π

)
⇐⇒ 2π sinc(πω).

Using the same argument as for part (b), we obtain

Xc(ω) = π{sinc(ωπ + 10π) + sinc(ωπ − 10π)}e−j2πω.

Solution 7.3-10

(a) Here,
X(ω) = rect

(
ω−4
2

)
+ rect

(
ω+4
2

)
.

From pair 18 of Table 7.1 we know that

1
π sinc(t) ⇐⇒ rect

(
ω
2

)
.

Applying the frequency-shifting property, we see that

x(t) = 2
π sinc(t) cos 4t.

(b) In this case,
X(ω) = ∆

(
ω+4
4

)
+∆

(
ω−4
4

)
.

From pair 20 of Table 7.1 we know that

1
π sinc

2(t) ⇐⇒ Λ(ω4 ).

Applying the frequency-shifting property, we see that

x(t) = 2
π sinc

2(t) cos 4t

Solution 7.3-11

In this problem, X(ω) = rect(ω) is the Fourier transform of a signal x(t).

(a) Represented in the frequency domain, ya(t) = x(t) ∗ x(t) is

Ya(ω) = X(ω) ·X(ω) = rect(ω).

A sketch of Ya(ω) is shown in Fig. S7.3-11a.
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(b) Represented in the frequency domain, yb(t) = x(t) ∗ x(t/2) is

Yb(ω) = X(ω) · 2X(2ω) = 2rect(2ω).

A sketch of Yb(ω) is shown in Fig. S7.3-11b.

(c) Represented in the frequency domain, yc(t) = 2x(t) is

Yc(ω) = 2X(ω) = 2rect(ω).

A sketch of Yc(ω) is shown in Fig. S7.3-11c.

(d) Represented in the frequency domain, yd(t) = x2(t) is

Yd(ω) =
1
2πX(ω) ∗X(ω) = 1

2πΛ
(
ω
2

)
.

A sketch of Yd(ω) is shown in Fig. S7.3-11d.

(e) Represented in the frequency domain, ye(t) = 1− x2(t) is

Ye(ω) = 2πδ(ω)− 1
2πX(ω) ∗X(ω) = 2πδ(ω)− 1

2πΛ
(
ω
2

)
.

A sketch of Ye(ω) is shown in Fig. S7.3-11e.
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Figure S7.3-11

Solution 7.3-12

(a) Here,

eλtu(t) ⇐⇒ 1

jω − λ
and u(t) ⇐⇒ πδ(ω) +

1

jω
.
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If x(t) = eλtu(t)∗u(t), then

X(ω) =

(
1

jω − λ

)(
πδ(ω) +

1

jω

)

=
πδ(ω)

jω − λ
+

[
1

jω(jω − λ)

]

= −π

λ
δ(ω) +

[− 1
λ

jω
+

1
λ

jω − λ

]
because g(x)δ(x) = g(0)δ(x)

=
1

λ

[
1

jω − λ
−
(
πδ(ω) +

1

jω

)]
.

Taking the inverse transform of this equation yields

x(t) =
1

λ
(eλt − 1)u(t).

(b) In this case,

eλ1tu(t) ⇐⇒ 1

jω − λ1
and eλ2tu(t) ⇐⇒ 1

jω − λ2
.

If x(t) = eλ1tu(t) ∗ eλ2tu(t), then

X(ω) =
1

(jω − λ1)(jω − λ2)
=

1
λ1−λ2

jω − λ1
−

1
λ1−λ2

jω − λ2
.

Therefore,

x(t) =
1

λ1 − λ2
(eλ1t − eλ2t)u(t).

(c) Here,

eλ1tu(t) ⇐⇒ 1

jω − λ1
and eλ2tu(−t) ⇐⇒ 1

jω − λ2
.

If x(t) = eλ1tu(t)∗eλ2tu(−t), then

X(ω) =
−1

(jω − λ1)(jω − λ2)
=

1
λ2−λ1

jω − λ1
−

1
λ2−λ1

jω − λ2
.

Therefore,

x(t) =
1

λ2 − λ1
[eλ1tu(t) + eλ2tu(−t)].

Notice that −
1

λ2−λ1

jω−λ2
inverts to 1

λ2−λ1
eλ2tu(−t) and not − 1

λ2−λ1
eλ2tu(t) because λ2 > 0 (see

pair 2 of Table 7.1).

(d) In this final case,

eλ1tu(−t) ⇐⇒ − 1

jω − λ1
and eλ2tu(−t) ⇐⇒ − 1

jω − λ2
.

If x(t) = eλ1tu(−t)∗eλ2tu(−t), then

X(ω) =
1

(jω − λ1)(jω − λ2)
=

−1
λ1−λ2

jω − λ1
−

−1
λ1−λ2

jω − λ2
.

Therefore,

x(t) =
1

λ2 − λ1
(eλ1t − eλ2t)u(−t).

The remarks at the end of part (c) apply here also.
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Solution 7.3-13

From the frequency convolution property, we obtain

x2(t) ⇐⇒ 1

2π
X(ω)∗X(ω)

Because of the width property of the convolution, the width of X(ω)∗X(ω) is twice the width of
X(ω). Repeated application of this argument shows that the bandwidth of xn(t) is nB Hz(n times
the bandwidth of x(t)).

Solution 7.3-14

(a) By direct integration, the Fourier transform is

X(ω) =

∫ 0

−T

e−jωtdt−
∫ T

0

e−jωtdt = − 2

jω
[1− cosωT ] =

j4

ω
sin2

(
ωT

2

)
.

(b) To begin, we represent the signal as

x(t) = rect

(
t+ T/2

T

)
− rect

(
t− T/2

T

)
.

Using pair 17 of Table 7.1, we see that

rect

(
t

T

)
⇐⇒ T sinc

(
ωT

2

)
.

Applying the time shifting property yields

rect

(
t± T/2

T

)
⇐⇒ T sinc

(
ωT

2

)
e±jωT/2.

Putting everything together, the Fourier transform is

X(ω) = T sinc

(
ωT

2

)
[ejωT/2 − e−jωT/2]

= 2jT sinc

(
ωT

2

)
sin

ωT

2

=
j4

ω
sin2

(
ωT

2

)

(c) Differentiating the signal yields

d

dt
x(t) = δ(t+ T )− 2δ(t) + δ(t− T ).

The Fourier transform of this equation yields

jωX(ω) = ejωT − 2 + e−jωT = −2[1− cosωT ] = −4 sin2
(
ωT

2

)
.

Therefore,

X(ω) =
j4

ω
sin2

(
ωT

2

)
.
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Solution 7.3-15

(a) By definition,

X(ω) =

∫ ∞

−∞
x(t)e−jωtdt and

d

dω
X(ω) =

d

dω

∫ ∞

−∞
x(t)e−jωtdt.

Changing the order of differentiation and integration yields

d

dω
X(ω) =

∫ ∞

−∞

d

dω
(x(t)e−jωt) =

∫ ∞

−∞
[−jtx(t)]e−jωtdt.

The last part is clearly the Fourier transform of −jtx(t). Thus,

−jtx(t) ⇐⇒ d

dω
X(ω)

(b) From pair 1 of Table 7.1,

e−atu(t) ⇐⇒ 1

jω + a
.

Applying the results of part (a) yields

−jte−atu(t) ⇐⇒ d

dω

(
1

jω + a

)
=

−j

(jω + a)2
.

Multiplying this result by j yields the desired transform pair,

te−atu(t) ⇐⇒ 1

(jω + a)2
.

Solution 7.3-16

To begin, define

Y (ω) =
d

dω
X(ω) and Z(ω) =

d

dω
Y (ω) =

d2

dω2
X(ω).

Both Y (ω) and Z(ω) are shown in Fig. S7.3-16.
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Figure S7.3-16

Using the frequency differentiation property, we see that

y(t) = −jtx(t) and z(t) = −jty(t) = −t2x(t).

For t 6= 0, we therefore see that

x(t) = −z(t)

t2
.
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Using δ(ω) ⇐⇒ 1
2π and the frequency-shifting property, we see that

Z(ω) = δ(ω + 1)− 2δ(ω) + δ(ω − 1) ⇐⇒ 1

2π

(
e−jt − 2 + ejt

)
=

1

π
(cos(t)− 1) = z(t).

Using this result, we find x(t) for t 6= 0 as

x(t) =
1

πt2
(1− cos(t)) .

For t = 0, we see that

x(0) =
1

2π

∫
X(ω) dω =

1

2π
(area of X(ω)) =

1

2π
.

Thus,

x(t) =

{
1
2π t = 0

1
πt2 (1− cos(t)) t 6= 0

.

Solution 7.3-17

As a preliminary step, using duality and δ(t) ⇐⇒ 1, we know that 1
2π ⇐⇒ δ(ω). Next, define

Y (ω) =
d

dω
X(ω) and Z(ω) =

d

dω
Y1(ω),

where Y1(ω) is the non-delta part of Y (ω). Signals X(ω), Y (ω), and Z(ω) are all shown in Fig. S7.3-
17.
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Figure S7.3-17

For t 6= 0, we know that

d

dω
Y1(ω) = Z(ω) = −π

2
δ(ω + 2) + πδ(ω)− π

2
δ(ω − 2).

Inverting, we obtain

−jty1(t) =
1

2
− 1

4

(
ej2t + e−j2t

)
=⇒ y1(t) =

1

j2t
(cos(2t)− 1) .

Next, we see that
d

dω
X(ω) = Y (ω) = Y1(ω) + πδ(ω + 2)− πδ(ω − 2).

Inverting, we obtain

−jtx(t) =
1

j2t
(cos(2t)− 1) +

1

2

(
e−j2t − ej2t

)
.

Solving for x(t), we obtain

x(t) =
1

2t2
(cos(2t)− 1) +

1

t
sin(2t), t 6= 0.
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Since 1
2π

∫∞
−∞ X(ω) dω = 1

2π · 2 · 1
2 · 2π = 1, we know that x(0) = 1. Putting everything together

yields

x(t) =

{
1 t = 0

1
2t2 (cos(2t)− 1) + 1

t sin(2t) t 6= 0
.

Solution 7.4-1

In the frequency domain, the zero-state response is Y (ω) = X(ω)H(ω), where the system frequency
response is

H(ω) =
1

jω + 1
.

(a) For input x(t) = e−2tu(t),

X(ω) =
1

jω + 2

Y (ω) =
1

(jω + 1)(jω + 2)
=

1

jω + 1
− 1

jω + 2

y(t) = (e−t − e−2t)u(t)

(b) For input x(t) = e−tu(t),

X(ω) =
1

jω + 1

Y (ω) =
1

(jω + 1)2

y(t) = te−atu(t)

(c) For input x(t) = etu(−t),

X(ω) =
1

jω − 1

Y (ω) =
−1

(jω + 1)(jω − 1)
=

1/2

jω + 1
− 1/2

jω − 1

y(t) =
1

2
e−tu(t) +

1

2
etu(−t)

(d) For input x(t) = u(t),

X(ω) = πδ(ω) +
1

jω

Y (ω) =
1

jω + 1

[
πδ(ω) +

1

jω

]
= πδ(ω) +

1

jω(jω + 1)
= πδ(ω) +

1

jω
− 1

jω + 1

y(t) = (1 − e−t)u(t)

Solution 7.4-2

(a) Here,

X(ω) =
1

jω + 1
and H(ω)=

−1

jω − 2
.

Thus,

Y (ω) =
−1

(jω − 2)(jω + 1)
=

1

3

[
1

jω + 1
− 1

jω − 2

]
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and

y(t) =
1

3
[e−tu(t) + e2tu(−t)].

(b) In this case,

X(ω) =
−1

jω − 1
and H(ω) =

−1

jω − 2
.

Thus,

Y (ω) =
1

(jω − 1)(jω − 2)
=

−1

jω − 1
− −1

jω − 2

and

y(t) = [et − e2t]u(−t)].

Solution 7.4-3

(a) We begin by noting that

x(t) = 1︸︷︷︸
dc

+ 2 cos(5πt)︸ ︷︷ ︸
2.5 Hz

+ 3 sin(8πt)︸ ︷︷ ︸
4 Hz

.

Given the underlying frequencies of 0, 2.5 and 4 Hz, the fundamental period is T0 = 2 and the
fundamental radian frequency is

ω0 =
2π

T0
= πrad/s.

(b) Using Tables, the Fourier transform of x(t) = 1 + 2 cos(5πt) + 3 sin(8πt) is easily shown as

X(ω) = 2πδ(ω) + 2πδ(ω + 5π) + 2πδ(ω − 5π) + 3jπδ(ω + 8)− 3jπδ(ω − 8).

The magnitude spectrum |X(ω)| is shown in Fig. S7.4-3a.
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Figure S7.4-3a

(c) Using pair 18 of Table 7.1 and the time-scaling property, we see that

8sinc(4πt) ⇐⇒ 8

(
1

4

)
rect

( ω

8π

)
= 2rect

( ω

8π

)
.

Using the frequency-shifting (modulation) property, we find that

h(t) = 8sinc(4πt) cos(2πt) ⇐⇒ rect

(
ω − 2π

8π

)
+ rect

(
ω + 2π

8π

)
= H(ω).

Using this expression, we use MATLAB to plot the system magnitude response (see Fig. S7.4-
3b). Notice that H(ω) = |H(ω)|.
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>> u = @(t) 1.0*(t>=0); rec = @(t) u(t+0.5)-u(t-0.5);

>> H = @(w) rec((w-2*pi)/(8*pi))+rec((w+2*pi)/(8*pi));

>> w = -10*pi:20*pi/10001:10*pi;

>> plot(w,abs(H(w)),’k’); xlabel(’\omega’); ylabel(’|H(\omega)|’);

>> set(gca,’xtick’,-10*pi:4*pi:10*pi,’ytick’,0:2); grid on;

>> set(gca,’xticklabel’,{’-10\pi’,’-6\pi’,’-2\pi’,’2\pi’,’6\pi’,’10\pi’});

>> axis([-10*pi 10*pi -.25 2.25]); grid on
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ω
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)|

Figure S7.4-3b

(d) Distortionless systems have constant magnitude response, which Fig. S7.4-3b clearly shows is
not true. Thus,

since |H(ω)| is not a constant, the system is not distortionless .

Since the magnitude response is constant over select frequency bands, however, it is possible to
consider the system distortionless over those bands. For example, the system is distortionless
over 0 ≤ ω < 2π and also over 2π < ω < 6π.

(e) By inspection of Figs S7.4-3a and S7.4-3b, we see that the 8π rad/s content is eliminated, the
5π content is passed with unit gain, and the dc component is amplified by 2. Thus,

y(t) = 2 + 2 cos(5πt).

Solution 7.4-4

(a) The signal x(t) =
∑∞

n=−∞ δ(t− πn) is a periodic delta train with period T0 = π. Thus,

ω0 =
2π

T0
= 2.

(b) To find the Fourier transform of x(t), we follow Ex. 7.8. First, the Fourier series coefficients
of x(t) are Dn = 1

T0
= π. From Eq. (7.22), the Fourier transform of x(t) is therefore

X(ω) =
2π

T0

∞∑

n=−∞
δ(ω − nω0)

= 2

∞∑

n=−∞
δ(ω − 2n).

Notice, the Fourier transform of a delta train is just another delta train!

(c) The system impulse response is given as h(t) = sin(3t)sinc2(t). From Table 7.1,

sin(3t) ⇐⇒ jπ [δ(ω + 3)− δ(ω − 3)] and sinc2(t) ⇐⇒ π∆
(ω
4

)
.
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Using the frequency convolution property, we find that

h(t) = sin(3t)sinc2(t) ⇐⇒ 1

2π
[jπδ(ω + 3)− jπδ(ω − 3)] ∗ π∆

(ω
4

)
= H(ω).

Thus,

H(ω) =
jπ

2
∆

(
ω + 3

4

)
− jπ

2
∆

(
ω − 3

4

)
.

Figure S7.4-4c shows the resulting magnitude response |H(ω)| and phase response ∠H(ω).
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Figure S7.4-4c

(d) Distortionless systems have constant magnitude response and linear phase response. Fig-
ure S7.4-4c shows that the magnitude response is not constant. Thus,

since |H(ω)| is not a constant, the system is not distortionless .

(e) The input x(t) is comprised of component frequencies ω = 0, ±2, ±4, ±6, . . . rad/s. Inspection
of Fig. S7.4-4c confirms that only the components at ω = ±2 and ω = ±4 will pass through
the system (with gains π

4 and phases ±π
2 ). In the frequency domain, the output is

Y (ω) = X(ω)H(ω) = 2δ(w + 4)
jπ

4
+ 2δ(w + 2)

jπ

4
+ 2δ(w − 2)

−jπ

4
+ 2δ(w − 4)

−jπ

4
.

Inverting, we obtain

y(t) =
1

2π

(
jπ

2
e−j4t +

jπ

2
e−j2t − jπ

2
ej2t − jπ

2
ej4t

)

=
1

2

(
ej4t − e−j4t

2j
+

ej2t − e−j2t

2j

)

=
1

2
sin(2t) +

1

2
sin(4t).

Solution 7.4-5

(a) Consulting Table 7.1, we see that

X1(ω) = sinc( ω
20000 ) and X2(ω) = 1.

Figure S7.4-5a shows X1(ω) and X2(ω), plotted as a function of hertzian frequency f = ω
2π .

(b) Figure S7.4-5b showsH1(ω) andH2(ω), also plotted as a function of hertzian frequency f = ω
2π .
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(c) The outputs of the two filters are given as

Y1(ω) = X1(ω)H1(ω) and Y2(ω) = X2(ω)H2(ω).

Figure S7.4-5c shows Y1(ω) and Y2(ω) as functions of f = ω
2π .

(d) Because y(t) = y1(t)y2(t), the frequency convolution property yields Y (ω) = Y1(ω) ∗ Y2(ω).
From the width property of convolution, it follows that the bandwidth of Y (ω) is the sum of
bandwidths of Y1(ω) and Y2(ω). Because the bandwidths of Y1(ω) and Y2(ω) are 10 and 5
kHz, respectively, the bandwidth of Y (ω) is 15 kHz.

Solution 7.4-6

Since h(t) = rect (t/10−3) and p(t) = ∆(t/10−6),

H(ω) = 10−3sinc( ω
2000 ) and P (ω) = 0.5× 10−6sinc2( ω

4×106 ).

The two spectra are sketched in Fig. S7.4-6. It is clear that the main lobe of H(ω) is at least
a thousand times narrower than P (ω), and we may consider P (ω) to be nearly constant of value
P (0) = 10−6/2 over the entire band of H(ω). Hence,

Y (ω) = P (ω)H(ω) ≈ P (0)H(ω) = 0.5× 10−6H(ω) ⇒ y(t) = 0.5× 10−6h(t).

Recall that h(t) is the unit impulse response of the system. Hence, the output y(t) is equal to the
system response to an input 0.5× 106δ(ω) = Aδ(ω).
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Solution 7.4-7

Since h(t) = rect (t/10−3) and p(t) = ∆(t),

H(ω) = 10−3sinc( ω
20000 ) and P (ω) = 0.5sinc2(ω4 ).

The two spectra are shown in Fig. S7.4-7. It is clear that the main lobe of P (ω) is at least five
hundred times narrower than H(ω), and we may consider H(ω) to be nearly constant of value
H(0) = 10−3 over the entire band of P (ω). Hence,

Y (ω) = P (ω)H(ω) ≈ P (ω)H(0) = 10−3P (ω) ⇒ y(t) = 10−3p(t).

Note that the dc gain of the system is k = H(0) = 10−3. Hence, the output is nearly kP(t).
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Solution 7.4-8

Every signal can be expressed as a sum of even and odd components [see Eq. (1.17)]. Hence, h(t)
can be expressed as a sum of its even and odd components as

h(t) = he(t) + ho(t),

where he(t) =
1
2 [h(t)u(t)+h(−t)u(−t)] and ho(t) =

1
2 [h(t)u(t)−h(−t)u(−t)]. From these equations,

we make an important observation that

he(t) = ho(t)sgn(t) and ho(t) = he(t)sgn(t). (7.4-8c)

Provided that h(t) has no impulse at the origin. This result applies only if h(t) is causal. A graphical
demonstration of this result may be seen in text Fig. 1.24.

Moreover, we have proved in Prob. 7.1-4 that the Fourier transform of a real and even signal is
a real and even function of ω, and the Fourier transform of a real and odd signal is an imaginary
odd function of ω. Therefore, if H(ω) = R(ω) + jX(ω), then

he(t) ⇐⇒ R(ω) and ho(t) ⇐⇒ jX(ω). (7.4-8d)
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Combining Eqs. (7.4-8c) and (7.4-8d) and using the convolution property, we obtain

F {he(t)} = R(ω) = F {ho(t)sgn(t)(t)} =
1

2π
jX(ω)∗ 2

jω
.

Thus,

R(ω) =
1

π

∫ ∞

−∞

X(y)

ω − y
dy.

Similarly,

F {ho(t)} = jX(ω) = F {he(t)sgn(t)(t)} =
1

2π
R(ω)∗ 2

jω
.

Thus,

jX(ω) =
1

jπ

∫ ∞

−∞

R(y)

ω − y
dy

or

X(ω) = − 1

π

∫ ∞

−∞

R(y)

ω − y
dy.

Solution 7.5-1

Here,

H(ω) = e−kω2

e−jωt0 .

Using pair 22 in Table 7.1 and the time-shifting property, we get

h(t) =
1√
4πk

e−(t−t0)
2/4k.

Since the impulse response is noncausal, the filter is unrealizable. Also,

∫ ∞

−∞

|ln|H(ω)||
ω2 + 1

dω =

∫ ∞

−∞

kω2

ω2+1
dω = ∞.

Since the integral is not finite, H(ω) does not satisfy the Paley-Wiener criterion, and the filter is
therefore unrealizable.

Since h(t) is a Gaussian function delayed by t0, it looks as shown in Fig. S7.5-1. Choosing
t0 == 3

√
2k, h(0) = e−4.5 = 0.011, or 1.1% of its peak value. Hence t0 = 3

√
2k is a reasonable

choice to make the filter approximately realizable.

t
0

t

h(
t)

Figure S7.5-1
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Solution 7.5-2

Here,

H(ω) =
2× 105

ω2 + 1010
e−jωt0 .

Using pair 3 in Table 7.1 and time-shifting property, we get

h(t) = e−105|t−t0|.

The impulse response is noncausal, and the filter is unrealizable.
The exponential decays to 1% of the peak value when

0.01 = e−105|0−t0| ⇒ t0 =
−ln(0.01)

105
= 4.6052× 10−5.

Hence, t0 = 46 µs is a reasonable choice to make this filter approximately realizable.

Solution 7.5-3

The unit impulse response is the inverse Fourier transform of H(ω).

(a) For H(ω) = 10−6 sinc (10−6ω), we see that

ha(t) = 0.5 rect

(
t

2× 10−6

)
.

Notice that ha(t) is a rectangular pulse that starts at t = −10−6. Since ha(t) 6= 0 for all t < 0,
the system is both noncausal and unrealizable. Delaying ha(t) by 1 µs, however, makes the
system both causal and realizable. This adjustment will not change anything in the system
behavior except a 1 µs delay in the system response.

(b) For H(ω) = 10−4∆(ω/40,000π), we see that

hb(t) = sinc2(10, 000πt).

Since hb(t) starts before t = 0, the system is both noncausal and unrealizable. Furthermore,
hb(t) is non-zero all the way to −∞. Clearly, this system cannot be made realizable with a
finite time delay. Because hb(t) decays rapidly, however, we can truncate it at a suitable point,
such as t = 10−4 when hb(t) is relatively small, and then delay the truncated impulse response
by 10−4. The resulting filter is causal and realizable, but only an approximation of the desired
behavior (due to the truncation) with 100 µs of delay (to ensure a causal, realizable system).

(c) For H(ω) = 2π δ(ω), we see that
hc(t) = 1.

Since hc(t) starts before t = 0, the system is both noncausal and unrealizable. Further, since
hc(t) never decays, this filter cannot be suitably realized with any amount of delay.

Solution 7.5-4

(a) Comparing the plots of x1(t) and x2(t), we see that the carrier of x2(t) is half the frequency
of the carrier of x1(t). The content centered at f = ±4 for X1(f) therefore moves to f = ±2
for X2(f), as shown in Fig. S7.5-4.

(b) Comparing the plots of X1(f) and X3(f), we see that X3(f) = 2X1(2f). Using the scaling
property, we see that

x3(t) = x1(
t
2 ).

Signal x3(t) is also shown in Fig. S7.5-4.
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(c) Since x4(t) = x1(t)+x2(t), we know that X4(f) = X1(f)+X2(f). The entire spectrum X1(f)
is outside the 3 Hz passband of the filter while the entire spectrum X2(f) is inside the 3 Hz
passband of the filter. Thus, the x1(t) component is filtered out while the x2(t) component is
preserved. Hence,

y4(t) = x2(t).

Signal y4(t) is shown in Fig. S7.5-4.
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Figure S7.5-4

Solution 7.6-1

In this problem, we have

x(t) =
1

2π
sinc(t/2) and X(ω) = rect(ω).

Define z(t) = sinc(t) = 2πx(2t). Thus,

Z(ω) =
2π

2
X
(ω
2

)
= πrect

(ω
2

)
.

Parseval’s theorem [see Eq. (7.45)] states

Ez =

∫ ∞

−∞
|z(t)|2 dt = 1

2π

∫ ∞

−∞
|Z(ω)|2 dω.

Thus,

Ez =

∫ ∞

−∞
sinc2(t) dt =

1

2π

∫ ∞

−∞
π2rect2

(ω
2

)
dω =

π

2

∫ 1

−1

1 dω = π.
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Since time-shifting does not affect energy, we see that the energy of z(t) = sinc(t) equals the energy
of z(t− 2) = sinc(t− 2). Thus,

∫ ∞

−∞
sinc2(t− 2) dt = Ez = π.

Solution 7.6-2

To begin, we see that

Ex =

∫ ∞

−∞
x2(t)dt =

1

2πσ2

∫ ∞

−∞
e−t2/σ2dt.

Letting t
σ = x√

2
and consequently dt = σ√

2
dx,

Ex
1

2πσ2

σ√
2

∫ ∞

−∞
e−x2/2dx.

Using the fact that
∫∞
−∞ e−x2/2 dx =

√
2π, we see that

Ex =

√
2π

2
√
2πσ

=
1

2σ
√
π
.

We can also verify this result using the frequency domain. Using pair 22 in Table 7.1, we see that

X(ω) = e−σ2ω2/2.

Parseval’s theorem requires that

Ex =
1

2π

∫ ∞

−∞
|X(ω)|2 dω =

1

2π

∫ ∞

−∞
e−σ2ω2

dω.

Letting σω = x√
2
and consequently dω = 1

σ
√
2
dx,

Ex =
1

2π

1

σ
√
2

∫ ∞

−∞
e−x2/2dx =

√
2π

2πσ
√
2
=

1

2σ
√
π
.

Solution 7.6-3

Consider a signal
x(t) = sinc(kt) and X(ω) = π

k rect(
ω

2k
).

Using Parseval’s theorem [Eq. (7.45)], we see that

Ex =

∫ ∞

−∞
sinc2(kt)dt =

1

2π

∫ ∞

−∞
π2

k2

[
rect

(
ω
2k

)]2
dω

=
π

2k2

∫ k

−k

dω = π
k .

Solution 7.6-4

If x2(t) ⇐⇒ A(ω), then the output Y (ω) = A(ω)H(ω), where H(ω) is the lowpass filter transfer
function (Fig. S7.6-4). Because this filter band ∆f → 0, we may express it as an impulse function
of area 4π∆f . Thus,

H(ω) ≈ [4π∆f ]δ(ω) and Y (ω) ≈ [4πA(ω)∆f ]δ(ω) = [4πA(0)∆f ]δ(ω).
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Here we used the property g(x)δ(x) = g(0)δ(x). This yields

y(t) ≈ 2A(0)∆f.

Next, because x2(t) ⇐⇒ A(ω), we have

A(ω) =

∫ ∞

−∞
x2(t)e−jωtdt so that A(0) =

∫ ∞

−∞
x2(t)dt = Ex.

Hence, y(t) ≈ 2Ex∆f .
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H
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0

ω

0

2π∆ f δ(ω)

Figure S7.6-4

Solution 7.6-5

Recall that

x2(t) =
1

2π

∫ ∞

−∞
X2(ω)e

jωt dω and

∫ ∞

−∞
x1(t)e

jωt dt = X1(−ω).

Therefore,

∫ ∞

−∞
x1(t)x2(t) dt =

1

2π

∫ ∞

−∞
x1(t)

[∫ ∞

−∞
X2(ω)e

jωt dω

]
dt

=
1

2π

∫ ∞

−∞
X2(ω)

[∫ ∞

−∞
x1(t)e

jωt dt

]
dω =

1

2π

∫
X1(−ω)X2(ω) dω.

Interchanging the roles of x1(t) and x2(t) in the previous development, we also see that

∫ ∞

−∞
x1(t)x2(t) dt =

1

2π

∫ ∞

−∞
X1(ω)X2(−ω) dω.

Solution 7.6-6

In the generalized Parseval’s theorem in Prob. 7.6-5, if we identify g1(t) = sinc(Wt−mπ) and g2(t) =
sinc(Wt− nπ), then

G1(ω) =
π

W
rect

( ω

2W

)
e
jmπω
W and G2(ω) =

π

W
rect

( ω

2W

)
e
jnπω
W .

Therefore, ∫ ∞

−∞
g1(t)g2(t)dt =

1

2π

( π

W

)2 ∫ ∞

−∞

[
rect

( ω

2W

)]2
e
j(n−m)πω

W dω.

But rect
(

ω
2W

)
= 1 for |ω| ≤ W , and is 0 otherwise. Hence

∫ ∞

−∞
g1(t)g2(t)dt =

π

2W 2

∫ W

−W

e
j(n−m)πω

W dω =

{
0
π
W

n 6= m
n = m

.

In evaluating the integral, we used the fact that e±j2πk = 1 when k is an integer.
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Solution 7.6-7

(a) The 95% essential bandwidth is the frequency band, centered at 0, that includes 95% of the
energy of x(t). That is, the 95% essential bandwidth is the value B satisfying

1

2π

∫ B

−B

|X(ω)|2 dω = 0.95Ex = 0.95
1

2π

∫ ∞

−∞
|X(ω)|2 dω.

(b) For X(ω) = rect(ω), we see that

Ex =
1

2π

∫ ∞

−∞
|X(ω)|2 dω =

1

2π

∫ 1
2

− 1
2

1 dω =
1

2π
.

To determine the 95% essential bandwidth, we need to find B that satisfies

1

2π

∫ B

−B

1 dω =
B

π
= 0.95

1

2π
.

Solving for B, we see that the 95% essential bandwidth is

B =
19

40
= 0.475.

In this case, the 95% bandwidth is just 95% of the true bandwidth of 1
2 — a behavior that

happens because X(ω) is uniformly spread over the entire signal bandwidth.

(c) For X(ω) = ∆(ω), we see that

Ex =
1

2π

∫ ∞

−∞
|X(ω)|2 dω =

1

π

∫ 1
2

0

(1 − 2ω)2 dω =
1

π

(
−1

6

)
(1− 2ω)3

∣∣∣∣
1
2

0

=
1

6π
.

Here and later, we simplify calculations by utilizing the even symmetry of X(ω).

To determine the 95% essential bandwidth, we need to find B that satisfies

1

π

∫ B

0

(1− 2ω)2 dω =
1

π

(
−1

6

)
(1− 2ω)3

∣∣∣∣
B

0

=
1

6π

(
1− [1− 2B]3

)
= 0.95

1

6π
.

This requires that
(1− 2B)3 = 0.05 or 1− 2B = (0.05)1/3.

Solving for B, we see that the 95% essential bandwidth is

B =
1− 0.051/3

2
≈ 0.315798.

In this case, the 95% bandwidth is approximately 63% of the true bandwidth of 1
2 . This result

is much small than the essential bandwidth for the rectangular case of part (b) because the
triangular spectrum has energy more concentrated at lower frequencies.

Solution 7.6-8

For X(ω) = e−|ω|, we see that

Ex =
1

2π

∫ ∞

−∞
|X(ω)|2 dω =

1

2π

∫ ∞

−∞
e−2|ω| dω =

1

π

∫ ∞

0

e−2ω dω =
e−2ω

−2π

∣∣∣∣
∞

0

=
1

2π
.
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Here and later, we simplify calculations by utilizing the even symmetry of X(ω).
To determine the 95% essential bandwidth, we need to find B that satisfies

1

π

∫ B

0

e−2ω dω =
1

π

e−2ω

−2

∣∣∣∣
B

0

=
1

π

(
1− e−2B

2

)
= 0.95

1

2π
.

This requires that

1− e−2B = 0.95 or e−2B = 0.05.

Solving for B, we see that the 95% essential bandwidth is

B =
ln(0.05)

−2
≈ 1.497866.

Solution 7.6-9

Applying the duality property of Eq. (7.25) to pair 3 of Table 7.1 yields

2a

t2 + a2
⇐⇒ 2πe−a|ω|.

The signal energy is given by

Ex =
1

π

∫ ∞

0

|2πe−aω|2dω = 4π

∫ ∞

0

e−2aωdω =
2π

a
.

The energy contained within the band (0 to W ) is

EW = 4π

∫ W

0

e−2aωdω =
2π

a
[1− e−2aW ].

If EW = 0.99Ex, then

e−2aW = 0.01 ⇒ W =
2.3025

a
rad/s =

0.366

a
Hz.

Solution 7.7-1

(a) For (i), we see that m(t) = cos 1000t, and for (ii), we see that m(t) = 2 cos 1000t+ cos 2000t.
For (iii), m(t) = cos 1000t cos3000t. Using trigonometric properties, we express the signal as
m(t) = 1

2 [cos 2000t + cos 4000t]. The message spectra for these cases follow from pair 9 of
Table 7.1 and are shown in Fig. S7.7-1a.
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(i) For m(t) = cos 1000t:

φDSB−SC(t) = m(t) cos 10000t = cos 1000t cos10000t

=
1

2
cos 9000t

︸ ︷︷ ︸
LSB

+
1

2
cos 11000t

︸ ︷︷ ︸
USB

.

(ii) For m(t) = 2 cos 1000t+ cos 2000t:

φDSB−SC(t) = m(t) cos 10, 000t = [2 cos 1000t+ cos 2000t] cos10000t

= cos 9000t+ cos 11000t+
1

2
[cos 8000t+ cos 12000t]

= cos 9000t+
1

2
cos 8000t

︸ ︷︷ ︸
LSB

+cos 11000t+
1

2
cos 12000t

︸ ︷︷ ︸
USB

(iii) For m(t) = cos 1000t cos3000t:

φDSB−SC(t) = m(t) cos 10000t =
1

2
[cos 2000t+ cos 4000t] cos10000t

=
1

2
[cos 8000t+ cos 12000t] +

1

2
[cos 6000t+ cos 14000t]

=
1

2
cos 8000t+

1

2
cos 6000t

︸ ︷︷ ︸
LSB

+
1

2
cos 12000t+

1

2
cos 14000t

︸ ︷︷ ︸
USB

Figure S7.7-1b shows the corresponding DSB-SC spectra.
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Figure S7.7-1b

(d) The following table identifies the frequencies in the baseband and the corresponding frequencies
in the DSB-SC, USB, and LSB spectra.
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Case Baseband frequency DSB frequency LSB frequency USB frequency
(i) 1,000 9,000 and 11,000 9,000 11,000
(ii) 1,000 9,000 and 11,000 9,000 11,000

2,000 8,000 and 12,000 8,000 12,000
(iii) 2,000 8,000 and 12,000 8,000 12,000

4,000 6,000 and 14,000 6,000 14,000

Solution 7.7-2

(a) Since M(ω) = 1
1000∆

(
ω

2π6000

)
,

signal m(t) has a bandwidth of 3000 Hz.

(b) Fig. S7.7-2b sketches the DSB-SC spectrum with ωc = 2π100000.
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Figure S7.7-2b

(c) Fig. S7.7-2c sketches the AM spectrum with µ = 1 and ωc = 2π100000. From entry 20 of
Table 7.1, we see that m(t) = 3sinc2(3000πt). Thus,the peak amplitude of the message signal
is mpeak = 3. Since µ = 1, we see that A = mpeak = 3.
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(d) Fig. S7.7-2d sketches the USB spectrum with ωc = 2π100000.
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Figure S7.7-2e

(e) Fig. S7.7-2e sketches the LSB spectrum with ωc = 2π100000.

(f) Figure S7.7-2f shows the positive-frequency portion of the FDM signal spectrum. From this
picture, we see that

ω1 = 2π(103, 000), ω2 = 2π(114, 000), ω3 = 2π(122, 000), ω4 = 2π(133, 000).

Also from Fig. S7.7-2f, we see that the end hertzian frequency of the FDM signal is 133 kHz.
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Solution 7.7-3

(a) The signal at point b is

xa(t) = m(t) cos3 ωct = m(t)

[
3

4
cosωct+

1

4
cos 3ωct

]
.

The term 3
4m(t) cosωct is the desired modulated signal, whose spectrum is centered at ±ωc.

The remaining term 1
4m(t) cos 3ωct is the unwanted term, which represents the modulated

signal with carrier frequency 3ωc with spectrum centered at ±ωc as shown in Fig. S7.7-3. The
bandpass filter centered at ±ωc allows to pass the desired term 3

4m(t) cosωct, but suppresses
the unwanted term 1

4m(t) cos 3ωct. Hence, this system works as desired with the output
3
4m(t) cosωct. Clearly, this method of DSB-SC generation results in k = 3

4 .

(b) Figure S7.7-3 shows the spectra at points b and c.
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Figure S7.7-3
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(c) The minimum usable value of ωc is 2πB in order to avoid spectral folding at dc.

(d) Here,

m(t) cos2 ωct =
m(t)

2
[1 + cos 2ωct] =

1

2
m(t) +

1

2
m(t) cos 2ωct.

The signal at point b consists of the baseband signal 1
2m(t) and a modulated signal

1
2m(t) cos 2ωct, which has a carrier frequency 2ωct, not the desired value ωct. Both the compo-
nents will be suppressed by the filter, whose center center frequency is ωc. Hence, this system
will not do the desired job.

(e) The reader may verify that the identity for cosn ωct contains a term cosωct when n is odd.
This is not true when n is even. Hence, the system works for a carrier cosn ωct only when n is
odd.

Solution 7.7-4

This signal is identical to that in Fig. 6.6a with period T0 (instead of 2π). We find the Fourier
series for this signal as

x(t) =
1

2
+

2

π

[
cosωct−

1

3
cos 3ωct+

1

5
cos 5ωct+ · · ·

]
.

Hence, y(t), the output of the multiplier is

y(t) = m(t)x(t) = m(t)

[
1

2
+

2

π

(
cosωct−

1

3
cos 3ωct+

1

5
cos 5ωct+ · · ·

)]
.

The bandpass filter suppresses the signals m(t) and m(t) cosnωct for all n 6= 1. Hence, the bandpass
filter output is

km(t) cosωct =
2

π
m(t) cosωct.

Solution 7.7-5

(a) Figure S7.7-5 shows the signal spectra at points a, b, and c.
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Figure S7.7-5
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(b) From the spectrum at point c, it is clear that the channel bandwidth must be at least 30,000
rad/s (from 5000 to 35,000 rad/s).

(c) Figure S7.7-5 shows the receiver to recover m1(t) and m2(t) from the received modulated
signal.

Solution 7.7-6

(a) Figure S7.7-6 shows the output signal spectrum Y (ω).

(b) Observe that Y (ω) is the same as M(ω) with the frequency spectrum inverted; that is, the high
frequencies are shifted to lower frequencies and vice versa. Thus, the scrambler in Fig. S7.7-6
inverts the frequency spectrum. To get back the original spectrum M(ω), we need to invert
the spectrum Y (ω) once again. This can be done by passing the scrambled signal y(t) through
the same scrambler.

Suppressed SuppressedY(ω)

–15K 15K f Hz

Figure S7.7-6

Solution 7.7-7

Here, the AM signal is xa(t) = [A+m(t)] cosωct. Hence,

xb(t) = [A+m(t)] cos2 ωct =
1

2
[A+m(t)] +

1

2
[A+m(t)] cos 2ωct.

The first term is a lowpass signal because its spectrum is centered at ω = 0. The lowpass filter allows
this term to pass, but suppresses the second term, whose spectrum is centered at ±2ωc. Hence the
output of the lowpass filter is

y(t) = A+m(t).

When the signal is passed through a dc block, the dc term A is suppressed yielding the output
m(t). This shows that the system can demodulate an AM signal regardless of the value of A. Since
the demodulator needs the original (phase-aligned) carrier signal, this is synchronous (or coherent)
demodulation.

Solution 7.7-8

(a) µ = 0.5 =
mp

A = 10
A ⇒ A = 20

(b) µ = 1.0 =
mp

A = 10
A ⇒ A = 10

(c) µ = 2.0 =
mp

A = 10
A ⇒ A = 5

(d) µ = ∞ =
mp

A = 10
A ⇒ A = 0

Since A = 0 for part (d), the µ = ∞ represents the DSB-SC case. Figure S7.7-8 shows the resulting
AM waveforms using a relatively low carrier frequency of 20 kHz.
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Solution 7.9-1

(a) A plot of x(t) over −2 ≤ t ≤ 2 is shown in the first graph of Fig. S7.9-1b.

(b) Here, we use time-differentiation and other Fourier transform properties as well as δ(t) ⇐⇒ 1
to determine X(ω). To begin, we assume ω 6= 0 and define

y(t) =
d

dt
x(t) and z(t) =

d

dt
y1(t),

where y1(t) is the non-delta part of y(t). Signals x(t), y(t), and z(t) are shown in Fig. S7.9-1b.
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Figure S7.9-1b

By inspection, we see that

z(t) = δ(t+ 0.5)− 2δ(t) + δ(t− 0.5) ⇐⇒ Z(ω) = ejω/2 − 2 + e−jω/2 = 2 cos
(ω
2

)
− 2.
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Since z(t) = d
dty1(t), we know that Z(ω) = jωY1(ω). Substituting and solving for Y1(ω), we

obtain

Y1(ω) =
2 cos

(
ω
2

)
− 2

jω
.

Next, we see that

y(t) = y1(t) +
1

2
δ(t+ 0.5)− 1

2
δ(t− 0.5)

and

Y (ω) = Y1(ω) +
1

2
ejω/2 − 1

2
e−jω/2 =

2 cos
(
ω
2

)
− 2

jω
+ j sin

(ω
2

)
.

Since y(t) = d
dtx(t), we know that Y (ω) = jωX(ω). Substituting and solving for X(ω), we

obtain

X(ω) =
2− 2 cos

(
ω
2

)

ω2
+

sin
(
ω
2

)

ω
=

4 sin2
(
ω
4

)

ω
+

sin
(
ω
2

)

ω
.

For ω = 0 (the dc part), we can graphically see that X(0) =
∫
x(t)dt = 3

4 . Putting everything
together and simplifying yields

X(ω) =

{
3
4 ω = 0

1
4 sinc

2
(
ω
4

)
+ 1

2 sinc
(
ω
2

)
ω 6= 0

.

Since the ω 6= 0 expression evaluates to 3
4 at ω = 0, the expression forX(ω) is further simplified

to

X(ω) = 1
4 sinc

2
(
ω
4

)
+ 1

2 sinc
(
ω
2

)
.

(c) Following the approach taken in Ex. 7.17, we next use MATLAB to verify the correctness of
X(ω) by using it to synthesize a 3-periodic replication of the original time-domain signal x(t).

>> snc = @(t) sinc(t/pi); % Conform MATLAB sinc to textbook notation

>> X = @(omega) 1/4*(snc(omega/4)).^2+1/2*snc(omega/2);

>> T0 = 3; omega0 = 2*pi/T0; D = @(n) X(n*omega0)/T0;

>> t = -T0:.001:T0; xN = D(0)*ones(size(t)); N = 100;

>> for n = 1:N,

>> xN = xN+real(D(n)*exp(1j*omega0*n*t)+D(-n)*exp(-1j*omega0*n*t));

>> end

>> plot(t,xN,’k’); xlabel(’t’); ylabel(’x_{100}(t)’); grid on;

>> axis([-T0 T0 -.1 1.1]); set(gca,’ytick’,0:.25:1,’xtick’,-3:.5:3);

The resulting MATLAB-synthesized waveform, shown in Fig. S7.9-1c, approaches a 3-periodic
replication of the original waveform x(t) and thereby confirms the correctness of the Fourier
transform X(ω) computed in part (b).
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Figure S7.9-1c
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Solution 7.9-2

(a) A plot of x(t) over −5 ≤ t ≤ 5 is shown in the first graph of Fig. S7.9-2b.

(b) Here, we use time-differentiation and other Fourier transform properties as well as δ(t) ⇐⇒ 1
to determine X(ω). To begin, we assume ω 6= 0 and define

y(t) =
d

dt
x(t) and z(t) =

d

dt
y1(t),

where y1(t) is the non-delta part of y(t). Signals x(t), y(t), and z(t) are shown in Fig. S7.9-2b.
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By inspection, we see that

z(t) = −δ(t+0.5)+2δ(t)−δ(t−2.5) ⇐⇒ Z(ω) = −ejω/2+2−e−j5ω/2 = 2−2e−jω cos

(
3ω

2

)
.

Since z(t) = d
dty1(t), we know that Z(ω) = jωY1(ω). Substituting and solving for Y1(ω), we

obtain

Y1(ω) =
2− 2e−jω cos

(
3ω
2

)

jω
.

Next, we see that

y(t) = y1(t) +
1

2
δ(t+ 0.5)− 5

2
δ(t− 2.5)

and

Y (ω) = Y1(ω) +
1

2
ejω/2 − 5

2
e−j5ω/2 =

2− 2e−jω cos
(
3ω
2

)

jω
+

1

2
ejω/2 − 5

2
e−j5ω/2.

Since y(t) = d
dtx(t), we know that Y (ω) = jωX(ω). Substituting and solving for X(ω), we

obtain

X(ω) =
2e−jω cos

(
3ω
2

)
− 2

ω2
+

1
2e

jω/2 − 5
2e

−j5ω/2

jω
.

For ω = 0 (the dc part), we can graphically see that X(0) =
∫
x(t)dt = 25

8 + 1
8 = 13

4 . Putting
everything together and simplifying yields

X(ω) =

{
13
4 ω = 0

2e−jω cos( 3ω
2 )−2

ω2 +
1
2 e

jω/2− 5
2 e

−j5ω/2

jω ω 6= 0
.

(c) Following the approach taken in Ex. 7.17, we next use MATLAB to verify the correctness of
X(ω) by using it to synthesize a 10-periodic replication of the original time-domain signal x(t).
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>> X = @(omega) (2*exp(-1j*omega)*cos(3*omega/2)-2)./(omega.^2)+...

>> (0.5*exp(1j*omega/2)-2.5*exp(-5j*omega/2))./(1j*omega);

>> T0 = 10; omega0 = 2*pi/T0; D = @(n) X(n*omega0)/T0; D0 = 13/4/T0;

>> t = -T0:.001:T0; xN = D0*ones(size(t)); N = 100;

>> for n = 1:N,

>> xN = xN+real(D(n)*exp(1j*omega0*n*t)+D(-n)*exp(-1j*omega0*n*t));

>> end

>> plot(t,xN,’k’); xlabel(’t’); ylabel(’x_{100}(t)’);

>> grid on; axis([-T0 T0 -.3 2.8]);

>> set(gca,’ytick’,0:.5:2.5,’xtick’,[-10 -7.5 -.5 2.5 9.5]);

The resulting MATLAB-synthesized waveform, shown in Fig. S7.9-2c, approaches a 10-periodic
replication of the original waveform x(t) and thereby confirms the correctness of the Fourier
transform X(ω) computed in part (b).
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Solution 7.9-3

This problem considers the continuous-time aperiodic signal x(t) = rect(t) with Fourier transform
X(ω) = sinc(ω/2), and the signal y(t) = (1− |t− 1|)(u(t)− u(t− 2)) with Fourier transform Y (ω).

(a) We see that y(t) = x(t) ∗ x(t− 1), so

Y (ω) = e−jωX2(ω) = e−jωsinc2
(ω
2

)
.

(b) If f(t) is T0-periodically replicated to produce g(t), then we know from Eq. (7.5) that Gk =
1
T0
F
(
k 2π
T0

)
, where k is used to index frequency. Thus, Vk = Y (2πk/3) implies that v(t) is a

3-periodic replication of 3y(t). A sketch of v(t) is shown in Fig. S7.9-3b.

>> y = @(t) t.*((t>=0)&(t<1))+(2-t).*((t>=1)&(t<2));

>> v = @(t) 3.*y(mod(t,3)); t = -4.5:.001:4.5;

>> plot(t,v(t),’k’); xlabel(’t’); ylabel(’v(t)’); grid on

>> set(gca,’xtick’,-4:4,’ytick’,0:3); axis([-4.5 4.5 -.1 3.1]);

(c) Using the Fourier series coefficients Vk = Y (2πk/3), we use MATLAB to synthesize and plot
v(t). The result, shown in Fig. S7.9-3c using up to the 10th harmonic, is close to the signal
v(t) shown in Fig. S7.9-3b. As more harmonics are included, the two waveforms become
indistinguishable from one another.

>> snc = @(t) sinc(t/pi); % Conform MATLAB sinc to textbook notation

>> V = @(k) exp(-1j*2*pi*k/3).*(snc(k*pi/3)).^2; omega0 = 2*pi/3;

>> vK = zeros(size(t)); K = 10;

>> for k = -K:K,

>> vK = vK+V(k)*exp(1j*k*omega0*t);
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>> end

>> plot(t,real(vK),’k’); xlabel(’t’); ylabel(’v_{10}(t)’); grid on;

>> axis([-4.5 4.5 -.3 3.3]); set(gca,’xtick’,-4:4,’ytick’,0:3);
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Figure S7.9-3c

(d) When we upsample Vk by factor 2 to create Wk, the corresponding time-domain relationship
is w(t) = v(2t). Thus, Pk = Vk +Wk produces the time-domain waveform

p(t) = v(t) + v(2t).

Figure S7.9-3d shows the resulting wavform.

>> p = @(t) v(t) + v(2*t);

>> plot(t,p(t),’k’); xlabel(’t’); ylabel(’p(t)’); grid on

>> set(gca,’xtick’,-4:.5:4,’ytick’,0:1.5:4.5); axis([-4.5 4.5 -.2 4.8]);
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Figure S7.9-3d

(e) Using a truncated FS, we next use MATLAB to synthesize and plot p(t). The result, shown in
Fig. S7.9-3e using up to the 10th harmonic, is close to the signal p(t) shown in Fig. S7.9-3d. As
more harmonics are included, the two waveforms become indistinguishable from one another.
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>> P = @(k) V(k).*(mod(k,1)==0)+V(k/2).*(mod(k/2,1)==0);

>> pK = zeros(size(t)); K = 10;

>> for k = -K:K,

>> pK = pK+P(k)*exp(1j*k*omega0*t);

>> end

>> plot(t,real(pK),’k’); xlabel(’t’); ylabel(’p_{10}(t)’); grid on;

>> set(gca,’xtick’,-4:.5:4,’ytick’,0:1.5:4.5); axis([-4.5 4.5 -.2 4.8]);
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Figure S7.9-3e

Solution 7.9-4

The signal x(t) = e−atu(t) has Fourier Transform given by X(ω) = 1
jω+a and energy Ex = 1

2a .

Using this information, MATLAB program CH7MP2 is modified.

function [W,E_W] = CH7MP2mod1(a,beta,tol)

% CH7MP2mod1.m

% Function M-file computes essential bandwidth W for exp(-at)u(t).

% INPUTS: a = decay parameter of x(t)

% beta = fraction of signal energy desired in W

% tol = tolerance of relative energy error

% OUTPUTS: W = essential bandwidth [rad/s]

% E_W = Energy contained in bandwidth W

W = 0; step = a; % Initial guess and step values

X_squared = @(omega,a) 1./(omega.^2+a.^2);

E = beta/(2*a); % Desired energy in W

relerr = (E-0)/E; % Initial relative error is 100 percent

while(abs(relerr)>tol),

if (relerr>0), % W too small, so...

W=W+step; % ... increase W by step

elseif (relerr<0), % W too large, so...

step = step/2; % ... decrease step size and then W.

W = W-step;

end

E_W = 1/(2*pi)*quad(X_squared,-W,W,[],[],a);

relerr = (E - E_W)/E;

end

(a) Setting a = 1 and using 95% signal energy results in

>> [W,E_W] = CH7MP2mod1(1,.95,1e-9)

W = 12.7062

E_W = 0.4750

Thus,

W1 = 12.7062.
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From the text example, the essential bandwidth corresponding to 95% signal energy is derived
as W = 12.706a radians per second. For a = 1, this corresponds nicely with the computed
value of W1 = 12.7062.

(b) Setting a = 2 and using 90% signal energy results in

>> [W,E_W] = CH7MP2mod1(2,.90,1e-9)

W = 12.6275

E_W = 0.2250

Thus,

W2 = 12.6275.

(c) Setting a = 3 and using 75% signal energy results in

>> [W,E_W] = CH7MP2mod1(3,.75,1e-9)

W = 7.2426

E_W = 0.1250

Thus,

W3 = 7.2426.

Solution 7.9-5

To solve this problem, program CH7MP2 is modified to solve for the pulse width to achieve a
desired essential bandwidth, rather than solving for the essential bandwidth that corresponds to a
desired pulse.

function [tau,E_W] = CH7MP2mod2(W,beta,tol)

% CH7MP2mod2.m

% Function M-file computes the width of a square pulse to achieve a

% desired essential bandwidth W.

% INPUTS: W = essential bandwidth [rad/s]

% beta = fraction of signal energy desired in W

% tol = tolerance of relative energy error

% OUTPUTS: tau = pulse width

% E_W = Energy contained in bandwidth W

tau = 1; step = 1; % Initial guess and step values

snc = @(t) sinc(t/pi); % Conform MATLAB sinc to textbook notation

X_squared = @(omega,tau) (tau*snc(omega*tau/2)).^2;

E_W = 1/(2*pi)*quad(X_squared,-W,W,[],[],tau);

E = beta*tau; % Desired energy in W

relerr = (E-E_W)/E;

while(abs(relerr) > tol),

if (relerr>0), % tau too small, so...

tau=tau+step; % ... increase tau by step

elseif (relerr<0), % tau too large, so...

step = step/2; % ... decrease step size and then tau.

tau = tau-step;

end

E_W = 1/(2*pi)*quad(X_squared,-W,W,[],[],tau);

E = beta*tau; % Desired energy in W

relerr = (E - E_W)/E;

end

(a) Set W = 2π5 and select 95% signal energy.
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>> [tau,E_W] = CH7MP2mod2(2*pi*5,.95,1e-9)

tau = 0.4146

E_W = 0.3939

Thus,
τ1 = 0.4146.

(b) Set W = 2π10 and select 90% signal energy.

>> [tau,E_W] = CH7MP2mod2(2*pi*10,.90,1e-9)

tau = 0.0849

E_W = 0.0764

Thus,
τ2 = 0.0849.

(c) Set W = 2π20 and select 75% signal energy.

>> [tau,E_W] = CH7MP2mod2(2*pi*20,.75,1e-9)

tau = 0.0236

E_W = 0.0177

Thus,
τ3 = 0.0236.

Solution 7.9-6

To solve this problem, program CH7MP2 is modified to solve for the decay parameter a to achieve
a desired essential bandwidth, rather than solving for the essential bandwidth that corresponds to
a desired decay parameter.

function [a,E_W] = CH7MP2mod3(W,beta,tol)

% CH7MP2mod3.m

% Function M-file computes decay parameter a needed to achieve a

% desired essential bandwidth W.

% INPUTS: W = essential bandwidth [rad/s]

% beta = fraction of signal energy desired in W

% tol = tolerance of relative energy error

% OUTPUTS: a = decay parameter

% E_W = Energy contained in bandwidth W

a = 1; step = 1; % Initial guess and step values

X_squared = inline(’1./(omega.^2+a.^2)’,’omega’,’a’);

E_W = 1/(2*pi)*quad(X_squared,-W,W,[],[],a);

E = beta/(2*a); % Desired energy in W

relerr = (E - E_W)/E;

while(abs(relerr) > tol),

if (relerr<0), % a too small, so...

a=a+step; % ... increase a by step

elseif (relerr>0), % a too large, so...

step = step/2; % ... decrease step size and then a.

a = a-step;

end

E_W = 1/(2*pi)*quad(X_squared,-W,W,[],[],a);

E = beta/(2*a); % Desired energy in W

relerr = (E - E_W)/E;

end

(a) Set W = 2π5 and select 95% signal energy.
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>> [a,E_W] = CH7MP2mod3(2*pi*5,.95,1e-9)

a = 2.4725

E_W = 0.1921

Thus,
a1 = 2.4725.

(b) Set W = 2π10 and select 90% signal energy.

>> [a,E_W] = CH7MP2mod3(2*pi*10,.90,1e-9)

a = 9.9524

E_W = 0.0452

Thus,
a2 = 9.9524.

(c) Set W = 2π20 and select 75% signal energy.

>> [a,E_W] = CH7MP2mod3(2*pi*20,.75,1e-9)

a = 52.0499

E_W = 0.0072

Thus,
a3 = 52.0499.

Solution 7.9-7

Call the desired unit-amplitude, unit duration triangle function x(t). First, notice that x(t) can be
constructed by convolving two rectangular process, each of width τ = 0.5 and height A =

√
2. The

energy of x(t) is Ex = 2
∫ 0.5

t=0
(2t)2dt = 1/3. Furthermore, using the convolution-in-time property

and spectrum of a rectangular pulse, we know that X(ω) =
(√

2
2 sinc(ω/4)

)2
.

Next, program CH7MP2 is modified to solve for the essential bandwidths of this signal for various
signal energies.

function [W,E_W] = CH7MP2mod4(beta,tol)

% CH7MP2mod4.m

% Function M-file computes essential bandwidth W for a unit-amplitude, unit

% duration triangle function.

% INPUTS: beta = fraction of signal energy desired in W

% tol = tolerance of relative energy error

% OUTPUTS: W = essential bandwidth [rad/s]

% E_W = Energy contained in bandwidth W

W = 0; step = 1; % Initial guess and step values

snc = @(t) sinc(t/pi); % Conform MATLAB sinc to textbook notation

X_squared = @(omega) (sqrt(2)/2*snc(omega /4)).^4;

E = beta/3; % Desired energy in W

relerr = (E-0)/E; % Initial relative error is 100 percent

while(abs(relerr) > tol),

if (relerr>0), % W too small, so...

W=W+step; % ... increase W by step

elseif (relerr<0), % W too large, so...

step = step/2; % ... decrease step size and then W.

W=W-step;

end

E_W = 1/(2*pi)*quad(X_squared,-W,W);

relerr = (E - E_W)/E;

end
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Use 95% signal energy to compute the essential bandwidth:

>> [W,E_W] = CH7MP2mod4(.95,1e-9)

W = 6.2877

E_W = 0.3167

Use 90% signal energy to compute the essential bandwidth:

>> [W,E_W] = CH7MP2mod4(.9,1e-9)

W = 5.3350

E_W = 0.3000

Use 75% signal energy to compute the essential bandwidth:

>> [W,E_W] = CH7MP2mod4(.75,1e-9)

W = 3.7872

E_W = 0.2500

Thus, the essential bandwidths are

W0.95 = 6.2877rad/s, W0.90 = 5.3350rad/s, W0.75 = 3.7872rad/s.

Solution 7.9-8

Following the spectral sampling example in Sec. 7.9.3, the first 10 Fourier series coefficients of a 1/3
duty-cycle square wave are

Dn =
τ

T0
sinc

(
nπτ

T0

)
.

(a) Setting T0 = 2π and τ = 2π/3 yields

Dn =
1

3
sinc

(nπ
3

)
.

MATLAB is used to evaluate and plot the first ten coefficients.

>> snc = @(t) sinc(t/pi); % Conform MATLAB sinc to textbook notation

>> tau = 2*pi/3; T_0 = 2*pi; n = [0:10];

>> D_n = tau/T_0*snc(n*pi*tau/T_0);

>> stem(n,D_n,’k.’); xlabel(’n’); ylabel(’D_n’);

>> axis([-0.5 10.5 -0.1 0.35]); grid on;
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D
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Figure S7.9-8a

(b) Setting T0 = π and τ = π/3 yields

Dn =
1

3
sinc

(nπ
3

)
.

Notice, the coefficients Dn depend only on the duty-cycle of the signal, not the period. Since
the duty cycle is fixed, the coefficients Dn are identical to those determined in part (a) [see
Fig. S7.9-8a].
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Solution 7.9-9

By definition of the FT, we see that

X(ω) =

∫ ∞

−∞
x(t)e−jωtdt

=

∫ ∞

−∞
e−t2e−jωtdt

=

∫ ∞

−∞
e−(t2+jωt+(jω/2)2−(jω/2)2)dt

= e(jω/2)2
∫ ∞

−∞
e−(t+jω/2)2dt.

Substituting t′/
√
2 = t and dt′/

√
2 = dt yields

X(ω) =
e−ω2/4

√
2

∫ ∞

−∞
e−(t′+jω2/

√
2)2dt′.

However, 1√
2π

∫∞
−∞ e

−(t−α)2

2 dt = 1 for any a, so
∫∞
−∞ e

−(t′+jω2)2

2 dt′ =
√
2π. Thus,

X(ω) =
√
πe−ω2/4.

MATLAB is used to plot x(t) and X(ω).

>> t = linspace (-5,5,1001); x = exp(-t.^2);

>> subplot(211); plot(t,x,’k’); xlabel(’t’); ylabel(’x(t)’);

>> omega = linspace (-5,5,1001); X = sqrt(pi)*exp(-omega.^2/4);

>> subplot(212); plot(t,X,’k’); xlabel(’\omega’); ylabel(’X(\omega)’);
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Figure S7.9-9

Figure S7.9-9 confirms that X(ω) is just a scaled and stretched version of x(t). This is something
remarkable; the Fourier Transform a Gaussian pulse is itself a Gaussian pulse!



Chapter 8 Solutions

Solution 8.1-1

given fs is the Nyquist rate for signal x(t), we determine the Nyquist rate for each of the following
signals.

(a) For ya(t) =
d
dtx(t), we know that Ya(ω) = jωX(ω). Thus, the bandwidth of ya(t) equals the

bandwidth of x(t), and

the Nyquist rate for signal ya(t) is fs.

(b) For yb(t) = x(t) cos(2πf0t), we know that Yb(ω) =
1
2X(ω + 2πf0) +

1
2X(ω − 2πf0). Thus, we

see that the spectrum of yb(t) is just the (scaled) spectrum of x(t) shifted by ±f0. Since x(t)
has bandwidth fs

2 , the bandwidth of yb(t) is
fs
2 + f0, and

the Nyquist rate for signal yb(t) is fs + 2f0.

(c) In this case, yc(t) = x(t + a) + x(t − b), for real constants a and b. Since a time shift simply
scales a signal’s spectrum by a complex exponential, the bandwidth of yc(t) equals that of
x(t), and

the Nyquist rate for signal yc(t) is fs.

(d) For yd(t) = x(at), where a is real and positive, we know that Yd(ω) = 1
aX

(
ω
a

)
. Thus, the

bandwidth of yd(t) equals a times the bandwidth of x(t), and

the Nyquist rate for signal yd(t) is afs.

Solution 8.1-2

The bandwidths of x1(t) and x2(t) are 100 kHz and 150 kHz, respectively. Therefore, the Nyquist
sampling rate for x1(t) is 200 kHz, and the Nyquist sampling for x2(t) is 300 kHz. Now,
x1

2(t) ⇐⇒ 1
2πX1(ω) ∗X1(ω), and from the width property of convolution the bandwidth of x1

2(t)
is twice the bandwidth of x1(t). Similarly, the bandwidth of x2

3(t) is three times the bandwidth of
x2(t), and the bandwidth of x1(t)x2(t) is the sum of the bandwidths of x1(t) and x2(t). Therefore,
the Nyquist rate for x1

2(t) is 400 kHz, the Nyquist rate for x2
3(t) is 900 kHz, and the Nyquist rate

for x1(t)x2(t) is 500 kHz.

Solution 8.1-3

Here, signal x(t) has a bandwidth of B = 1000 Hz and Nyquist frequency fs = 2000 Hz. For a
positive integer N , we seek the Nyquist rate for the signal y(t) = xN (t). Using the properties of the
Fourier transform, we know that

y(t) = x2(t) ⇐⇒ 1

2π
X(ω) ∗X(ω).

574
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From the width property of convolution, y(t) = x2(t) has twice the bandwidth of x(t). Continuing,

y(t) = x3(t) ⇐⇒ 1

4π2
X(ω) ∗X(ω) ∗X(ω).

Thus, y(t) = x3(t) has thrice the bandwidth of x(t). Generalizing, we see that y(t) = xN (t) has N
times the bandwidth of x(t), and

the Nyquist rate for signal y(t) = xN (t) is Nfs = N(2000) Hz.

Solution 8.1-4

(a) From pair 20 of Table 7.1 we know that

xa(t) = sinc2(100πt) ⇐⇒ 1

100
∆
( ω

2π200

)
.

Thus, the bandwidth of this signal is 200π rad/s or 100 Hz, and the Nyquist sampling rate
and interval are

fs = 2(100) = 200 Hz (samples/s) and Ts =
1

200
s/sample (5 ms/sample).

(b) Multiplying a signal by a constant does not change the signal’s bandwidth. Since xb(t) =
0.01xa(t), signal xb(t) has the same 100 Hz bandwidth as does xa(t), and the Nyquist sampling
rate and interval are

fs = 2(100) = 200 Hz (samples/s) and Ts =
1

200
s/sample (5 ms/sample).

(c) From pairs 18 and 20 of Table 7.1 we know that

sinc(100πt) + 3sinc2(60πt) ⇐⇒ 1

100
rect

( ω

200π

)
+

1

20
∆
( ω

240π

)
.

The bandwidth of rect
(

ω
200π

)
is 50 Hz and that of ∆

(
ω

240π

)
is 60 Hz. The bandwidth of the

sum is the higher of the two, that is, 60 Hz. The Nyquist sampling rate and interval are

fs = 2(60) = 120 Hz (samples/s) and Ts =
1

120
s/sample (8.33 ms/sample).

(d) From pair 18 of Table 7.1 and we know that

sinc(50πt) ⇐⇒ 1

50
rect

( ω

100π

)
and sinc(100πt) ⇐⇒ 1

100
rect

( ω

200π

)
.

The two signals have bandwidths 25 Hz and 50 Hz, respectively. Furthermore, x1(t)x2(t) ⇐⇒
1
2πX1(ω) ∗X2(ω). From the width property of convolution, the width of X1(ω) ∗X2(ω) is the
sum of the widths of the signals convolved. Therefore, the bandwidth of sinc(50t)sinc(100t) is
25 + 50 = 75 Hz, and the Nyquist sampling rate and interval are

fs = 2(75) = 150 Hz (samples/s) and Ts =
1

150
s/sample (6.67 ms/sample).
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Solution 8.1-5

(a) By inspection, we know that

|X(ω)| = 3π [δ(ω + 6π) + δ(ω − 6π)]

+ π [δ(ω + 18π) + δ(ω − 18π)]

+ 2π [δ(ω + [28− ǫ]π) + δ(ω − [28− ǫ]π)] .

Figure S8.1-5a shows |X(ω)| as a function of ω
2π , which is frequency in Hz. Clearly, signal x(t)

has bandwidth of 14−ǫ Hz and the minimum sampling rate is thus

Fs = 2(14) = 28 Hz (samples/s).
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Figure S8.1-5a

(b) Sampling at 25% greater than the 28 Hz Nyquist rate results in Fs = 35 Hz. Figure S8.1-5b
shows the resulting spectrum over the range |ω/2π| < 50 Hz. This is the spectrum of Fig. S8.1-
5a scaled by 1/T = 35 and periodically replicated every 35 Hz. To reconstruct x(t), we pass
the sampled signal through an ideal lowpass filter with gain T = 1

Fs
= 1

35 and cutoff frequency
anywhere between (14 + β) Hz to (21− β) Hz where β is a small positive number.
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Figure S8.1-5b

Solution 8.1-6

(a) Using the results of Ex. 7.3,

δT (t) ⇐⇒ ωs

∞∑

n=−∞
δ (ω − nωs) , ωs =

2π

T
.
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Hence

x(t) = x(t)δT (t) ⇐⇒ωsX(ω) ∗
∞∑

n=−∞
δ(ω − nωs)

=
ωs

2π

∞∑

n=−∞
X(ω) ∗ δ(ω − nωs)

=
1

T

∞∑

n=−∞
X(ω − nωs).

This result matches the (sampling theorem) result of Eq. (8.2).

(b) Here, the sampling impulse train is given by

s(t) =
∑

n

δ(t− nT − τ).

This is same as
∑

n δ(t− nT ) right-shifted by τ . Hence

s(t) ⇐⇒ ωs

∑

n

δ(ω − nωs)e
−jnωsτ

and

x(t)s(t) ⇐⇒ωs

2π
X(ω) ∗

∑

n

δ(ω − nωs)e
−jnωsτ

=
1

Ts

∞∑

n=−∞
X(ω − nωs)e

−jnωsτ .

Solution 8.1-7

In this problem, signal x(t) is bandlimited to 12 kHz where the band between 10 and 12 kHz is
corrupted by excessive noise. When a signal is sampled at rate fs Hz, the spectrum is replicated
every fs Hz. To determine the minimum sampling rate for x(t), we need to determine an fs such
that the spectral content between -10 and 10 kHz remains uncorrupted. To achieve this, we require
that the lowest frequency of the first replicate just avoids the highest frequency of useful signal
content. That is, we require that fs − 12 ≥ 10 or

fs = 22 kHz (samples/s) minimum sampling rate for unfiltered signal x(t).

This rate is lower than the Nyquist rate of 2(12) = 24 kHz. The reason we can tolerate sub-Nyquist
sampling is that the resulting aliasing only occurs between 10 and 12 kHz, a band already unusable
due to noise. The useful signal content up to 10 kHz is untouched. Figure S8.1-7a illustrates this a
situation, where the gray shading is used to show the corrupted band.

By filtering x(t) with an ideal lowpass filter with 10-kHz cutoff frequency, we can obtain a signal
y(t) that contains only useful signal and no noise. This filtered signal, which is bandlimited to 10
kHz, must be sampled at no lower than its Nyquist rate, or

fs = 2(10) = 20 kHz (samples/s) minimum sampling rate for filtered signal y(t).

Figure S8.1-7b illustrates this a situation.
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Solution 8.1-8

Figure S8.1-8 shows the signal x(t) = Λ
(
t−1
2

)
when sampled at rates of 10, 2, and 1 Hz, respectively.
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Figure S8.1-8

Using pair 19 of Table 7.1 and the Fourier transform shift property, we see that

x(t) = ∆

(
t− 1

2

)
⇐⇒ sinc2

(ω
2

)
e−jω = X(ω).

This spectrum decays rapidly with frequency, so even modest sampling rates are sufficient to ad-
equately represent this signal. To determine a suitable sampling rate, we need to determine the
bandwidth B that contains a majority of the signal energy. This can be accomplished by finding
the essential bandwidth B of signal x(t) using, say, a 99% energy criterion, and then doubling that
frequency to obtain fs. Guided by Sec. 7.9.2 and using MATLAB’s quad and fminsearch functions,
we compute the 99% energy criterion bandwidth of signal x(t). The program uses the fact that x(t)
has energy Ex = 2

3 .

>> snc = @(t) sinc(t/pi); % Conform MATLAB sinc to textbook notation

>> Xsquared = @(omega) (snc(omega/2)).^4;

>> Ex = @(B) quad(Xsquared,-B,B)/(2*pi); % Energy within bandwidth B

>> ObjFun = @(B) abs(.99*(2/3)-Ex(B)); B = fminsearch(ObjFun,1)

B = 4.0807
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From this program, we know that 99% of the signal energy is below 4.0807 rad/s or 0.6495 Hz. Using
this 99% energy-criterion bandwidth, a reasonable sampling rate is thus

fs = 2(0.6495) = 1.2989 Hz.

By this calculation, the first two cases of Fig. S8.1-8 both represent significant oversampling of the
signal x(t).

Solution 8.1-9

Using pairs 9 and 20 of Table 7.1, the spectrum of x(t) = 5sinc2(5πt) + cos(20πt) is given by

X(ω) = ∆
( ω

20π

)
+ π[δ(ω + 20π) + δ(ω − 20π)].

This spectrum has impulses at ±10 Hz and the signal bandwidth is 10 Hz. The Nyquist rate of x(t)
is thus 20 Hz.

(a) Let xa(t) = x(t)δ̃(t) be a fs = 10 Hz sampled version of x(t). Since the sample rate is only half
of the Nyquist rate, it is not possible to reconstruct x(t) from xa(t). This fact is clarified by
viewing the magnitude spectrum |Xa(ω)|, shown in Fig. S8.1-9a. Compared with the original
magnitude spectrum |X(ω)|, we see that |Xa(ω)| contains an impulse function at dc as well
as erroneous content between 5 and 10 Hz. The impulses are (relatively speaking) twice as
large as they should be, a consequence of constructive interference between spectral replicates.
There is no lowpass reconstruction filter that can reconstruct x(t) from xa(t).

(b) Let xb(t) = x(t)δ̃(t) be a fs = 20 Hz sampled version of x(t). The magnitude spectrum |Xb(ω)|
is shown in Fig. S8.1-9b. Notice that the impulses are, relatively speaking, twice as large as
expected, a consequence of constructive interference between spectral replicates at the folding
frequency. Since the sample rate equals the Nyquist rate, it may be possible to reconstruct x(t)
from xb(t). The only potential reconstruction problem is due to the impulse functions at the
folding frequency of 10 Hz. Fortunately, cos(20πt) proves to be the exception to the difficulty
and can, at least theoretically, be reconstructed. Such reconstruction, however, requires an
ideal lowpass filter H(ω) = 1

20Π(ω/2π20) with cutoff frequency exactly at 10 Hz. Furthermore,
the gain at 10 Hz must be exactly 1

40 , which is half the regular passband gain of 1
20 . This

half-strength gain compensates for the doubling in impulse size that occurred during spectral
replication. These stringent characteristics are difficult to manage. If the filter cutoff frequency
is even a little too low, the reconstructed signal will lack the needed cos(20πt) term. If the
filter cutoff frequency is even a little too large, the reconstructed signal will have a 2 cos(20πt)
that is twice as large as desired. Since such a filter would be very difficult to create in practice,
it would be wise to use a greater-than-Nyquist sampling rate for this signal.

(c) Next, sine replaces cosine and x(t) = 5sinc2(5πt)+sin(20πt). Let xc(t) = x(t)δ̃(t) be a fs = 20
Hz sampled version of this new x(t). As shown by the magnitude spectrum |Xc(ω)| in Fig. S8.1-
9c, cancellation during spectral replication completely removes the impulses associated with
the sin(20πt) term (another way to see how the sin(20πt) term is lost is by simple substitution
t = n/20, which produces sin(πn) = 0). Since the sine term is lost, no reconstruction filter
that can reconstruct x(t) from xc(t).

(d) In this part, we again use x(t) = 5sinc2(5πt)+ sin(20πt). Let xd(t) = x(t)δ̃(t) be a fs = 21 Hz
sampled version of x(t). The magnitude spectrum |Xd(ω)| is shown in Fig. S8.1-9d. In this
case, the sampling frequency exceeds the Nyquist rate and x(t) can be obtained by lowpass
filtering xd(t). The lowpass filter would need a cutoff frequency between 10 and 11 Hz and a
passband gain of 1

21 .
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Solution 8.1-10

(a) The spectrum X(ω) is bandpass in nature with bandwidth 10 Hz centered at 25 Hz. The
highest frequency is 30 Hz. If we use a 60 Hz sampling frequency, the resulting spectrum
Xa(ω) is just X(ω) scaled by 60 and replicated every 60 Hz, as shown in Fig. S8.1-10.

>> tri = @(f) (1-2*f).*((f>=0)&(f<=1/2))+(2*f+1).*((f>=-1/2)&(f<0));

>> X = @(f) tri((f-25)/10)+tri((f+25)/10);

>> Xa = @(f) 60*(X(f)+X(f-60)+X(f+60)+X(f-120)+X(f+120));

>> f = linspace(-100,100,10001); subplot(311); plot(f,Xa(f)); grid on;

>> axis([-100 100 0 65]); xlabel(’\omega/2\pi’); ylabel(’X_a(\omega)’);

In this case, the original spectrum X(ω) remains intact and can be recovered with a bandpass
filter that has 10 Hz bandwidth centered at 25 Hz and passband gain of 1

60 . The upper cutoff
frequency of this reconstruction filter needs to be nearly perfect, however, in order to remove
the adjacent replicate found starting at 30 Hz.

(b) When we use a sampling frequency of 20 Hz, the resulting spectrum Xb(ω) is just X(ω) scaled
by 20 and replicated every 20 Hz, also shown in Fig. S8.1-10.

>> tri = @(f) (1-2*f).*((f>=0)&(f<=1/2))+(2*f+1).*((f>=-1/2)&(f<0));

>> X = @(f) tri((f-25)/10)+tri((f+25)/10);

>> Xb = @(f) 20*(X(f)+X(f-20)+X(f+20)+X(f-40)+X(f+40)+X(f-60)+X(f+60));

>> f = linspace(-35,35,10001); subplot(312); plot(f,Xb(f)); grid on;

>> axis([-35 35 0 22]); xlabel(’\omega/2\pi’); ylabel(’X_b(\omega)’);

Rather fortuitously in this case, none of the replicates overlap, they only just touch. As a
result the original spectrum X(ω) remains intact and can be recovered with a bandpass filter
that has 10 Hz bandwidth centered at 25 Hz and passband gain of 1

20 . The reconstruction filter
needs to be nearly perfect on both sides, however, in order to remove the adjacent replicates
found just outside the 20 to 30 Hz band of desired signal content.

(c) When we use a sampling frequency of 20 Hz on signal y(t), the resulting spectrum Yc(ω) is
Y (ω) scaled by 20 and replicated every 20 Hz, as shown in Fig. S8.1-10.
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>> tri = @(f) (1-2*f).*((f>=0)&(f<=1/2))+(2*f+1).*((f>=-1/2)&(f<0));

>> Y = @(f) tri((f-23)/10)+tri((f+23)/10);

>> Yc = @(f) 20*(Y(f)+Y(f-20)+Y(f+20)+Y(f-40)+Y(f+40)+Y(f-60)+Y(f+60));

>> f = linspace(-35,35,10001); subplot(313); plot(f,Yc(f)); grid on;

>> axis([-35 35 0 22]); xlabel(’\omega/2\pi’); ylabel(’Y_c(\omega)’);

Unfortunately in this case, the replication of Y (ω) that results from sampling causes overlap-
ping components. The original spectrum Y (ω) is destroyed by these overlapping pieces and
cannot be recovered.
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Solution 8.1-11

This problem is trivial when worked out in the frequency-domain. The sampled signal spectrum is
given by

Xsampled(ω) =
1

T

∞∑

n=−∞
X(ω − n2πfs).

We repeat the spectrum periodically with period (f1+ f2) Hz, as shown in the top plot of Fig. S8.1-
11. The amplitude at the origin is 1

T = f1 + f2. From Fig. S8.1-11, it is obvious that the resulting
spectrum Xsampled(ω) is constant for all ω and has a value f1 + f2, as shown in the bottom plot of
Fig. S8.1-11. Hence,

Xsampled(ω) = f1 + f2 ⇐⇒ (f1 + f2)δ(t) = xsampled(t).

Clearly, all the samples of xsampled(t) at a rate fs = f1 + f2 are zero except the sample at t = 0,
which has (impulse) amplitude f1 + f2.
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Solution 8.1-12

This problem considers two cases of practical sampling achieved by multiplying a signal x(t) by a
periodic train of pulses pT (t), where

pT (t) =

∞∑

k=−∞
p(t− kT )

The two pulses are under consideration are

pa(t) =− 1
4u(t) +

5
4u(t− 2T

20 )+

− 5
4u(t− 3T

20 ) +
1
4u(t− 5T

20 )

and
pb(t) = e−t/T [u(t)− u(t− 1.5T )]

The desired sampling rate is fs = 100 Hz (or T = 0.01).

(a) Figure S8.1-12a shows pT (t) using pa(t) over 0 ≤ t ≤ 4T .
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Figure S8.1-12a

(b) Figure S8.1-12b shows pT (t) using pb(t) over 0 ≤ t ≤ 4T .
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(c) Superficially, pulse pa(t) produces a more delta-like sampling train than does pb(t), which is
wider than the desired sampling interval T . However, pa(t) has zero area, which makes it
unsuitable as a sampling function (see Drill 8.2). The area of pulse pb(t), on the other hand,
is non-zero, which is desirable of a sampling pulse. Thus,

pb(t) is more suitable than pa(t) as a sampling pulse.

Solution 8.1-13

In this problem, we set to demonstrate the important principle in communication theory that the
maximum information rate is 2 pieces of information per second per Hz.

A knowledge of the maximum rate of information that can be transmitted over a channel of
bandwidth B Hz is of fundamental importance in digital communication. We can demonstrate a
scheme which allows error-free transmission of 2B independent pieces of information per second over
a channel of bandwidth B Hz. Recall that a continuous-time signal x(t) of bandwidth B Hz can be
constructed from its Nyquist samples (which are at a rate of 2B Hz) using the interpolation formula
of Eq. (8.6). Letting the kth piece of information equal to x(kT ), the kth Nyquist sample, and using
the interpolation formula of Eq. (8.6), we can construct a signal x(t) that is bandlimited to B Hz.
Clearly, this signal can be transmitted error-free over the channel of bandwidth B Hz. Moreover,
the 2B pieces of information are readily obtained (error-free) from this signal by taking its Nyquist
samples.

This theoretical rate of communication assumes a noise-free channel. In practice, channel noise
is unavoidable, and consequently, this rate will cause some detection errors.

We shall prove the converse of this result using the method of reductio ad absurdum. Independent
pieces imply that each piece of information can be any one of the (uncountably) infinite number of
amplitudes. To prove the converse, let us assume that a scheme exists that can transmit more than
2B independent pieces of information/s. If this were the case, the interpolation formula implies
that we can transmit a signal of bandwidth higher than B Hz over a channel of bandwidth B Hz,
which is not possible.

Solution 8.1-14

In this problem, x(t) = sinc(4πt) and X(ω) = 1
4 rect(ω/8π). The bandwidth of x(t) is B = 2 Hz,

and its Nyquist rate is 4 Hz.

(a) The spectrum X(ω) = 1
4 rect(ω/8π) is rectangular of width 8π rad/s or 4 Hz. To find the

sampled signal spectrum Xa(ω), we multiply X(ω) by 1
T = 4 and repeat it periodically with

period fs = 4 Hz (8π rad/s). As shown in Fig. S8.1-14, the resulting spectrum Xa(ω) equals
one for all ω.

(b) To reconstruct x(t) from Xa(ω) , we pass Xa(ω) through an ideal lowpass filter of gain T =
1
4 and bandwidth fs/2 = 2 Hz. The input is Xa(ω) = 1. Hence the output spectrum is
1
4 rect(ω/8π) and the output is indeed x(t) = sinc(4πt), as expected.
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(c) If we sample x(t) at a rate fs = 2 Hz (T = 1/2), the sampled signal spectrum is

Xc(ω) =
1

T

∞∑

n=−∞
X(ω − 2πnfs) =

1

2

∞∑

n=−∞
rect

(
ω − 4πn

8π

)
.

Thus Xc(ω) is obtained by repeating 1
2 rect

(
ω
8π

)
with period ω = 4π rad/s (2 Hz), as shown in

Fig. S8.1-14. Each replicated rectangle has amplitude 1/2 and overlaps half with the rectangle
before and half with the rectangle after. When summed together, the result is a constant value
Xc(ω) = 1. When this Xc(ω) is applied to the filter of part (b), the output spectrum is again
1
4 rect(ω/8π), corresponding to x(t) = sinc(4πt).

(d) We get an identical result using fs = 1 Hz, where X(ω) repeats every 2π rad/s (1 Hz), but
the amplitude is only 1/4. For all ω, there are 4 overlapping rectangle components, the sum of
which again yields sampled signal spectrum Xd(ω) = 1. When Xd(ω) is applied to the filter
of part (b), the output spectrum is again 1

4 rect(ω/8π), corresponding to x(t) = sinc(4πt).

(e) When sampled at a rate fs =
4
N Hz (N integer), X(ω) is repeated every 4

N Hz with amplitude
1
N . For any ω, there are exactly N replicated rectangles, the sum of which is always one. Thus,
the sampled signal spectrum Xsampled(ω) = 1 for all sampling rates fs =

4
N Hz. When such

Xsampled(ω) are applied to the filter of part (b), the output spectrum is always 1
4 rect(ω/8π),

corresponding to x(t) = sinc(4πt).

(f) The signal x(t) = sinc(4πt) is shown in Fig. S8.1-14. Observe that x(t) = 0 at t = n
4 for all

integer values of n. This means sampling x(t) at a rate fs =
4
N (T = N

4 ) yields all zero valued
samples except at t = 0. That is, for T = N/4,

x(nT ) = sinc(nNπ) =

{
1 n = 0
0 n = ±1,±2,±3, . . .

.

Since x(t) sampled at any rate fs = 4
N are identical regardless of N , so too will the signals

reconstructed through the filter of part (b) be identical, namely x(t) = sinc(4πt).

Figure S8.1-14
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Solution 8.2-1

From pair 18 of Table 7.1, we know that

x(t) = sinc(200πt) ⇐⇒ 1

200
rect

( ω

400π

)
= X(ω).

Pulse sampling signal x(t) produces signal xP (t) = x(t)pT (t) with spectrum

XP (ω) =

∞∑

n=−∞
PnX(ω − nωs),

where Pn are the (exponential-form) Fourier series coefficients of pT (t).
Pulse train pT (t) has period 4 ms and thus fundamental frequency ω0 = 2π/0.004 = 500π. Using

Eq. (6.19), the Fourier series coefficients are computed as

P̃n =
1

0.004

∫ 0.0004

−0.0004

ej500πnt dt

= 250
ej500πnt

j500πn

∣∣∣∣
0.0004

t=−0.0004

=
ej0.2πn − e−j0.2πn

nπ(2j)

= 0.2sinc(0.2πn).

Thus, the pulse-sampled signal xP (t) has spectrum

XP (ω) =

∞∑

n=−∞
0.2sinc(0.2πn)

1

200
rect

(
ω − nωs

400π

)
.

This spectrum is readily plotted with MATLAB.

>> omegas = 500*pi; omega = linspace(-2*pi*1000,2*pi*1000,10001);

>> snc = @(t) sinc(t/pi); u = @(t) 1.0.*(t>=0);

>> rect = @(omega) u(omega+0.5)-u(omega-0.5); Xp = zeros(size(omega));

>> for n = -4:4,

>> Xp = Xp+sinc(0.2*n)/1000*rect((omega-n*omegas)/(400*pi));

>> end

>> plot(omega/(2*pi),Xp); xlabel(’\omega/2\pi’); ylabel(’X_P(\omega)’);

>> axis([-1000 1000 0 .0011]); grid on; set(gca,’xtick’,-750:250:750);
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Figure S8.2-1

As shown in Fig. S8.2-1, there is no overlap between replicates, and X(ω) can be recovered by
using an ideal lowpass filter of bandwidth 100 Hz. An ideal lowpass filter of standard unit gain (and



586 Student use and/or distribution of solutions is prohibited

bandwidth 100 Hz) will pass the n = 0 term of Xp̃(ω) and suppress all the other terms. Hence, the
output y(t) is

y(t) = 0.2 x(t).

The 0.2 gain occurs because of the 0.2sinc(0.2πn) term and can be easily corrected by using an ideal
lowpass filter with gain 5 instead of unity.

Because the spectrum XP (ω) has a zero value in the band from 100 to 150 Hz, we can use an
ideal lowpass filter of bandwidth B Hz where 100 < B < 150. But if B > 150 Hz, the filter will pick
up the unwanted spectral components from the n 6= 0 replicates, and the output will be distorted.

Solution 8.2-2

When an input of x(t) = δ(t) is applied to the system of Fig. P8.2-2, the output of the summer is
δ(t)− δ(t−T ). The integral of δ(t)− δ(t−T ) is simply u(t)− u(t−T ). Thus, the impulse response
of the block diagram of Fig. P8.2-2 is

h(t) = u(t)− u(t− T ) = rect

(
t− T/2

T

)
.

This impulse response matches the ZOH impulse response of Eq. (8.5) delayed by T/2.
To illustrate the ZOH nature of this system, notice that an impulse sampled signal xsampled(t) =∑∞

n=−∞ x(nT )δ(t− nT ) produces an output

y(t) = x̂(t) =

∞∑

n=−∞
x(nT )h(t− nT ) =

∞∑

n=−∞
x(nT )rect

(
t− nT − T/2

T

)
.

From this equation we see that when an impulse-sampled signal, such as that shown left in Fig. S8.2-
2, is applied to this causal ZOH system, the output is staircase approximation of the signal where
each stair extends to the right of the impulse that generated it, such as shown right in Fig. S8.2-2.
The constraint of causality delays the output by T/2, which is why the staircase approximation is
not centered but to the right of the input delta functions.
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Solution 8.2-3

(a) When an impulse sampled signal xsampled(t) =
∑∞

n=−∞ x(nT )δ(t − nT ) is applied to a FOH

system with impulse response h(t) = ∆
(

t
2T

)
, the output is

y(t) = x̂(t) =

∞∑

n=−∞
x(nT )h(t− nT ) =

∞∑

n=−∞
x(nT )∆

(
t− nT

2T

)
.

Each impulse of the input produces a 2T -wide triangle scaled by x(nT ). Each pair of adjacent
triangles overlap over an interval T , and the sum produces a linear interpolation of the samples
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x(nT ). To see this, consider an impulse sampled signal xsampled(t) such as the one shown in
the left plot of Fig. S8.2-3a. The FOH system sums the overlapping triangles x(nT )∆

(
t−nT
2T

)

to produce the linear-interpolation output y(t), as shown in the right plot of Fig. S8.2-3a.
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(b) From pair 19 of Table 7.1, the frequency response of the FOH system is

hFOH(t) = ∆

(
t

2T

)
⇐⇒ T sinc2

(
ωT

2

)
= HFOH(ω).

A ZOH system has impulse response hZOH(t) = rect
(

t
T

)
. From pair 17 of Table 7.1, the

frequency response of the ZOH system is

hZOH(t) = rect

(
t

T

)
⇐⇒ T sinc

(
ωT

2

)
= HZOH(ω).

Finally from pair 18 of Table 7.1, we know that the frequency response of an ideal reconstruc-
tion filter is

hideal(t) = sinc(tπ/T ) ⇐⇒ T rect

(
ωT

2π

)
= Hideal(ω).

As Fig. S8.2-3b makes clear, the FOH magnitude response (solid curve) more closely resem-
bles the ideal reconstruction filter (dash-dot curve) than does the ZOH magnitude response
(dashed curve). This is especially true for frequencies beyond fs/2 since the FOH response
decays exponentially faster than the ZOH. Neither the FOH or ZOH reconstruction filters do
particularly well for higher frequencies in the upper passband of the ideal response, although
the ZOH response is slightly better. Both the FOH and ZOH overly attenuate components in
the upper passband region.

-f
s

-f
s
/2 0 f

s
/2 f

s

ω/2π

0

T

H
(ω

)

Figure S8.2-3b
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(c) A minimum of a T second delay is required to make hFOH(t) causal (realizable), that is
hFOH,causal(t) = hFOH(t − T ). This delay would not change the filter magnitude response
(|HFOH,causal(ω)| = |HFOH(ω)|, but it would add a linear phase component e−jωT . Of course,
delaying the impulse response by T also causes a corresponding delay of T seconds in the
reconstructed signal x̂(t). This delay is the necessary price for realizable interpolation.

(d) The impulse response and the frequency response of a causal ZOH circuit are

hZOH,causal(t) = rect

(
t− T/2

T

)
⇐⇒ T sinc

(
ωT

2

)
e−jωT/2 = HZOH,causal(ω).

The frequency response of a cascade of two such causal ZOH circuits is given by

Hcascade(ω) = H2
ZOH,causal(ω) = T 2 sinc2(ωT/2)e−jωT .

Earlier, we found that the frequency response of an FOH circuit is given as

HFOH(ω) = T sinc2
(
ωT

2

)
.

Comparing, we see that
Hcascade(ω) = THFOH(ω)e

−jωT .

This shows that the frequency response of a cascade of two ZOH circuits is T times the
frequency response of the FOH circuit with a time delay of T seconds. The time delay is
a desirable feature as it makes the FOH circuit causal, and therefore, realizable. Thus, the
cascade of two ZOH acts identical to an FOH circuit except for the (unimportant) amplification
by factor T and delay by T seconds.

Solution 8.2-4

This problem considers signal x(t) = sin(2πt/8) (u(t)− u(t− 8)) sampled at a rate fs = 1 Hz to
generate signal x[n].

(a) Signals x(t) and x[n] are shown in the upper left plot of Fig. S8.2-4.

(b) Yes. Aliasing has occurred in sampling x(t) to produce x[n]. Since x(t) is time-limited, we
know that its spectrumX(ω) is not bandlimited. It is not possible to sample a non-bandlimited
signal without aliasing (an infinite sample rate would be required, which is clearly impractical).
Another way to understand the aliasing that occurs in sampling x(t) to produce x[n] is to
consider the starting and ending times of x(t): it is impossible to exactly locate the start or
end times of x(t) using a finite sample rate (there would always be a T -second uncertainty in
knowing these times).

(c) The upper right plot of Fig. S8.2-4 shows the output x̂(t) produced when x[n] is applied to
the causal ZOH reconstructor of Prob. 8.2-2. The reconstructed signal x̂(t) follows the general
trend of x(t), but there are deficiencies as well: there is a clear rightward shift (due to the
ZOH being causal), and the stair-step nature of x̂(t) does not match the (generally) smooth
nature of x(t).

(d) The lower left plot of Fig. S8.2-4 shows the output x̂(t) produced when x[n] is applied to the
(noncausal) FOH reconstructor of Prob. 8.2-3, while the lower right plot of Fig. S8.2-4 shows
the output x̂(t) produced when x[n] is applied to the (causal) FOH reconstructor of Prob. 8.2-
3. The FOH reconstructor clearly produces a better reconstructor of x(t) than does the ZOH
reconstructor considered in part (c). Notice that the causal FOH output is just the (noncausal)
FOH output right-shifted by T , the minimum delay to produce a causal reconstructor. Due
to the nature of x(t) (which is zero at both its starting and ending points), it is not easy to
detect the non-causal nature of the noncausal FOH output (lower left graph of Fig. S8.2-4).
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Solution 8.2-5

This problem considers signal x(t) = cos(2πt/8) (u(t)− u(t− 8)) sampled at a rate fs = 1 Hz to
generate signal x[n].

(a) Signals x(t) and x[n] are shown in the upper left plot of Fig. S8.2-5.

(b) Yes. Aliasing has occurred in sampling x(t) to produce x[n]. Since x(t) is time-limited, we
know that its spectrumX(ω) is not bandlimited. It is not possible to sample a non-bandlimited
signal without aliasing (an infinite sample rate would be required, which is clearly impractical).
Another way to understand the aliasing that occurs in sampling x(t) to produce x[n] is to
consider the starting and ending times of x(t): it is impossible to exactly locate the start or
end times of x(t) using a finite sample rate (there would always be a T -second uncertainty in
knowing these times).

(c) The upper right plot of Fig. S8.2-5 shows the output x̂(t) produced when x[n] is applied to
the causal ZOH reconstructor of Prob. 8.2-2. The reconstructed signal x̂(t) follows the general
trend of x(t), but there are deficiencies as well: there is a clear rightward shift (due to the
ZOH being causal), and the stair-step nature of x̂(t) does not match the (generally) smooth
nature of x(t).

(d) The lower left plot of Fig. S8.2-5 shows the output x̂(t) produced when x[n] is applied to the
(noncausal) FOH reconstructor of Prob. 8.2-3, while the lower right plot of Fig. S8.2-5 shows
the output x̂(t) produced when x[n] is applied to the (causal) FOH reconstructor of Prob. 8.2-3.
The FOH reconstructor generally produces a better reconstructor of x(t) than does the ZOH
reconstructor considered in part (c); this is especially true where x(t) is relatively smooth. The
FOH reconstruction has difficulty, however, at the start and end-point discontinuities of x(t).
Notice that the causal FOH output is just the (noncausal) FOH output right-shifted by T ,
the minimum delay to produce a causal reconstructor. Unlike the signal used in Prob. 8.2-4,
x(t) in this problem makes it easy to see the non-causal nature of the noncausal FOH output
(lower left graph of Fig. S8.2-5).
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Solution 8.2-6

Since any practical, physically realizable signal x(t) is time-limited, we know that its spectrum
X(ω) is not bandlimited. It is not possible to sample a non-bandlimited signal without aliasing (an
infinite sample rate would be required, which is clearly impractical). Still, most practical signals are
effectively bandlimited, which is to say that there is some maximum frequency fmax above which
there is negligible signal content. If we sample such a signal at a rate fs ≥ 2fmax, the the signal can
be sampled with negligible aliasing.

Solution 8.2-7

Referencing Sec. 8.1.1, a practical pulse-sampled signal can be modeled as

xp(t) = pT (t)x(t) =
∞∑

n=−∞
PT [n]e

jnωstx(t),

where
∑∞

n=−∞ PT [n]e
jnωst is just the Fourier series of (an arbitrary) periodic pulse train pT (t). The

spectrum of this pulse-sampled signal is

Xp(ω) =

∞∑

n=−∞
PT [n]X(ω − nωs).

As this equation shows, the only impact of the impulse train on Xp(ω) is the amplitude (due to
Fourier series coefficient PT [n]) and spacing (due to ωs) of the replicates X(ω−nωs). As long as x(t)
is bandlimited to B < fs

2 Hz (Nyquist sampling or better), the replicates in Xp(ω) do not overlap
regardless of the shape or duration of pulses in the pulse-train pT (t), and the original signal x(t) can
be recovered.

To provide an example, consider pulse-train pT (t) comprised of semi-infinite duration pulses
p(t) = e−atu(t). Assuming a > 0, which is required for the signal and its Fourier transform to exist,
the Fourier transform of p(t) is given as

P (ω) =

∫ ∞

0

e−ate−jωt dt =
et(−a−jω)

−a− jω

∣∣∣∣
∞

t=0

=
1

a+ jω
.
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When p(t) is periodically replicated with period T , the Fourier series coefficients are just scaled and
sampled values of P (ω). That is,

PT [n] =
1

T
P (n2π/T ) =

1

T

(
1

a+ jn2π/T

)
=

1

aT + jn2π
.

Thus, the spectrum of the pulse-sampled signal xp(t) is

Xp(ω) =

∞∑

n=−∞

1

aT + jn2π
X(ω − nωs)

Since x(t) is bandlimited to B < fs
2 Hz, the replicates X(ω−nωs) do not overlap. Thus, the original

signal x(t) can be recovered by filtering xp(t) with a ideal lowpass filter with a cutoff frequency of
fs
2 Hz and a passband gain of aT . The passband gain aT compensates for the 1

aT scale factor of
the n = 0 term in Xp(ω), which is the only term to survive lowpass filtering. Notice that the only
difference between this reconstruction and reconstruction for ideal impulse sampling is that the
lowpass reconstruction filter gain is aT rather than T .

Solution 8.2-8

(a) The signal x(t) = sinc2(5πt), when sampled by an impulse train, results in the sampled signal
xδ(t) = x(t)δT (t) (upper left plot of Fig. S8.2-8). The spectrum of xδ(t) is

Xδ(ω) =
1

T

∞∑

k=−∞
X(ω − kωs),

where X(ω) = 0.2∆
(

ω
20π

)
.
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Figure S8.2-8

Now, if xδ(t) is transmitted through a filter with impulse response h(t) = p(t) = rect
(

t
0.025

)

(upper right plot of Fig. S8.2-8), then each impulse in the input will generate a pulse p(t),
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resulting in the desired sampled signal xp(t) (lower left plot of Fig. S8.2-8). Recognizing that
the frequency response of h(t) is H(ω) = 1

40 sinc(
ω
80 ), the spectrum of xp(t) is

Xp(ω) = H(ω)

[
1

T

∞∑

k=−∞
X(ω − kωs)

]
=

1

40T

∞∑

k=−∞
sinc(

ω

80
)X(ω − kωs).

The lower right plot of Fig. S8.2-8 shows |Xp(ω)|. Due to the multiplication by H(ω), each
replicate of X(ω) is distorted (no longer triangular). However, as long as sampling occurs at
no less than the Nyquist rate ( fs2 ≥ 5 Hz), the periodic replicates of X(ω), while distorted, do
not overlap and the original signal x(t) can be recovered.

(b) To recover the signal x(t) from the flat top samples, we reverse the process described in part
(a). First, we pass the sampled signal through a filter with frequency response 1/H(ω). This
will recover the impulse-sampled signal xδ(t). Next, we pass the resulting impulse-sampled
signal xδ(t) through an ideal lowpass filter with bandwidth fs

2 = 5 Hz and gain T = 1
10 to

obtain x(t).

(c) As shown in part (a), the spectrum of signal xp(t) is given as

Xp(ω) =
1

40T

∞∑

k=−∞
sinc(

ω

80
)X(ω − kωs).

A plot of this spectrum and the other signal plots in Fig. S8.2-8 are readily generated using
MATLAB.

>> snc = @(t) sinc(t/pi); % Conform MATLAB sinc to textbook notation

>> t = linspace(-.4,.4,1001); T = 0.1; n = -4:4; x = @(t) (snc(5*pi*t)).^2;

>> subplot(221); stem(n*T,x(n*T),’.k’); line(t,x(t),’linewidth’,1/4);

>> xlabel(’t’); ylabel(’x_\delta(t)’);

>> axis([-.4 .4 0 1.1]); grid on; box on;

>> u = @(t) 1.0*(t>0)+0.5*(t==0); rect = @(t) u(t+0.5)-u(t-0.5);

>> h = @(t) rect(40*t); t = linspace(-2/80,2/80,1001);

>> subplot(222); plot(t,h(t));

>> xlabel(’t’); ylabel(’h(t)’); set(gca,’xtick’,-2/80:1/80:2/80);

>> axis([-2/80 2/80 0 1.1]); grid on; box on;

>> t = linspace(-.4,.4,1001); xp = zeros(size(t));

>> for i=n, xp = xp+x(i*T)*h(t-i*T); end

>> subplot(223); plot(t,xp,’k-’);line(t,x(t),’linewidth’,1/4);

>> xlabel(’t’); ylabel(’x_p(t)’);

>> axis([-.4 .4 0 1.1]); grid on; box on;

>> omega = 2*pi*linspace(-40,40,1001);

>> tri = @(omega) (1-2*abs(omega)).*(abs(omega)<=0.5);

>> X = @(omega) 0.2*tri(omega/(20*pi)); Xp = zeros(size(omega));

>> for k=-10:10, Xp = Xp+snc(omega/80).*X(omega-k*2*pi/T)/(40*T); end

>> subplot(224); plot(omega/2/pi,abs(Xp),’k-’);

>> line(omega/2/pi,0.2*snc(omega/80)/(40*T),’linewidth’,1/4)

>> xlabel(’\omega/2\pi’); ylabel(’X_p(\omega)’);

>> axis([-40 40 0 1.1/20]); grid on; box on;

Solution 8.2-9

In this problem, the sampling frequency is fs = 20 Hz. As a general expression, apparent frequency
can be computed as

fa = 〈f0 + fs/2〉fs − fs/2,

where < a >b is the operation a modulo b. In all cases, |fa| ≤ fs/2 = 10 Hz.
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(a) In this case, f0 = 8 Hz is less than fs/2 = 10 Hz. Hence, this frequency is not aliased and

fa = f0 = 8 Hz.

(b) In this case, f0 = 12 Hz and the apparent frequency is computed as

fa = 〈f0 + fs/2〉fs − fs/2 = 〈12 + 10〉20 − 10 = 2− 10 = −8 Hz.

Since fa is negative, we can also report apparent frequency as |fa| = 8 Hz.

(c) In this case, f0 = 20 Hz and the apparent frequency is computed as

fa = 〈f0 + fs/2〉fs − fs/2 = 〈20 + 10〉20 − 10 = 10− 10 = 0 Hz.

(d) In this case, f0 = 21 Hz and the apparent frequency is computed as

fa = 〈f0 + fs/2〉fs − fs/2 = 〈21 + 10〉20 − 10 = 11− 10 = 1 Hz.

(e) In this case, f0 = 22 Hz and the apparent frequency is computed as

fa = 〈f0 + fs/2〉fs − fs/2 = 〈22 + 10〉20 − 10 = 12− 10 = 2 Hz.

(f) In this case, f0 = 32 Hz and the apparent frequency is computed as

fa = 〈f0 + fs/2〉fs − fs/2 = 〈32 + 10〉20 − 10 = 2− 10 = −8 Hz.

Since fa is negative, we can also report apparent frequency as |fa| = 8 Hz.

Solution 8.2-10

In this problem, the sampling frequency is fs = 60 Hz and the apparent frequency is |fa| = 20 Hz.
To determine the original frequency f0, we use the general relation between fa, f0, and fs:

|fa| = |〈f0 + fs/2〉fs − fs/2|,

where < a >b is the operation a modulo b.

(a) Over 0 ≤ f0 < 30 Hz, 20 = |〈f0 + 30〉60 − 30| is satisfied only by

f0 = 20 Hz.

(b) Over 30 < f0 < 60 Hz, 20 = |〈f0 + 30〉60 − 30| is satisfied only by

f0 = 40 Hz.

(c) Over 60 < f0 < 90 Hz, 20 = |〈f0 + 30〉60 − 30| is satisfied only by

f0 = 80 Hz.

(d) Over 90 < f0 < 120 Hz, 20 = |〈f0 + 30〉60 − 30| is satisfied only by

f0 = 100 Hz.



594 Student use and/or distribution of solutions is prohibited

Solution 8.2-11

By inspection, signal x(t) = 3 cos(6πt) + cos(16πt) + 2 cos(20πt) has spectrum

X(ω) = π [3δ(ω ± 6π)) + δ(ω ± 16π)) + 2δ(ω ± 20π))] .

Since the highest frequency is 10 Hz, the Nyquist rate is 20 Hz. Sampling at 25% above this rate
yields fs = 25 Hz. Hence T = 1

25 and Xδ(ω) consists of 25X(ω) repeating periodically with period
25 Hz (50π rad/s), as shown in Fig. S8.2-11. To reconstruct x(t) from the sampled signal xδ(t), we
pass Xδ(ω) through a lowpass filter with passband gain 1

25 and having a cutoff frequency anywhere
between (10 + ǫ) Hz to (15− ǫ) Hz where ǫ is an arbitrarily small number.

A sampling rate 25% below the Nyquist rate is fs = 15 Hz. In this case, the components of
frequencies 8 Hz and 10 Hz will alias. The 8 Hz components will appear as |fa| = |〈8+7.5〉15−7.5| = 7
Hz, and the 10 Hz components will appear as |fa| = |〈10 + 7.5〉15 − 7.5| = 5 Hz. Thus,

the output contains 3, 5, and 7 Hz frequency components when Fs = 15 Hz.

-35 -28 -17 -10 -3 0 8 15 22 33
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0

25π
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75π

X
δ
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Figure S8.2-11

Solution 8.2-12

This problem considers a complex signal x(t) with spectrum

X(ω) =

{
ω 0 ≤ ω ≤ 2π10
0 otherwise

.

Here, x(t) is sampled at rate fs = 24 Hz to produce signal xδ(t) with spectrum Xδ(ω).

(a) Signal x(t) is bandlimited to 0 ≤ f ≤ 10 Hz. As shown in Fig. S8.2-12a, signal spectrum
Xδ(ω) is just X(ω) scaled by fs and then periodically replicated with interval fs.
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Figure S8.2-12a

(b) Since fs = 24 Hz exceeds the Nyquist rate of 20 Hz, we do not expect to see any aliasing. This
is easily confirmed with Fig. S8.2-12a: only the original signal spectrum X(ω) is found in the
principle frequency range of −fs/2 ≤ f ≤ fs/2.
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(c) Since the original spectrum X(ω) is found undistorted in Xδ(ω) (see Fig. S8.2-12a), the signal
x(t) can be exactly recovered from xδ(t). This can be accomplished by using a lowpass filter
with cutoff frequency fs/2 and passband gain of 1/fs.

Solution 8.2-13

This problem considers a complex signal x(t) with spectrum

X(ω) =

{
ω 0 ≤ ω ≤ 2π10
0 otherwise

.

Here, x(t) is sampled at rate fs = 16 Hz to produce signal xδ(t) with spectrum Xδ(ω).

(a) Signal x(t) is bandlimited to 0 ≤ f ≤ 10 Hz. As shown in Fig. S8.2-13a, signal spectrum
Xδ(ω) is just X(ω) scaled by fs and then periodically replicated with interval fs.
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Figure S8.2-13a

(b) Since fs = 16 Hz is lower than the Nyquist rate of 20 Hz, we expect to see aliasing. This
is easily confirmed with Fig. S8.2-13a: the original spectrum X(ω), which is purely positive,
does not fit in the positive principle frequency range 0 ≤ f ≤ fs/2. Consequently, the upper
portion of this spectrum aliases to a lower apparent frequency and appears in the negative
fundamental frequency band −fs/2 ≤ f ≤ 0. That is, components of X(ω) that are higher
than fs/2 alias to a lower apparent frequency in the band −fs/2 ≤ f ≤ 0.

(c) Although aliasing occurs in this sampling scenario, the original spectrum X(ω) remains intact
in Xδ(ω) (see Fig. S8.2-13a). Thus, the signal x(t) can be exactly recovered from xδ(t).
This can be accomplished (in this case) by using a complex bandpass filter with passband
0 ≤ f ≤ 20π and passband gain of 1/fs.

Solution 8.2-14

This problem considers a complex signal x(t) with spectrum

X(ω) =

{
ω 0 ≤ ω ≤ 2π10
0 otherwise

.

Here, x(t) is sampled at rate fs = 8 Hz to produce signal xδ(t) with spectrum Xδ(ω).

(a) Signal x(t) is bandlimited to 0 ≤ f ≤ 10 Hz. As shown in Fig. S8.2-14a, signal spectrum
Xδ(ω) is just X(ω) scaled by fs and then periodically replicated with interval fs.

(b) Since fs = 8 Hz is lower than the Nyquist rate of 20 Hz, we expect to see aliasing. This is easily
confirmed with Fig. S8.2-14a: the original spectrum X(ω), which is purely positive, does not fit
in the positive principle frequency range 0 ≤ f ≤ fs/2. Consequently, the upper portion of this
spectrum aliases to lower frequencies. In fact, not only is there aliasing, but aliased components
interfere with content in the fundamental band, causing irrecoverable signal distortion.
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(c) Since the aliasing in this case also causes distortion of the original spectrum X(ω), it is impos-
sible to exactly recover the original signal x(t) from xδ(t). Graphically, Fig. S8.2-14a shows
that Xδ(ω) does not retain the original triangular spectrum X(ω) but rather a shape-distorted
version instead. This distortion cannot be undone, so the original signal is forever lost.

Solution 8.2-15

(a) The output in Eq. (8.6) is the output of an ideal lowpass filter of bandwidth B = 1/2T Hz.
Clearly its bandwidth must be ≤ 1/2T Hz.

(b) Suppose there is another signal x̂(t) that passes through the samples x(nT ) and has band-
width smaller than that of x(t) obtained through Eq. (8.6). Clearly, both x(t) and x̂(t) have
bandwidth ≤ 1/2T and the signal x(t) − x̂(t) also has bandwidth ≤ 1/2T Hz. Hence, we can
reconstruct the signal x(t)− x̂(t) from samples of x(t)− x̂(t) at a rate 1/T Hz and using these
samples in Eq. (8.6). But because both x(t) and x̂(t) pass through sample x(nT ), the samples
of x(t) − x̂(t) at a rate 1/T Hz are zero for all n. Clearly x(t) − x̂(t) = 0 and x̂(t) = x(t).

Solution 8.2-16

For this problem, T = 1/R and the sample values of the bandlimited pulse p(t) are

p(nT ) =

{
1 n = 0
0 n 6= 0

.

We can use Eq. (8.6) to reconstruct p(t) from these sample values. There is only one nonzero-valued
sample. Hence, we obtain

p(t) = p(0)sinc
(
πt
T

)
= sinc (πRt) ⇐⇒ 1

R rect
(

ω
2πR

)
= P (ω).

This is the only signal that has bandwidth πR rad/s (R/2 Hz) with samples satisfying

p(nT ) =

{
1 n = 0
0 n 6= 0

.

Solution 8.2-17

As given in the problem statement, the pulse p(t) has spectrum P (ω) with odd-like symmetry, such
as shown in the left figure of Fig. S8.2-17. When we sample p(t) at a rate R Hz (T = 1/R s), the
resulting spectrum consists of 1

T P (ω) = RP (ω) repeated periodically with period R Hz, as shown
in the right figure of Fig. S8.2-17. Because of the odd-like symmetry of P (ω) about the dotted axis,
the overlapping (scaled) spectra add to a constant value 1 for all ω. Hence,

Pδ(ω) = 1 and pδ(t) = δ(t).

This shows that samples of the pulse p(t) are, as required,

p(nT ) =

{
1 n = 0
0 n 6= 0

where T = 1
R .
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Solution 8.2-18

Using the Nyquist interval T = 1/2B, the Nyquist samples are x(±n/2B) for (n = 0, 1, 2, 3, . . .).
We are given that x(0) = x(1/2B) = 1 and x(n/2B) = 0 for all other cases of n. Hence, from
Eq. (8.6)

x(t) = sinc(2πBt) + sinc(2πBt− π)

=
sin(2πBt)

2πBt
+

sin(2πBt− π)

2πBt− π

=
sin(2πBt)

2πBt
− sin(2πBt)

2πBt− π

=
sin 2πBt

2πBt(1 − 2Bt)
.

Thus,

x(t) = sinc(2πBt)
1−2Bt .

Solution 8.2-19

To begin, we show that
∫∞
−∞ x(t) dt = T

∑∞
n=−∞ x(nT ) for a signal bandlimited to B Hz and

sampled at a rate fs > 2B Hz. From the ideal interpolation formula [see just before Eq. (8.6)] we
know that any bandlimited signal sampled at greater than the Nyquist rate can be reconstructed as

x(t) =
∑∞

n=−∞ x(nT )sinc
(
π t−nT

T

)
.

Integrating both sides yields

∫ ∞

−∞
x(t) dt =

∫ ∞

−∞

∞∑

n=−∞
x(nT )sinc

(
π
t− nT

T

)
dt

=

∞∑

n=−∞
x(nT )

∫ ∞

−∞
sinc

(
π
t− nT

T

)
dt

= T

∞∑

n=−∞
x(nT )

∫ ∞

−∞
sinc(πt) dt

Now, from pair 18 of Table 7.1 we know that sinc(πt) ⇐⇒ rect(ω/2π). Further, the Fourier
transform analysis equation states X(ω) =

∫∞
−∞ x(t)e−jωt dt. Setting ω = 0, we thus see that

X(0) =
∫∞
−∞ sinc(πt) dt = rect(0) = 1. Applying this simplification, we obtain the desired result of

∫∞
−∞ x(t) dt = T

∑∞
n=−∞ x(nT )

Next, we show that
∫∞
−∞ |x(t)|2 dt = T

∑∞
n=−∞ |x(nT )|2 for a signal bandlimited to B Hz and

sampled at a rate fs > 2B Hz. Again using the ideal interpolation formula, we know that any
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bandlimited signal sampled at greater than the Nyquist rate can be reconstructed as

x(t) =
∑∞

n=−∞ x(nT )sinc
(
π t−nT

T

)
.

Recognizing that |x(t)|2 = x(t)x∗(t), we see that

|x(t)|2 =
∑∞

n=−∞ x(nT )sinc
(
π t−nT

T

)∑∞
m=−∞ x∗(mT )sinc

(
π t−mT

T

)
.

Integrating both sides yields

∫ ∞

−∞
|x(t)|2 dt =

∫ ∞

−∞

∞∑

n=−∞
x(nT )sinc

(
π
t− nT

T

) ∞∑

m=−∞
x∗(mT )sinc

(
π
t−mT

T

)
dt

=

∞∑

n=−∞

∞∑

m=−∞
x(nT )x∗(mT )

∫ ∞

−∞
sinc

(
π
t− nT

T

)
sinc

(
π
t−mT

T

)
dt.

To handle the inside integral requires some additional work. Recall from the Fourier transform
synthesis and anaysis equations that

x(t) =
1

2π

∫ ∞

−∞
X(ω)ejωt dω and

∫ ∞

−∞
y(t)ejωt dt = Y (−ω).

Therefore
∫ ∞

−∞
x(t)y(t) dt =

∫ ∞

−∞
y(t)

[
1

2π

∫ ∞

−∞
X(ω)ejωt dω

]
dt

=
1

2π

∫ ∞

−∞
X(ω)

[∫ ∞

−∞
y(t)ejωt dt

]
dω

=
1

2π

∫ ∞

−∞
X(ω)Y (−ω) dω

This is a generalized form of Parseval’s theorem. Now, using pair 18 of Table 7.1 and the time-shift
property, we know that sinc

(
π t−nT

T

)
⇐⇒ T rect(ω/2B)e−jωnT , where B = π/T . Thus,

∫ ∞

−∞
sinc

(
π
t− nT

T

)

︸ ︷︷ ︸
x(t)

sinc

(
π
t−mT

T

)

︸ ︷︷ ︸
y(t)

dt =
1

2π

∫ ∞

−∞
X(ω)Y (−ω) dω

=
1

2π

∫ ∞

−∞
T rect(ω/2B)e−jωnTT rect(ω/2B)ejωmT dω

=
T 2

2π

∫ B

−B

ejω(m−n)T dω.

When m 6= n, we are integrating sinusoids over integer numbers of periods and the result is zero.
When m = n, we are integrating a constant over a width of 2B. Thus,

∫ ∞

−∞
sinc

(
π
t− nT

T

)
sinc

(
π
t−mT

T

)
dt =

{
0 n 6= m

T 2

2π 2B = T n = m
.

Since the m 6= n terms are zero, only the m = n terms in our double sum survive, and we obtain
our desired result of

∫ ∞

−∞
|x(t)|2 dt =

∞∑

n=−∞

∞∑

m=−∞
x(nT )x∗(mT )

∫ ∞

−∞
sinc

(
t− nT

T

)
sinc

(
t−mT

T

)
dt

=
∞∑

n=−∞
x(nT )x∗(nT )T
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or ∫ ∞

−∞
|x(t)|2 dt = T

∞∑

n=−∞
|x(nT )|2.

Solution 8.2-20

Assume a signal x(t) that is simultaneously timelimited and bandlimited. Let X(ω) = 0 for
|ω| > 2πB. Therefore, X(ω) = X(ω)rect

(
ω

4πB′

)
for B′ > B. Using pair 18 of Table 7.1 and the

time-convolution property of Eq. (7.33), we know that

x(t) = x(t) ∗ [2B′sinc(2πB′t)]

= 2B′x(t) ∗ sinc(2πB′t)

Because x(t) is timelimited, x(t) = 0 for |t| > T . But x(t) is equal to convolution of x(t) with
sinc(2πB′t) which is not timelimited. It is impossible to obtain a time-limited signal from the
convolution of a time-limited signal and a non-timelimited signal. Based on this contradiction, we
conclude that a signal cannot be simultaneously timelimited and bandlimited.

Solution 8.3-1

(a) A primary reason that time-sampling is necessary for digital systems relates to memory. To
continuously record a waveform digitally would require an infinite amount of memory, even to
record the briefest interval of time. Clearly this is impractical. Time sampling helps remedy
this memory problem. Further, time sampling need not degrade the underlying waveform:
as long as the sampling rate is at least twice the highest frequency of the signal (Nyquist
criterion), the original waveform is preserved. Although practical signals are not strictly ban-
dlimited, most are effectively bandlimited, meaning that a suitable sampling rate is possible.
If the Nyquist criterion is not met and high-frequency components alias and overlap with low-
frequency (or other aliased) components, unrecoverable signal distortion results. Notice that
aliasing can be tolerated in special cases when aliasing does not cause signal components to
mix or overlap. It is generally preferable to use the lowest practical sampling rates, as this
helps save memory and allows the digital system to operate at lower speeds.

(b) Amplitude quantization is necessary for primarily the same reason as is time sampling: fi-
nite computer memory. If amplitude quantization was not performed, it would take an in-
finite amount of memory just to represent a single sample of a signal, which is impractical.
Quantization (along with time sampling) neatly solves the memory dilemma. Unfortunately,
quantization is a non-linear process that (almost always) results in unrecoverable changes to
the signal. Such distortions can be effectively managed by using a suitable number of quan-
tization levels. It is, however, a balancing act. Too few quantization levels saves memory but
increases distortion; too many quantization levels can effectively eliminate distortion but can
cause excessive memory (and processing) requirements.

Solution 8.3-2

Typical analog-to-digital converters (ADCs) operate over a range of input amplitudes [−Vref , Vref ].
It desirable to condition the input x(t) to an ADC so that its maximum magnitude is close to, but
does not exceed, Vref since this produces the most favorable signal-to-quantization noise condition.
If the maximum magnitude of x(t) is greater than Vref , the signal is clipped during quantization,
which causes substantial and undesirable signal distortion. If the maximum magnitude of x(t)
is much smaller than Vref , than the signal-to-quantization noise ratio goes down, meaning the
quantized signal is comprised of an increasing – and unnecessary – amount of noise.
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Solution 8.3-3

(a) Since the audio signal bandwidth is 15 kHz,

the Nyquist rate is 30 kHz.

(b) Since the desired number of levels is 65536 = 216,

16 binary digits (bits) are needed to encode each sample.

(c) To transmit the audio signal requires a bit rate of

30000× 16 = 480000 bits/s.

(d) A CD rate of 44100 Hz with L = 65536 levels requires a bit rate of

44100× 16 = 705600 bits/s.

Solution 8.3-4

(a) The Nyquist rate for a 4.5 MHz signal is 2× 4.5× 106 = 9 MHz. Exceeding the Nyquist rate
by 20% yields a sampling rate of

Fs = 1.2× 9 = 10.8 MHz.

(b) Since the desired number of levels is 1024 = 210,

10 binary digits (bits) are needed to encode each sample.

(c) To transmit the TV signal requires a bit rate of

10.8× 106 × 10 = 108× 106 or 108 Mbits/s.

Solution 8.3-5

(a) For L = 16, we need a 4-bit binary code because 16 = 24. Assuming a bipolar DAC with level
0 corresponding to the most negative value and level 15 corresponding to the most positive
value, the following three codes are consistent with offset binary, two’s complement, and one
form of gray code.

Level Offset Binary Two’s Complement Gray Code
0 0000 1000 0000
1 0001 1001 0001
2 0010 1010 0011
3 0011 1011 0010
4 0100 1100 0110
5 0101 1101 0111
6 0110 1110 0101
7 0111 1111 0100
8 1000 0000 1100
9 1001 0001 1101
10 1010 0010 1111
11 1011 0011 1110
12 1100 0100 1010
13 1101 0101 1011
14 1110 0110 1001
15 1111 0111 1000
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For a quaternary code, we use four symbols 0, 1, 2, and 3. For this code, we need only a group
of 2 symbols to form 16 combinations (4 × 4) = 16. One possible quaternary code is given
below.

Level Code Level Code Level Code Level Code
0 00 4 10 8 20 12 30
1 01 5 11 9 21 13 31
2 02 6 12 10 22 14 32
3 03 7 13 11 23 15 33

(b) Let a minimum of b2 binary digits and b4 quaternary digits be required to represent L level.
Now b2 binary digits can form at most 2b2 distinct combinations. Similarly b4 quaternary
digits can form at most 4b4 distinct combinations. Hence

L = 2b2 = 4b4

and
b2 log 2 = b4 log 4 = 2b4 log 2.

Simplifying, we see that
b2/b4 = 2.

Solution 8.3-6

If V is the peak sample amplitude, then

quantization error ≤ 0.2
100V = V

500 .

Because the maximum quantization error is ∆
2 = 2V

2L = V
L , it follows that

V

L
=

V

500
=⇒ L = 500.

Because L should be a power of 2, we choose

L = 512 = 29.

This requires a 9-bit binary code per sample. For each telemetry signal, the Nyquist rate is 2×1000 =
2000 Hz. Increasing this rate by 20% yields a sampling frequency of 2000 × 1.2 = 2400 Hz. Thus,
each signal has 2400 samples/s, and each sample is encoded with 9 bits. Therefore, each signal uses
9× 2400 = 21.6 kbits/s. Five such signals are multiplexed. Hence,

the required data rate is 5× 21.6 = 108 kbits/s.

Solution 8.4-1

The spectrum X(ω) of triangle function x(t) = ∆(t/5) is sampled at a rate ω0 = 2πf0 = 2π
T0

to
produce

XT0(ω) = X(nω0).

According to the spectral sampling theorem, the corresponding time-domain function is a T0-scaled,
T0-replicated version of x(t). That is,

xT0(t) =

∞∑

k=−∞
T0x(t− kT0).

(a) When X(ω) is sampled at 10 samples/Hz, T0 = 10 and signal x10(t) results, as shown in the
upper left plot of Fig. S8.4-1. In this case, the replicates of x(t) that form x10(t) are spaced
well apart from one another, and the triangular nature of x(t) is fully preserved.



602 Student use and/or distribution of solutions is prohibited

(b) When X(ω) is sampled at 5 samples/Hz, T0 = 5 and signal x5(t) results, as shown in the upper
right plot of Fig. S8.4-1. In this case, the replicates of x(t) that form x5(t) are just touching
one another, and the triangular nature of x(t) is still preserved.

(c) When X(ω) is sampled at 4 samples/Hz, T0 = 4 and signal x4(t) results, as shown in the lower
left plot of Fig. S8.4-1. In this case, the replicates of x(t) that form x4(t) slightly overlap one
another, distorting the triangular shape of the waveform.

(d) When X(ω) is sampled at 2.5 samples/Hz, T0 = 2.5 and signal x2.5(t) results, as shown in the
lower right plot of Fig. S8.4-1. In this case, the replicates of x(t) that form x2.5(t) fully overlap
one another, completely destroying the triangular shape from x(t).
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Solution 8.4-2

In Sec. 8.4, we have shown that when a timelimited signal x(t) is repeated periodically with a
period T0 > τ (the signal duration), the Fourier series coefficients for the resulting periodic signal
xT0(t) are proportional to the samples of X(ω), the Fourier transform of x(t) at frequency interval
of f0 = 1

T0
Hz. This result is quite general and applied even if x(t) is bandlimited, and therefore,

nontimelimited. To show this we convolve x(t) with unit impulse train δT (t). This will result in
periodic repetition of x(t) with period T . To begin, notice that

y(t) = x(t) ∗ δT (t) ⇐⇒ 1

2π
X(ω)

[
2π

T
δωs(ω)

]
=

1

T
X(ω)δωs(ω),

where ωs =
2π
T . In the present case, T = 1.25

B and the fundamental frequency is ω = 2π/T . Therefore,

Y (ω) =
1

T
X(ω)

∞∑

n=−∞
δ

(
ω − 2πn

T

)
.

Hence Y (ω) represents the spectrum 1
T X(ω) sampled at intervals of 1

T Hz. This means y(t) is a
periodic signal with fundamental frequency f0 = 1

T and Fourier series

y(t) =

∞∑

n=−∞
Dne

jnωst,
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where

Dn =
1

T
X(nωs) =

1

T
X

(
2πn

T

)
.

Moreover, T = 1.25
B . Hence, the fundamental frequency f0 = B

1.25 = 0.8B. But X(ω) is bandlimited
to B Hz. This means Y (ω) contains only the dc and the fundamental component. Frequencies of all
the remaining components are beyond 1.6B, where X(ω) = 0, and hence Y (ω) = 0. The nonzero
component amplitudes are D0 = 1

T X(0) and D1 = 1
T X

(
2π
T

)
. We can write y(t) as a trigonometric

Fourier series
y(t) = C0 + C1 cos(1.6πBt+ θ1),

where

C0 = D0 =
1

T
X(0), C1 = 2|D1| =

2

T

∣∣∣∣X
(
2π

T

)∣∣∣∣ , and θ1 = ∠D1 = ∠X

(
2π

T

)
.

Solution 8.5-1

Here,

T0 =
1

fo
=

1

50
= 20ms and B = 10000.

Hence,

fs ≥ 2B = 20000, T =
1

fs
=

1

20000
= 50µs, and N0 =

T0

T
=

20× 10−3

50× 10−6
= 400.

Since N0 must be a power of 2, we choose

N0 = 512.

Also T = 50µs, T0 = N0T = 512× 50µs = 25.6 ms, and f0 = 1/T0 = 39.0625 Hz. Since x(t) is of 10
ms duration, we need zero padding over 15.6 ms. Alternatively, we could also have used

T =
20× 10−3

512
= 39.0625 µs.

This gives T0 = 20 ms, f0 = 50 Hz, and fs =
1
T = 25600 Hz.

There are also other possibilities of reducing T as well as increasing the frequency resolution.

Solution 8.5-2

For the signal x(t),

T0 ≥ 1

0.25
= 4 and T ≤ 1

fs
=

1

3× 2
=

1

6
.

Let us choose T = 1/8 and T0 = 4. Therefore, N0 = T0/T = 32. The signal x(t) repeats every 4
seconds with samples every 1/8 second. The samples are Tx(nT ) = (1/8)x(n/8). Thus, the first
sample is (at n = 0) 1× (1/8) = 1/8. The 32 samples (of a single period) are (starting at n = 0)

1

8
,
7

64
,

3

32
,

5

64
,
1

16
,
3

64
,
1

32
,
1

64
, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0,
1

64
,
1

32
,
3

64
,
1

16
,
5

64
,
3

32
,
7

64

The samples Tx(nT ) are shown in Fig. S8.5-2.
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Solution 8.5-3

(a) When a bandlimited signal is oversampled, its DFT will be 0 (or very small) for high frequen-
cies. Thus, a suitable sample rate fs can be determined by increasing the DFT size N0 until
high frequency components are sufficiently small, and then computing the sampling rate as

fs =
N0

T0
, where N0 is the smallest DFT size where high frequency components are small.

(b) To test the method of part (a), we consider the signal x(t) = ∆( t−1
2 ), which has T0 = 2. Using

MATLAB, we compute and plot the DFT for various sample sizes N0. Figure S8.5-3 shows
the results for N0 = 16, 32, and 64. For N0 = 16, we see that the high frequency components
are not yet very small. For N0 = 32, the high frequency components are becoming small, and
at N0 = 64, the DFT is small for a fairly broad range of frequencies. Thus,

N0 = 32 produces a good result, suggesting a sampling rate of fs = 16 Hz.

This result aligns well with the known spectral characteristics of x(t) = ∆( t−1
2 ).
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Solution 8.5-4

In this problem,

x(t) = e−tu(t) and X(ω) =
1

jω + 1
.
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(a) We take the folding frequency fs/2 to be the frequency where |X(ω)| is 1% of its peak value,
which happens to be 1 (at ω = 0). Hence,

|X(ω)| ≈ 1

ω
= 0.01 ⇒ ω = 2πB = 100.

This yields B = 50/π, and T ≤ 1/2B = π/100. Let us reduce T to 0.03125, resulting in 32
samples per second. The time constant of e−t is 1. For T0, a reasonable choice is 5 to 6 time
constants or more. Value of T0 = 5 or 6 results in N0 = 160 or 192, neither of which is a power
of 2. Hence, we choose T0 = 8, resulting in N0 = 32× 8 = 256, which is a power of 2.

(b) Here,

|X(ω)| = 1√
ω2 + 1

≃ 1

ω
, ω ≫ 1.

We take the folding frequency fs/2 to be the 99% energy frequency as explained in Ex. 7.20).
From the results in Ex. 7.20), we have (with a = 1)

0.99π

2
= tan−1 W

a
⇒ W = 63.66a = 63.66 rad/sec.

This yields B = W
2π = 10.13 Hz. Also T ≤ 1/2B = 0.04936. This results in the sampling rate

1
T = 20.26 Hz. Also T0 = 8 as explained in part (a). This yields N0 = 20.26 × 8 = 162.08,
which is not a power of 2. Hence, we choose the next higher value, that is N0 = 256, which
yields T = 0.03125 and T0 = 8, the same as in part (a).

Solution 8.5-5

(a) Here,

x(t) =
2

t2 + 1
.

Application of the duality property to pair 3 of Table 7.1 yields

2

t2 + 1
⇐⇒ 2πe−|ω|.

Next, we observe that the peak value of |X(ω)| = 2πe−|ω| is 2π (occurring at ω = 0). Also,
2πe−|ω| becomes 0.01 × 2π (1% of the peak value ) at ω = ln 100 = 4.605. Hence, B =
4.605/2π = 0.733 Hz, and T ≤ 1/2B = 0.682. Also,

x(0) = 2 and x(t) ≃ 2

t2
t ≫ 1.

Next, we choose T0 (the duration of x(t)) to be the instant where x(t) is 1% of x(0):

x(T0) =
2

T 2
0 + 1

=
2

100
=⇒ T0 ≈ 10.

This results in N0 = T0/T = 10/0.682 = 14.66. Rounding up to a power of two yields N0 = 16,
for which T = 0.625 and T0 = 10.

(b) The energy of x(t) = 2
t2+1 is

Ex =
2

2π

∫ ∞

0

(2π)2e−2ω dω = 2π.
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The energy within the band from ω = 0 to W is given by

EW =
8π2

2π

∫ W

0

e−2ω dω = 2π(1− e−2W ).

But EW = 0.99Ex = 0.99× 2π. Hence,

0.99(2π) = 2π(1− e−2W ) ⇒ W = 2.303.

Hence, B = W/2π = 0.366 Hz. Thus, T ≤ 1/2B = 1.366. Also, T0 = 10 as found in part (a).
Hence, N0 = T0/T = 7.32. We select N0 = 8 (a power of 2), resulting in N0 = 8 and T = 1.25.

Solution 8.5-6

The widths of x(t) and g(t) are 1 and 2 respectively. Hence the width of the convolved signal is
1 + 2 = 3. This means we need to zero-pad x(t) for 2 s and g(t) for 1 s, making T0 = 3 for both
signals. Since T = 0.125,

N0 =
3

0.125
= 24.

Preferably, N0 should be a power of 2. Choose N0 = 32. This permits us to adjust T0 to 4. Hence the
final values are T = 0.125 and T0 = 4. The scaled samples of x(t) and g(t) are shown in Fig. S8.5-6.
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Solution 8.5-7

(a) Since Xa(r) = j − π is a constant, it satisfies the periodicity requirement Xa(r) = Xa(r +N)
for integer N ≥ 1, which makes Xa(r) a valid DFT. Since Xa(r) does not possess conjugate
symmetry, the time-domain signal xa[n] is not real. Thus,

Xa(r) is a valid DFT for integer N ≥ 1, and xa[n] is not real.

(b) For Xb(r) = sin(k/10), there exists no integer N such that Xb(r) = Xb(r +N), and Xb(r) is
necessarily aperiodic. Thus,

Xb(r) is not a valid DFT.

(c) In this case, Xc(r) = sin(πk/10) satisfies the periodicity requirement Xc(r) = Xc(r +N) for
N = 20, 40, . . ., so Xc(r) is a valid DFT. Since Xc(r) does not possess conjugate symmetry,
the time-domain signal xc[n] is not real. Thus,

Xc(r) is a valid DFT for N = [20, 40, . . .], and xc[n] is not real.

Notice, since Xc(r) is conjugate antisymmetric, the time-domain signal xc[n] is purely imagi-
nary.
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(d) To begin, we us express Xd(r) =
(

1+j√
2

)r
as Xd(r) = ejkπ/4. Clearly, Xd(r) satisfies the

periodicity requirement Xd(r) = Xd(r + N) for N = 8, 16, . . ., so Xd(r) is a valid DFT.
Further, Xd(r) is conjugate symmetric (Xd(r) = X∗

d(−r)), so the time-domain signal xd[n] is
real. Thus,

Xd(r) is a valid DFT for N = [8, 16, . . .], and xd[n] is real.

(e) In this case, Xe(r) = 〈k + π〉10 satisfies the periodicity requirement Xe(r) = Xe(r + N) for
N = 10, 20, . . ., so Xe(r) is a valid DFT. Since Xe(r) is not conjugate symmetric, the time-
domain signal xe[n] is not real. Thus,

Xe(r) is a valid DFT for N = [10, 20, . . .], and xe[n] is not real.

Solution 8.7-1

Given signal x[n] with DFT Xr =
∑N0−1

n=0 x[n]e−rΩ0n, the time-shifting property tells us that
y[n] = x[n − n0] has DFT Yr = e−rΩ0n0Xr. Therefore, if MATLAB computes the DFT Xr for a
signal x[n] assuming that it starts at 0, then the DFT of the signal shifted to start at n0 is found
by scaling Xr by e−rΩ0n0 .

In MATLAB, this is easy to accomplish. Assuming constants n_0 and Omega_0 are defined and
DFT X is already computed, the corrected DFT X_shift is computed by:

>> X_shift = exp(-j*([0:length(X)-1]’)*Omega_0*n_0}.*X(:);

Solution 8.7-2

Ideally, x1[n] = e2πn30/100 + e2πn33/100 is characterized by two spikes of equal height located at
fr = 0.30 and fr = 0.33. For most cases, two DFT magnitude plots are included: the first covers
the entire range of digital frequencies and the second details the range near the true frequency
content of x1[n].

(a) >> n = (0:9); x1 = exp(j*2*pi*n*30/100)+exp(j*2*pi*n*33/100);

>> X1 = fft(x1); f_r = (0:length(x1)-1)/length(x1);

>> stem(f_r-0.5,fftshift(abs(X1)),’k.’);

>> xlabel(’f_r’); ylabel(’|X_1(f_r)|’);

>> axis([-0.5 0.5 0 20]);

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

f
r

0

5

10

15

20

|X
1
(f

r)|

Figure S8.7-2a

For this DFT, only ten samples of x1[n] are used. As a result, the DFT has only 10 frequency
bins uniformly spaced over the frequency interval [−0.5, 0.5). As Fig. S8.7-2a shows, there is
insufficient frequency resolution to separately identify the two closely spaced exponentials at
fr = 0.30 and fr = 0.33.

(b) >> n = (0:9); x1 = exp(j*2*pi*n*30/100)+exp(j*2*pi*n*33/100);

>> x1 = [x1,zeros(1,490)];
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>> X1 = fft(x1); f_r = (0:length(x1)-1)/length(x1);

>> subplot(211),stem(f_r-0.5,fftshift(abs(X1)),’k.’);

>> xlabel(’f_r’); ylabel(’|X_1(f_r)|’);

>> axis([-0.5 0.5 0 20]);

>> subplot(212),stem(f_r-0.5,fftshift(abs(X1)),’k.’);

>> xlabel(’f_r’); ylabel(’|X_1(f_r)|’);

>> axis([0.2 0.4 0 20]);
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Figure S8.7-2b

For this DFT, only ten samples of x1[n] are used but the sequence is zero-padded to a length of
500. Although the DFT has 500 frequency bins uniformly spaced over the frequency interval
[−0.5, 0.5), there is insufficient information about x1[n] (only 10 samples) to resolve the closely
spaced exponentials at fr = 0.30 and fr = 0.33. Using the picket fence analogy, zero-padding
increases the number of “pickets” in our DFT fence, but it does not change what lies behind
the fence. Still, Fig. S8.7-2b does show a concentration of signal energy centered at fr = 0.315,
the average of the two exponential frequencies.

(c) >> n = (0:99); x1 = exp(j*2*pi*n*30/100)+exp(j*2*pi*n*33/100);

>> X1 = fft(x1); f_r = (0:length(x1)-1)/length(x1);

>> subplot(211),stem(f_r-0.5,fftshift(abs(X1)),’k.’);

>> xlabel(’f_r’); ylabel(’|X_1(f_r)|’);

>> axis([-0.5 0.5 0 110]);

>> subplot(212),stem(f_r-0.5,fftshift(abs(X1)),’k.’);

>> xlabel(’f_r’); ylabel(’|X_1(f_r)|’);

>> axis([0.2 0.4 0 110]);

For this DFT, 100 samples of x1[n] are used. As a result, the DFT has 100 frequency bins
uniformly spaced over the frequency interval [−0.5, 0.5). The set of DFT bins also happens
to include both exponential frequencies fr = 0.30 and fr = 0.33. As Fig. S8.7-2c shows, the
two exponentials are each easily identified. It is rare, however, for the windowed data record
x1[n] to contain an integer number of periods, as occurs in this case, so Fig. S8.7-2c paints a
somewhat optimistic picture of the performance of this 100-point DFT.

(d) >> n = (0:99); x1 = exp(j*2*pi*n*30/100)+exp(j*2*pi*n*33/100);
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Figure S8.7-2c

>> x1 = [x1,zeros(1,400)];

>> X1 = fft(x1); f_r = (0:length(x1)-1)/length(x1);

>> subplot(211),stem(f_r-0.5,fftshift(abs(X1)),’k.’);

>> xlabel(’f_r’); ylabel(’|X_1(f_r)|’);

>> axis([-0.5 0.5 0 110]);

>> subplot(212),stem(f_r-0.5,fftshift(abs(X1)),’k.’);

>> xlabel(’f_r’); ylabel(’|X_1(f_r)|’);

>> axis([0.2 0.4 0 110]);
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Figure S8.7-2d

For this DFT, 100 samples of x1[n] are used, and the sequence is zero-padded to a length of
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500. The DFT has 500 frequency bins uniformly spaced in the frequency interval [−0.5, 0.5),
and these bins include both exponential frequencies fr = 0.30 and fr = 0.33. As shown in
Fig. S8.7-2d, the two exponentials can be separately identified, but there is some added clutter
throughout the frequency spectrum. This clutter is the result of applying a finite-length
window to the signal x1[n]. Although Fig. S8.7-2d may appear less accurate than Fig. S8.7-2c,
both contain the same information about x1[n]. Using the picket fence analogy, Fig. S8.7-2d
uses more pickets than does Fig. S8.7-2c, but the background behind both is the same. In
many respects, Fig. S8.7-2d paints a more honest picture of the data than does Fig. S8.7-2c;
recall that Fig. S8.7-2c looks uncommonly good since data record x1[n] includes an integer
number of periods (a rare occurrence).

Solution 8.7-3

Ideally, x2[n] = e2πn30/100 + e2πn31.5/100 is characterized by two spikes of equal height located at
fr = 0.30 and fr = 0.315. For most cases, two DFT magnitude plots are included: the first covers
the entire range of digital frequencies and the second details the range near the true frequency
content of x2[n].

(a) >> n = (0:9); x2 = exp(j*2*pi*n*30/100)+exp(j*2*pi*n*31.5/100);

>> X2 = fft(x2); f_r = (0:length(x2)-1)/length(x2);

>> stem(f_r-0.5,fftshift(abs(X2)),’k.’);

>> xlabel(’f_r’); ylabel(’|X_2(f_r)|’);

>> axis([-0.5 0.5 0 20]);
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Figure S8.7-3a

For this DFT, only ten samples of x2[n] are used. As a result, the DFT has only 10 frequency
bins uniformly spaced over the frequency interval [−0.5, 0.5). As Fig. S8.7-3a shows, there is
insufficient frequency resolution to separately identify the two closely spaced exponentials at
fr = 0.30 and fr = 0.315.

(b) >> n = (0:9); x2 = exp(j*2*pi*n*30/100)+exp(j*2*pi*n*31.5/100);

>> x2 = [x2,zeros(1,490)];

>> X2 = fft(x2); f_r = (0:length(x2)-1)/length(x2);

>> subplot(211),stem(f_r-0.5,fftshift(abs(X2)),’k.’);

>> xlabel(’f_r’); ylabel(’|X_2(f_r)|’);

>> axis([-0.5 0.5 0 20]);

>> subplot(212),stem(f_r-0.5,fftshift(abs(X2)),’k.’);

>> xlabel(’f_r’); ylabel(’|X_2(f_r)|’);

>> axis([0.2 0.4 0 20]);

For this DFT, only ten samples of x2[n] are used but the sequence is zero-padded to a length of
500. Although the DFT has 500 frequency bins uniformly spaced over the frequency interval
[−0.5, 0.5), there is insufficient information about x2[n] (only 10 samples) to resolve the closely
spaced exponentials at fr = 0.30 and fr = 0.315. Using the picket fence analogy, zero-padding
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Figure S8.7-3b

increases the number of “pickets” in our DFT fence, but it does not change what lies behind
the fence. Still, Fig. S8.7-3b does show a concentration of signal energy centered around
fr = 0.308, the average of the two exponential frequencies.

(c) >> n = (0:99); x2 = exp(j*2*pi*n*30/100)+exp(j*2*pi*n*31.5/100);

>> X2 = fft(x2); f_r = (0:length(x2)-1)/length(x2);

>> subplot(211),stem(f_r-0.5,fftshift(abs(X2)),’k.’);

>> xlabel(’f_r’); ylabel(’|X_2(f_r)|’);

>> axis([-0.5 0.5 0 110]);

>> subplot(212),stem(f_r-0.5,fftshift(abs(X2)),’k.’);

>> xlabel(’f_r’); ylabel(’|X_2(f_r)|’);

>> axis([0.2 0.4 0 110]);

For this DFT, 100 samples of x2[n] are used. As a result, the DFT has 100 frequency bins
uniformly spaced over the frequency interval [−0.5, 0.5). As Fig. S8.7-3c shows, the two ex-
ponentials are not easily distinguished; even the number of dominant frequency components
is difficult to identify. There difficulties partially occur because the exponentials are closely
spaced and the data window is insufficiently large. Features are also obscured since the fre-
quency fr = 0.315 does not lie directly on a DFT frequency bin; therefore the effects of
frequency leakage and smearing are pronounced.

(d) >> n = (0:99); x2 = exp(j*2*pi*n*30/100)+exp(j*2*pi*n*31.5/100);

>> x2 = [x2,zeros(1,400)];

>> X2 = fft(x2); f_r = (0:length(x2)-1)/length(x2);

>> subplot(211),stem(f_r-0.5,fftshift(abs(X2)),’k.’);

>> xlabel(’f_r’); ylabel(’|X_2(f_r)|’);

>> axis([-0.5 0.5 0 110]);

>> subplot(212),stem(f_r-0.5,fftshift(abs(X2)),’k.’);

>> xlabel(’f_r’); ylabel(’|X_2(f_r)|’);

>> axis([0.2 0.4 0 110]);

For this DFT, 100 samples of x2[n] are used, and the sequence is zero-padded to a length of 500.
The DFT has 500 frequency bins uniformly spaced in the frequency interval [−0.5, 0.5). As
shown in Fig. S8.7-3d, two dominant frequency components can be separately identified, but
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Figure S8.7-3c
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Figure S8.7-3d

there is some added “clutter” throughout the frequency spectrum. This “clutter” is the result
of applying a finite-length window to the signal x2[n]. Comparing Figs. S8.7-3c and S8.7-3d,
it is clear that zero-padding assists in separating and locating the two dominant frequencies.
That is, Fig. S8.7-3d displays two discernable modes at the correct frequencies fr = 0.30 and
fr = 0.315 while Fig. S8.7-3c cannot distinguish these two features.

Solution 8.7-4

Ideally, y1[n] = 1 + e2πn30/100 + 0.5 ∗ e2πn43/100 is characterized by three spikes located at fr = 0,
fr = 0.3, and fr = 0.43. The spikes at fr = 0 and fr = 0.3 should have equal height and the spike
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at fr = 0.43 should have have a height that is half as high as the other two. For most cases, two
DFT magnitude plots are included: the first covers the entire range of digital frequencies and the
second details the range near the true frequency content of x2[n].

(a) >> n = (0:19); y1 = 1+exp(j*2*pi*n*30/100)+0.5*exp(j*2*pi*n*43/100);

>> Y1 = fft(y1); f_r = (0:length(y1)-1)/length(y1);

>> stem(f_r-0.5,fftshift(abs(Y1)),’k.’);

>> xlabel(’f_r’); ylabel(’|Y_1(f_r)|’);

>> axis([-0.5 0.5 0 25]);
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Figure S8.7-4a

For this DFT, only 20 samples of y1[n] are used. As a result, the DFT has only 20 frequency
bins uniformly spaced over the frequency interval [−0.5, 0.5). As Fig. S8.7-4a shows, strong
content is seen at fr = 0 and fr = 0.3, but there is insufficient detail to identify the component
at fr = 0.43. As a result, it is not really possible to determine the relative strength of the two
non-DC components.

(b) >> n = (0:19); y1 = 1+exp(j*2*pi*n*30/100)+0.5*exp(j*2*pi*n*43/100);

>> y1 = [y1,zeros(1,480)];

>> Y1 = fft(y1); f_r = (0:length(y1)-1)/length(y1);

>> subplot(211),stem(f_r-0.5,fftshift(abs(Y1)),’k.’);

>> xlabel(’f_r’); ylabel(’|Y_1(f_r)|’);

>> axis([-0.5 0.5 0 25]);

>> subplot(212),stem(f_r-0.5,fftshift(abs(Y1)),’k.’);

>> xlabel(’f_r’); ylabel(’|Y_1(f_r)|’);

>> axis([0.25 0.45 0 25]);

As shown in Fig. S8.7-4b, the picture is improved by zero-padding the signal from part (a). In
this case, each of the three signal components can be identified near their correct frequencies
fr = 0, fr = 0.3, and fr = 0.43. Interestingly, however, the peak amplitude near fr = 0.3
is around 20.2 while the peak amplitude near fr = 0.43 is around 11.5; the ratio of signal
amplitudes appears to be 20.2

11.5 = 1.7565, which does not equal the true ratio of 2. The primary
reason for this distortion is frequency leakage that results from applying a rectangular window
to the signal y1[n].

(c) >> n = (0:19); y1 = 1+exp(j*2*pi*n*30/100)+0.5*exp(j*2*pi*n*43/100);

>> y1 = y1.*window(@hanning,length(y1))’;

>> Y1 = fft(y1); f_r = (0:length(y1)-1)/length(y1);

>> stem(f_r-0.5,fftshift(abs(Y1)),’k.’);

>> xlabel(’f_r’); ylabel(’|Y_1(f_r)|’);

>> axis([-0.5 0.5 0 12]);

Compared to a rectangular window, a Hanning window has a broader main lobe, which tends to
broaden a signal’s spectral features. This broadening, or frequency smearing as it is sometimes
called, is evident when Fig. S8.7-4c(a) is compared to Fig. S8.7-4a; the DFT of the Hanning-
windowed signal has broader features than the DFT of the rectangular-windowed signal. As
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Figure S8.7-4b
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Figure S8.7-4c(a)

with Fig. S8.7-4a, the component at fr = 0.43 is not discernable in Fig. S8.7-4c(a). Finally,
notice that the peak amplitudes in Fig. S8.7-4c(a) are lower than the peak amplitudes in
Fig. S8.7-4a. This is primarily because the Hanning-window attenuates the edges of the original
signal, resulting in a loss of signal energy (and thus smaller DFT coefficients).

>> n = (0:19); y1 = 1+exp(j*2*pi*n*30/100)+0.5*exp(j*2*pi*n*43/100);

>> y1 = [y1.*window(@hanning,length(y1))’,zeros(1,480)];

>> Y1 = fft(y1); f_r = (0:length(y1)-1)/length(y1);

>> subplot(211),stem(f_r-0.5,fftshift(abs(Y1)),’k.’);

>> xlabel(’f_r’); ylabel(’|Y_1(f_r)|’);

>> axis([-0.5 0.5 0 12]);

>> subplot(212),stem(f_r-0.5,fftshift(abs(Y1)),’k.’);

>> xlabel(’f_r’); ylabel(’|Y_1(f_r)|’);

>> axis([0.25 0.45 0 12]);

By zero-padding the Hanning-windowed signal y1[n], the picture is again improved. Fig-
ure S8.7-4c(b) shows that each of the three components of y1[n] are located at the correct
frequencies fr = 0, fr = 0.3, and fr = 0.43. Additionally, the peak amplitude at fr = 0.3 is
around 10.5 and the peak amplitude at fr = 0.43 is around 5.24; the ratio of signal amplitudes
is 10.5

5.24 = 2.0038, which is very close to the true ratio of 2. The computed ratio more accurate
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Figure S8.7-4c(b)

than that computed in Fig. S8.7-4b; the reason for this improvement is that the Hanning win-
dow has lower side lobes than the rectangular window, and is thus less susceptible to leakage
from distantly spaced components.

In this particular case, the Hanning window improves the analysis of the signal. The lower
side lobes of the Hanning window result in reduced leakage. Although the Hanning’s broad
main lobe results in increased smearing, signal components are spaced sufficiently far apart
that each component can still be distinguished.

Solution 8.7-5

Ideally, y2[n] = 1 + e2πn30/100 + 0.5 ∗ e2πn38/100 is characterized by three spikes located at fr = 0,
fr = 0.3, and fr = 0.38. The spikes at fr = 0 and fr = 0.3 should have equal height and the spike
at fr = 0.38 should have have a height that is half as high as the other two. For most cases, two
DFT magnitude plots are included: the first covers the entire range of digital frequencies and the
second details the range near the true frequency content of y2[n].

(a) >> n = (0:19); y2 = 1+exp(j*2*pi*n*30/100)+0.5*exp(j*2*pi*n*38/100);

>> Y2 = fft(y2); f_r = (0:length(y2)-1)/length(y2);

>> stem(f_r-0.5,fftshift(abs(Y2)),’k.’);

>> xlabel(’f_r’); ylabel(’|Y_2(f_r)|’);

>> axis([-0.5 0.5 0 25]);

For this DFT, only 20 samples of y2[n] are used. As a result, the DFT has only 20 frequency
bins uniformly spaced over the frequency interval [−0.5, 0.5). As Fig. S8.7-5a shows, strong
content is seen at fr = 0 and fr = 0.3, but there is insufficient detail to identify the component
at fr = 0.38. As a result, it is not really possible to determine the relative strength of the two
non-DC components.

(b) >> n = (0:19); y2 = 1+exp(j*2*pi*n*30/100)+0.5*exp(j*2*pi*n*38/100);

>> y2 = [y2,zeros(1,480)];

>> Y2 = fft(y2); f_r = (0:length(y2)-1)/length(y2);

>> subplot(211),stem(f_r-0.5,fftshift(abs(Y2)),’k.’);

>> xlabel(’f_r’); ylabel(’|Y_2(f_r)|’);
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Figure S8.7-5a

>> axis([-0.5 0.5 0 25]);

>> subplot(212),stem(f_r-0.5,fftshift(abs(Y2)),’k.’);

>> xlabel(’f_r’); ylabel(’|Y_2(f_r)|’);

>> axis([0.25 0.45 0 25]);
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Figure S8.7-5b

As shown in Fig. S8.7-5b, the picture is greatly improved by zero-padding the signal part (a).
In this case, each of the three signal components can be identified near their correct frequencies
fr = 0, fr = 0.3, and fr = 0.38. Interestingly, however, the peak amplitude near fr = 0.3
is around 20.0 while the peak amplitude near fr = 0.38 is around 11.5; the ratio of signal
amplitudes appears to be 20.0

11.5 = 1.7391, which does not equal the true ratio of 2. The primary
reason for this distortion is frequency leakage that results from applying a rectangular window
to the signal y2[n].

(c) >> n = (0:19); y2 = 1+exp(j*2*pi*n*30/100)+0.5*exp(j*2*pi*n*38/100);

>> y2 = y2.*window(@hanning,length(y2))’;

>> Y2 = fft(y2); f_r = (0:length(y2)-1)/length(y2);

>> stem(f_r-0.5,fftshift(abs(Y2)),’k.’);

>> xlabel(’f_r’); ylabel(’|Y_2(f_r)|’);

>> axis([-0.5 0.5 0 12]);
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Figure S8.7-5c(a)

Compared to a rectangular window, a Hanning window has a broader main lobe, which tends to
broaden a signal’s spectral features. This broadening, or frequency smearing as it is sometimes
called, is evident when Fig. S8.7-5c(a) is compared to Fig. S8.7-5a; the DFT of the Hanning-
windowed signal has broader features than the DFT of the rectangular-windowed signal. As
with Fig. S8.7-5a, the component at fr = 0.38 is not discernable in Fig. S8.7-5c(a). Finally,
notice that the peak amplitudes in Fig. S8.7-5c(a) are lower than the peak amplitudes in
Fig. S8.7-5a. This is primarily because the Hanning-window attenuates the edges of the original
signal, resulting in a loss of signal energy (and thus smaller DFT coefficients).

>> n = (0:19); y2 = 1+exp(j*2*pi*n*30/100)+0.5*exp(j*2*pi*n*38/100);

>> y2 = [y2.*window(@hanning,length(y2))’,zeros(1,480)];

>> Y2 = fft(y2); f_r = (0:length(y2)-1)/length(y2);

>> subplot(211),stem(f_r-0.5,fftshift(abs(Y2)),’k.’);

>> xlabel(’f_r’); ylabel(’|Y_2(f_r)|’);

>> axis([-0.5 0.5 0 12]);

>> subplot(212),stem(f_r-0.5,fftshift(abs(Y2)),’k.’);

>> xlabel(’f_r’); ylabel(’|Y_2(f_r)|’);

>> axis([0.25 0.45 0 12]);
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Figure S8.7-5c(b)

As shown in Fig. S8.7-5c(b), zero-padding does not improve the picture of the Hanning-
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windowed signal y2[n]. While the components near fr = 0 and fr = 0.3 can be identified,
the component at fr = 0.38 appears mostly lost! As such, the relative strengths of the com-
ponents at fr = 0.3 and fr = 0.38 cannot be determined.

In this particular case, the Hanning window does not improve the analysis of the signal. While
the lower side lobes of the Hanning window may reduce leakage, the Hanning’s broad main
lobe smears the components fr = 0.3 and fr = 0.38 to the point that the component fr = 0.38
is completely obscured.

Solution 8.7-6

(a) MATLAB is used to plot the four samples corresponding to one period of the periodic signal
x[n] = cos(nπ/2).

>> N = 4; n = (0:N-1); x = cos(n*pi/2);

>> stem(n,x,’k.’); xlabel(’n’); ylabel(’x[n]’);

>> axis([-.5 3.5 -1.1 1.1]);
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Figure S8.7-6a

Since the signal is so sparsely sampled, it doesn’t much resemble a sinusoid.

(b) >> N = 4; X = fft(x); r=(0:N-1); fr = r/N;

>> stem(fr-0.5,fftshift(abs(X)),’k.’); xlabel(’f_r’); ylabel(’|X(f_r)|’);

>> axis([-.5 0.5 -0.1 2.1]);
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Figure S8.7-6b

The DFT shown in Fig. S8.7-6b seems sensible. A pair of spikes appears that are consistent
with the original sinusoid.

(c) Inserting zeros in the middle of the DFT Xr has the effect of increasing the sampling rate of
x[n]. Zeros need to be placed in the middle to maintain the necessary symmetry of the DFT.
Thought of another way, adding zeros to the middle of the DFT effectively specifies zero signal
content for the newly added range of higher frequencies. The original signal content at lower
frequencies is left unchanged.
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>> Y = [X(1:3),zeros(1,100-length(X)),X(4)];

>> stem([0:99],real(ifft(Y)),’k.’);

>> xlabel(’n’); ylabel(’y[n]’);
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Figure S8.7-6c

As seen in Fig. S8.7-6c, the signal y[n] looks much more sinusoidal than x[n]. Both signals are
plotted for one full period, but y[n] has 25 times as many samples as x[n]. Notice also that
the magnitude of y[n] is 1/25 as great as x[n].

Zero-padding in the frequency domain achieves a similar effect as zero-padding in the time
domain. Using the picket fence analogy, zero-padding in frequency increases the number of
pickets in the time-domain (increases the sampling rate), but it does not, other than a scale
factor, change what is behind the pickets (in this case, one period of a sinusoid).

(d) As seen in the previous part, increasing the size of an N -point DFT by a factor K causes a
reduction of the time-domain signal’s amplitude by a factor 1/K. To correct this reduction,
scale the zero-padded DFT by the factor K. For example, a 4-point DFT zero-padded to a
length of 100 would need to be scaled by K = 100/4 = 25.

(e) >> temp = fft([1 1 1 1 -1 -1 -1 -1]);

>> S = (100/length(temp))*[temp(1:5),zeros(1,100-length(temp)),temp(6:8)];

>> stem([0:99],real(ifft(S)),’k.’);

>> xlabel(’n’); ylabel(’s[n]’);
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Figure S8.7-6e

As shown in Fig. S8.7-6e, the reconstructed signal s[n] has some appearance of a square wave,
but lacks the sharp edges typical of a square wave. In fact, s[n] might be best called a band-
limited square wave. Although zero-padding in the frequency domain increases the sampling
rate in the time-domain, zero-padding cannot add the high-frequency harmonics needed to
achieve a better square-wave approximation.

Solution 8.7-7

(a) Following an approach similar to the text, we use MATLAB to plot the transfer characteristics
for a 3-bit truncating asymmetric converter operating over (−10, 10) (see Fig. S8.7-7a).
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>> x = (-15:.0001:15); xmax = 10; B = 3; xq = x;

>> xq(abs(xq)>xmax)=xmax*sign(xq(abs(xq)>xmax)); % Limit amplitude to xmax

>> xq = xmax/(2^(B-1))*floor(xq*2^(B-1)/xmax); % Quantize

>> xq(xq>=xmax)=xmax*(1-2^(1-B)); % Ensure 2^B levels

>> plot(x,xq,’k’); axis([-15 15 -10.5 10.5]); grid on;

>> line([-10 10],[-10 10],’linestyle’,’:’,’linewidth’,1/4);

>> xlabel(’Quantizer input’); ylabel(’Quantizer output’);
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Figure S8.7-7a

(b) Next, we apply 3-bit truncating asymmetric quantization to a 1 Hz cosine sampled at fs = 50
Hz over 1 second. Figure S8.7-7b shows the original signal x(t), the quantized signal xq(t),
and the magnitude spectra of both. The (3-bit) truncating asymmetric quantization shown
in Fig. S8.7-7b operates similarly to the (2-bit) asymmetric rounding quantization shown in
Fig. 8.33. Although not easy to see from the plots, truncating asymmetric quantization has a
level transition at 0 and thus (undesirably) operates as a low-noise amplifier.

>> fs = 50; T = 1/fs; N0 = 50; n = 0:N0-1;

>> x = cos(2*pi*n*T); xmax = 1; B = 3; xq = x;

>> xq(abs(xq)>xmax)=xmax*sign(xq(abs(xq)>xmax)); % Limit amplitude to xmax

>> xq = xmax/(2^(B-1))*floor(xq*2^(B-1)/xmax); % Quantize

>> xq(xq>=xmax)=xmax*(1-2^(1-B)); % Ensure 2^B levels

>> subplot(221); stem(n,x,’k.’); xlabel(’n’); ylabel(’x[n]’);

>> axis([-.5 N0-.5 -1.1*xmax 1.1*xmax]); grid on;

>> subplot(222); stem(n-25,fftshift(abs(fft(x))),’k.’);

>> xlabel(’f’); ylabel(’|X(f)|’);

>> axis([-N0/2-.5 N0/2-.5 0 1.1*N0/2]); grid on;

>> subplot(223); stem(n,xq,’k.’); xlabel(’n’); ylabel(’x_q[n]’);

>> axis([-.5 N0-.5 -1.1*xmax 1.1*xmax]); grid on;

>> subplot(224); stem(n-25,fftshift(abs(fft(xq))),’k.’);

>> xlabel(’f’); ylabel(’|X_q(f)|’);

>> axis([-N0/2-.5 N0/2-.5 0 1.1*N0/2]); grid on;
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Figure S8.7-7b

Solution 8.7-8

(a) Following an approach similar to the text, we use MATLAB to plot the transfer characteristics
for a 3-bit truncating symmetric converter operating over (−10, 10) (see Fig. S8.7-8a).

>> x = (-15:.0001:15); xmax = 10; B = 3; xq = x;

>> xq(abs(xq)>xmax)=xmax*sign(xq(abs(xq)>xmax)); % Limit amplitude to xmax

>> xq = xmax/(2^(B-1))*(floor(xq*2^(B-1)/xmax-1/2)+1/2); % Quantize

>> xq(xq<=-xmax)=-xmax*(1-2^(-B)); % Ensure 2^B levels

>> plot(x,xq,’k’); axis([-15 15 -10.5 10.5]); grid on;

>> line([-10 10],[-10 10],’linestyle’,’:’,’linewidth’,1/4);

>> xlabel(’Quantizer input’); ylabel(’Quantizer output’);

(b) Next, we apply 3-bit truncating symmetric quantization to a 1 Hz cosine sampled at fs = 50
Hz over 1 second. Figure S8.7-8b shows the original signal x(t), the quantized signal xq(t),
and the magnitude spectra of both. The (3-bit) truncating symmetric quantization shown
in Fig. S8.7-8b operates similarly to the (2-bit) asymmetric rounding quantization shown in
Fig. 8.33. Still, asymmetric converters are often preferred over symmetric converters since they
include the desirable value of 0 as a quantization level.

>> fs = 50; T = 1/fs; N0 = 50; n = 0:N0-1;

>> x = cos(2*pi*n*T); xmax = 1; B = 3; xq = x;

>> xq(abs(xq)>xmax)=xmax*sign(xq(abs(xq)>xmax)); % Limit amplitude to xmax

>> xq = xmax/(2^(B-1))*(floor(xq*2^(B-1)/xmax-1/2)+1/2); % Quantize

>> xq(xq<=-xmax)=-xmax*(1-2^(-B)); % Ensure 2^B levels

>> subplot(221); stem(n,x,’k.’); xlabel(’n’); ylabel(’x[n]’);

>> axis([-.5 N0-.5 -1.1*xmax 1.1*xmax]); grid on;

>> subplot(222); stem(n-25,fftshift(abs(fft(x))),’k.’);

>> xlabel(’f’); ylabel(’|X(f)|’);

>> axis([-N0/2-.5 N0/2-.5 0 1.1*N0/2]); grid on;

>> subplot(223); stem(n,xq,’k.’); xlabel(’n’); ylabel(’x_q[n]’);

>> axis([-.5 N0-.5 -1.1*xmax 1.1*xmax]); grid on;
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>> subplot(224); stem(n-25,fftshift(abs(fft(xq))),’k.’);

>> xlabel(’f’); ylabel(’|X_q(f)|’);

>> axis([-N0/2-.5 N0/2-.5 0 1.1*N0/2]); grid on;
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Chapter 9 Solutions

Solution 9.1-1

Here,

x[n] = 4 cos 2.4πn+ 2 sin 3.2πn = 4 cos 0.4πn+ 2 sin 1.2πn

= 2[ej0.4πn + e−j0.4πn] +
1

j
[ej1.2πn − e−j1.2πn]

= 2ej0.4πn + 2e−j0.4πn + ej(1.2πn−π/2) + e−j(1.2πn−π/2).

By inspection, Ω0 = 0.4π and N0 = 2π
Ω0

= 5. Note also that

e−j0.4πn = ej1.6πn and e−j1.2πn = ej0.8πn.

Therefore,
x[n] = 2ej0.4πn + 2ej1.6πn + ej(1.2πn−π/2) + ej(0.8πn+π/2).

We see x[n] is comprised of the first, second, third and fourth harmonics with coefficients

D1 = D2 = 2, D3 = −j, and D4 = j.

The magnitude and phase spectra are shown in Fig. S9.1-1.
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Figure S9.1-1

Solution 9.1-2

Here,

x[n] = cos 2.2πn cos 3.3πn =
1

2
[cos 5.5πn+ cos 1.1πn] =

1

2
[cos 1.5πn+ cos 1.1πn]

=
1

2
[ej1.5πn + e−j1.5πn + ej1.1πn + e−j1.1πn] =

1

2
[ej1.5πn + ej0.5πn + ej1.1πn + ej0.9πn].

The fundamental frequency is Ω0 = 0.1, and N0 = 2π
Ω0

= 20. Thus, this signal is comprised of the
5th, 9th, 11th and 15th harmonics with coefficients

D5 = D9 = D11 = D15 =
1

2
.

All the form coefficients are real (phases zero). The spectrum is shown in Fig. S9.1-2.

623
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Solution 9.1-3

Here,

x[n] = 2 cos 3.2π(n− 3) = 2 cos(3.2πn− 9.6π) = 2 cos(1.2πn− 1.6π)

= ej(1.2πn−1.6π) + e−j(1.2πn−1.6π) = ej(1.2πn−1.6π) + ej(0.8πn+1.6π).

The fundamental frequency is Ω0 = 0.4π, and N0 = 2π
Ω0

= 5. By inspection, we see that x[n] is
comprised of only the 2nd and 3rd harmonics with coefficients

D2 = ej1.6π = e−j0.4π and D3 = e−j1.6π = ej0.4π .

The magnitude and phase spectra are shown in Fig. S9.1-3.

0 1 2 3 4

r

0

0.5

1

|D
r|

0 1 2 3 4

r

-0.4π

0

0.4π

 D
r

Figure S9.1-3

Solution 9.1-4

In this case, N0 = 7 and Ω0 = 2π
7 . Now, the DTFS coefficients Dr are just the DFT scaled by 1

N0
.

We use MATLAB to perform the (tedious) calculations.

>> x = [0, 1, -2, 3, -4, 5, 6]; N0 = 7; Omega0 = 2*pi/N0;

>> r = (0:N0-1); n = (0:N0-1); Dr = fft(x)/N0

Dr = -0.4286+0.0000i -0.4120-0.2408i -0.3163-0.6270i 0.9425-2.1906i

0.9425+2.1906i -0.3163+0.6270i -0.4120+0.2408i

Thus, over 0 ≤ r ≤ 6, the DTFS coefficients are

Dr = [− 0.4286 + 0.0000j, −0.4120− 0.2408j, −0.3163− 0.6270j, 0.9425− 2.1906j

0.9425 + 2.1906j, −0.3163 + 0.6270j, −0.4120+ 0.2408j].

The magnitude and phase spectra, computed using MATLAB, are shown in Fig. S9.1-4.

>> subplot(121); stem(r,abs(Dr),’.k’); xlabel(’r’); ylabel(’|D_r|’);

>> axis([-.5 6.5 0 1.7]); grid on;

>> subplot(122); stem(r,angle(Dr),’.k’); xlabel(’r’); ylabel(’\angle D_r’);

>> axis([-.5 6.5 -1.1*pi 1.1*pi]); grid on; set(gca,’ytick’,-pi:pi/2:pi);
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Since the DTFS coefficients are just a scaled version of the DFT, the DTFS shares the properties
of the DFT. Thus, if the 7-periodic signal x[n] is time reversed, the DTFS spectrum is (modulo-N)
reversed. Over 0 ≤ r ≤ 6, the DTFS coefficients of x[−n] are therefore

[− 0.4286 + 0.0000j, −0.4120 + 0.2408j, −0.3163 + 0.6270j, 0.9425 + 2.1906j

0.9425− 2.1906j, −0.3163− 0.6270j, −0.4120− 0.2408j].

We verify this result using MATLAB.

>> fft([x(1),fliplr(x(2:end))])/N0

ans = -0.4286+0.0000i -0.4120+0.2408i -0.3163+0.6270i 0.9425+2.1906i

0.9425-2.1906i -0.3163-0.6270i -0.4120-0.2408i

Solution 9.1-5

To compute coefficients Dr, we use Eq. (9.7) where the summation is performed over any interval
N0. We choose this interval to be −N0/2, (N0/2)− 1 (for even N0). Therefore

Dr =
1

N0

(N0/2)−1∑

n=−N0/2

x[n]e−jrΩ0n.

In the present case N0 = 6, Ω0 = 2π
N0

= π
3 , and

Dr =
1

6

2∑

n=−3

x[n]e−jr π
3
n.

We have x[0] = 3, x[±1] = 2, x[±2] = 1, and x[±3] = 0. Therefore

Dr =
1

6
[3 + 2(ej

π
3 r + e−j π

3 r) + (ej
2π
3 r + e−j 2π

3 r)]

=
1

6
[3 + 4 cos(

π

3
r) + 2 cos(

2π

3
r)]

Over 0 ≤ r ≤ N0 − 1, we obtain

D0 =
3

2
, D1 =

2

3
, D2 = 0, D3 =

1

6
, D4 = 0, and D5 =

2

3
.

Solution 9.1-6

In this case, N0 = 12 and Ω0 = π
6 .

x[0] = 0, x[1] = 1, x[−1] = −1, x[2] = 2, x[−2] = −2,

x[3] = 3, x[−3] = −3, and x[±4] = x[±5] = x[±6] = 0.
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Therefore

Dr =
1

12

5∑

n=−6

x[n]e−jr π
6 n

=
1

12
[e−j π

6 r − ej
π
6 r + 2(e−j 2π

6 r − ej
2π
6 r) + 3(e−j 3π

6 r − ej
3π
6 r)]

=
−j

12
[2 sin(

π

6
r) + 4 sin(

π

3
r) + 6 sin(

π

2
r)]

Solution 9.1-7

Here, the period is N0, and Ω0 = 2π/N0. Using Eq. (9.4), we obtain

Dr =
1

N0

N0−1∑

n=0

ane−jrΩ0n =
1

N0

N0−1∑

n=0

(ae−jrΩ0 )n.

This is a geometric progression, whose sum is found from Sec. B.8.3 as

Dr =
1

N0

(
aN0e−jrΩ0N0 − 1

ae−jrΩ0 − 1

)
=

aN0 − 1

N0(ae−jrΩ0 − 1)
because e−jrΩ0N0 = e−jr2π = 1.

Therefore,

aN0

N0(ae−jrΩ0 − 1)
=

aN0

N0(a cos rΩ0 − ja sin Ω0 − 1)

=
aN0

N0(
√
a2 − 2a cos rΩ0 + 1︸ ︷︷ ︸

|Dr|

∠{− tan−1 −a sin rΩ0

a cos rΩ0 − 1︸ ︷︷ ︸
∠Dr

.}

Solution 9.1-8

Because |x[n]|2 = x[n]x∗[n], using Eq. (9.3), we obtain

Px =
1

N0

N0−1∑

n=0

∣∣∣∣∣

N0−1∑

r=0

Dre
jrΩ0n

∣∣∣∣∣

2

=
1

N0

N0−1∑

n=0

[
N0−1∑

r=0

Dre
jΩ0n

N0−1∑

m=0

D∗
me−jmΩ0n

]
.

Interchanging the order of summation yields

Px =
1

N0

N0−1∑

r=0

N0−1∑

m=0

DrD
∗
m

[
N0−1∑

n=0

ej(r−m)Ω0n

]
.

From Eq. (8.15), the sum inside the parenthesis is N0 when r = m, and is zero otherwise. Hence,

Px =
1

N0

N0−1∑

n=0

|x[n]|2 =

N0−1∑

r=0

|Dr|2.

Solution 9.1-9

(a) Yes, the sum of aperiodic discrete-time sequences can be periodic. For example, consider two
signals x1[n] = sin(n)u[n] and x2[n] = sin(n)u[−n− 1]. The sum of these two aperiodic signals
is the periodic function x1[n] + x2[n] = sin(n).
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(b) No, it is not possible for a sum of periodic discrete-time sequences to be aperiodic. Consider
arbitrary periodic signals x1[n] and x2[n] with periods N1 and N2, respectively. Let y[n] =
x1[n] + x2[n]. Notice that y[n + N1N2] = x1[n + N1N2] + x2[n + N1N2]. By periodicity,
x1[n+kN1] = x1[n] and x2[n+kN2] = x2[n] for any k. Thus, y[n+N1N2] = x1[n]+x2[n] = y[n].
That is, the sum of two periodic signals must also be periodic.

Solution 9.2-1

Using Eq. (9.18), the DTFT of x[n] is

x[n] =
1

2π

∫ π

−π

X(Ω)ejΩn dΩ

=
1

2π

∫ π

−π

|X(Ω)|ej∠X(Ω)ejΩn dΩ

=
1

2π

(∫ π

−π

|X(Ω)| cos[Ωn+ ∠X(Ω)] dΩ+ j

∫ π

−π

|X(Ω)| sin[Ωn+ ∠X(Ω)] dΩ

)
.

Since |X(Ω)| is an even function of Ω and ∠X(Ω) is an odd function of Ω, the integrand in the second
integral is an odd function of Ω, and the integral thus evaluates to zero. Moreover the integrand in
the first integral is an even function of Ω, and therefore

x[n] =
1

π

∫ π

0

|X(Ω)| cos[Ωn+ ∠X(Ω)] dΩ.

Solution 9.2-2

(a) Because x[n] = xe[n] + xo[n] and e−jΩn = cos(Ωn)− j sin(Ωn), the DTFT of x[n] is

X(Ω) =

∞∑

n=−∞
(xe[n] + xo[n])e

−jΩn

=

∞∑

n=−∞
(xe[n] + xo[n]) cos(Ωn)− j

∞∑

n=−∞
(xe[n] + xo[n]) sin(Ωn).

Because xe[n] sin(Ωn) and xo[n] cos(Ωn) are odd functions of n, the sums involving these terms
evaluate to zero. Thus,

X(Ω) =

∞∑

n=−∞
xe[n] cos(Ωn)− j

∞∑

n=−∞
xo[n] sin(Ωn).

Now, if x[n] is real, then xe[n] and xo[n] are also real. Thus,

Re {X(Ω)} =

∞∑

n=−∞
xe[n] cos(Ωn) and j Im {X(Ω)} = −j

∞∑

n=−∞
xo[n] sin(Ωn).

Next, we determine the DTFT of xe[n] as

Xe(Ω) =
∞∑

n=−∞
xe[n]e

−jΩn

=
∞∑

n=−∞
xe[n] cos(Ωn)− j

∞∑

n=−∞
xe[n] sin(Ωn).
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Because xe[n] sin(Ωn) is odd, the second integral is zero, and

Xe(Ω) =
∞∑

n=−∞
xe[n] cos(Ωn) = Re {X(Ω)} .

Similarly, the DTFT of xo[n] is

Xo(Ω) =
∞∑

n=−∞
xo[n]e

−jΩn

=
∞∑

n=−∞
xo[n] cos(Ωn)− j

∞∑

n=−∞
xo[n] sin(Ωn).

Because xo[n] cos(Ωn) is odd, the first integral is zero, and

Xo(Ω) = −j
∞∑

n=−∞
xo[n] sin(Ωn) = j Im {X(Ω)} .

Taking everything together and assuming x[n] is real, we obtain the desired results of

Xe(Ω) = Re {X(Ω)} and Xo(Ω) = j Im {X(Ω)} .

(b) We shall prove the result for a general exponential x[n] = γnu[n] with real parameter γ. Using
entry 2 from Table 9.1, we see that the DTFT of x[n] is given as

X(Ω) =
ejΩ

ejΩ − γ
=

ejΩ

ejΩ − γ

(
e−jΩ − γ

e−jΩ − γ

)

=
1− γejΩ

γ2 − 2γ cos(Ω) + 1
=

1− γ cos(Ω)

γ2 − 2γ cos(Ω) + 1
+ j

−γ sin(Ω)

γ2 − 2γ cos(Ω) + 1
.

The even and odd components of x[n] = γnu[n] are

xe[n] = 0.5(γnu[n] + γ−nu[−n]) and xo[n] = 0.5(γnu[n]− γ−nu[−n]).

We know that γnu[n] ⇐⇒ 1
1−γejΩ . Moreover,

γ−nu[−n] =

(
1

γ

)n

u[−(n+ 1)] + δ[n].

Hence, using entries 1 and 3 from Table 9.1, we see that

γ−nu[−n] ⇐⇒ 1
1
γ e

−jΩ − 1
+ 1 =

1

1− γejΩ
.

As long as γ is real, we therefore see that

Xe(Ω) = 0.5

(
1

1− γe−jΩ
+

1

1− γejΩ

)
=

1− γ cos(Ω)

γ2 − 2γ cos(Ω) + 1
= Re {X(Ω)}

and

Xo(Ω) = 0.5

(
1

1− γe−jΩ
− 1

1− γejΩ

)
=

−jγ sin(Ω)

γ2 − 2γ cos(Ω) + 1
= j Im {X(Ω)} .

These direct calculations confirm our earlier part (a) results.
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Solution 9.2-3

For the following signals, we assume |γ| < 1 and find the DTFT directly using Eq. (9.19).

(a) Applying Eq. (9.19) to xa[n] = δ[n] yields

Xa(Ω) =
∞∑

n=−∞
xa[n]e

−jΩn =
∞∑

n=−∞
δ[n]e−jΩn = 1.

Figure S9.2-3a shows xa[n], |Xa(Ω)|, and ∠Xa(Ω).
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Figure S9.2-3a

(b) Applying Eq. (9.19) to xb[n] = δ[n− k] yields

Xb(Ω) =

∞∑

n=−∞
xb[n]e

−jΩn =

∞∑

n=−∞
δ[n− k]e−jΩn = e−jΩk.

Figure S9.2-3b shows xb[n], |Xb(Ω)|, and ∠Xb(Ω). Notice, xb[n] is just a shifted version of
xa[n]. The magnitude spectrum |Xb(Ω)| equals the magnitude spectrum |Xa(Ω)|, and the
phase spectrum ∠Xb(Ω) equals the phase spectrum ∠Xa(Ω) plus the linear phase component
−Ωk.
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Figure S9.2-3b

(c) Applying Eq. (9.19) to xc[n] = γnu[n− 1] yields

Xc(Ω) =

∞∑

n=−∞
xc[n]e

−jΩn =

∞∑

n=−∞
γnu[n− 1]e−jΩn

=

∞∑

n=1

(
γe−jΩ

)n
=

γe−jΩ

1− γe−jΩ
.

Figure S9.2-3c shows xc[n], |Xc(Ω)|, and ∠Xc(Ω) for γ = 0.8. Comparing Xc(Ω) to the
spectrum for γnu[n] found in Ex. 9.3, we see that Xc(Ω) is just γe−jΩ times that signal’s
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Figure S9.2-3c

spectrum of 1/(1 − γe−jΩ). Thus, the magnitude spectrum |Xc(Ω)| is just |γ| times the
magnitude spectrum shown in Fig. 9.5b, and the phase spectrum ∠Xc(Ω) is just the phase
spectrum of Fig. 9.5c plus the linear phase component −Ω+ ∠γ.

(d) Applying Eq. (9.19) to xd[n] = γnu[n+ 1] yields

Xd(Ω) =

∞∑

n=−∞
xd[n]e

−jΩn =

∞∑

n=−∞
γnu[n+ 1]e−jΩn =

∞∑

n=−1

(
γe−jΩ

)n

=
(γe−jΩ)−1

1− γe−jΩ
=

1
γ e

jΩ

1− γe−jΩ
.

Figure S9.2-3d shows xd[n], |Xd(Ω)|, and ∠Xd(Ω) for γ = 0.8. Comparing Xd(Ω) to the
spectrum for γnu[n] found in Ex. 9.3, we see that Xd(Ω) is just 1

γ e
jΩ times that signal’s

spectrum of 1/(1 − γe−jΩ). Thus, the magnitude spectrum |Xd(Ω)| is just | 1γ | times the

magnitude spectrum shown in Fig. 9.5b, and the phase spectrum ∠Xd(Ω) is just the phase
spectrum of Fig. 9.5c plus the linear phase component Ω− ∠γ.
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Figure S9.2-3d

(e) Applying Eq. (9.19) to xe[n] = (−γ)nu[n] yields

Xe(Ω) =

∞∑

n=−∞
xe[n]e

−jΩn =

∞∑

n=−∞
(−γ)nu[n]e−jΩn =

∞∑

n=0

(
−γe−jΩ

)n

=
1

1 + γe−jΩ
=

1

1− γe−j(Ω+π)
.

Figure S9.2-3e shows xe[n], |Xe(Ω)|, and ∠Xe(Ω) for γ = 0.8. Comparing Xe(Ω) to the
spectrum for γnu[n] found in Ex. 9.3, we see that Xe(Ω) is just that signal’s spectrum of
1/(1 − γe−jΩ) with Ω + π substituted for Ω. Thus, the magnitude spectrum |Xe(Ω)| is just
the magnitude spectrum shown in Fig. 9.5b shifted in frequency by π, and the phase spectrum
∠Xe(Ω) is just the phase spectrum of Fig. 9.5c also shifted in frequency by π.
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Figure S9.2-3e

(f) Applying Eq. (9.19) to xf [n] = γ|n| yields

Xf(Ω) =
∞∑

n=−∞
xf [n]e

−jΩn =
∞∑

n=−∞
γ|n|e−jΩn =

−1∑

n=−∞
γ−ne−jΩn +

∞∑

n=0

γne−jΩn

=

−1∑

n=−∞

(
1

γ
e−jΩ

)n

+

∞∑

n=0

(
γe−jΩ

)n
=

−1

1− 1
γ e

−jΩ
+

1

1− γe−jΩ

=
−γ

γ − e−jΩ

(
γ − ejΩ

γ − ejΩ

)
+

1

1− γe−jΩ

(
1− γejΩ

1− γejΩ

)

=
−γ2 + γejΩ

1− 2γ cos(Ω) + γ2
+

1− γejΩ

1− 2γ cos(Ω) + γ2

=
1− γ2

1− 2γ cos(Ω) + γ2
.

Figure S9.2-3f shows xf [n], |Xf(Ω)|, and ∠Xf(Ω) for γ = 0.8.
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Figure S9.2-3f

Solution 9.2-4

(a) Using Eq. (9.18), the IDTFT of Xa(Ω) is

xa[n] =
1

2π

∫ π

−π

Xa(Ω)e
jΩn dΩ =

1

2π

∫ π

−π

ejkΩejnΩ dΩ

=
1

2π

∫ π

−π

ej(n+k)Ω dΩ =
ej(n+k)Ω

2πj(n+ k)

∣∣∣∣
π

Ω=−π

=
sin[π(n+ k)]

π(n+ k)
= sinc [π(n+ k)] = δ[n+ k].

The final step follows by observing that both n and k are integers and sin[(n + k)π] = 0 for
all n 6= −k. For n = −k, sinc [π(n+ k)] = 1.
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(b) Using Eq. (9.18), the IDTFT of Xb(Ω) is

xb[n] =
1

2π

∫ π

−π

Xb(Ω)e
jΩn dΩ =

1

2π

∫ π

−π

cos(kΩ)ejnΩ dΩ

=
1

4π

∫ π

−π

(
ej(n+k)Ω + ej(n−k)Ω

)
dΩ

Applying the results obtained from part (a), we see that

xb[n] =
1

2
(sinc [π(n+ k)] + sinc [π(nik)]) =

1

2
(δ[n+ k] + δ[n− k]) .

(c) Using Eq. (9.18), the IDTFT of Xc(Ω) is

xc[n] =
1

2π

∫ π

−π

Xc(Ω)e
jΩn dΩ =

1

2π

∫ π

−π

cos2(Ω/2)ejΩn dΩ

=
1

2π

∫ π

−π

1

2
(1 + cos(Ω)) ejΩn dΩ

=
1

4π

∫ π

−π

ejΩn dΩ+
1

4π

∫ π

−π

cos(Ω)ejΩn dΩ.

Using the results from parts (a) and (b), we obtain

xc[n] =
1

2
δ[n] +

1

4
(δ[n+ 1] + δ[n− 1]) .

(d) In this problem, we assume that 0 < Ωc < π. Using Eq. (9.18), the IDTFT of Xd(Ω) is

xd[n] =
1

2π

∫ π

−π

Xd(Ω)e
jΩn dΩ =

1

2π

∫ π

−π

∆

(
Ω

2Ωc

)
ejΩn dΩ

=
1

2π

∫ 0

−Ωc

(
1 +

Ω

Ωc

)
ejΩn dΩ+

1

2π

∫ Ωc

0

(
1− Ω

Ωc

)
ejΩn dΩ

=
1

2π

[∫ Ωc

−Ωc

ejΩn dΩ +
1

Ωc

∫ 0

−Ωc

ΩejΩn dΩ− 1

Ωc

∫ Ωc

0

ΩejΩn dΩ

]

=
1

2π

[
ejΩn

jn

∣∣∣∣
Ωc

Ω=−Ωc

+
1

Ωc

[
ejΩn

(jn)2
(jΩn− 1)

∣∣∣∣
0

Ω=−Ωc

− ejΩn

(jn)2
(jΩn− 1)

∣∣∣∣
Ωc

Ω=0

]]

=
1

2π

[
2 sin(Ωcn)

n
+

1

Ωc

(
1

n2
+

e−jΩcn

n2
(−jΩcn− 1)

)
− 1

Ωc

(
ejΩcn

−n2
(jΩcn− 1)− 1

n2

)]

=
1

2π

[
2 sin(Ωcn)

n
+

2

Ωcn2
+

1

Ωcn2

(
−e−jΩcn(jΩcn+ 1) + ejΩcn(jΩcn− 1)

)]

=
1

2πΩcn2
[2Ωcn sin(Ωcn) + 2− 2Ωcn sin(Ωcn)− 2 cos(Ωcn)]

=
2

2πΩcn2
[1− cos(Ωcn)] =

4

2πΩcn2
sin2(Ωcn/2)

=
Ωc

2π
sinc2

(
Ωcn

2

)
.

(e) Using Eq. (9.18), the IDTFT of Xe(Ω) is

xe[n] =
1

2π

∫ π

−π

Xe(Ω)e
jΩn dΩ =

1

2π

∫ π

−π

2πδ(Ω− Ω0)e
jΩn dΩ

= ejΩ0n.
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(f) Using Eq. (9.18), the IDTFT of Xf(Ω) is

xf [n] =
1

2π

∫ π

−π

Xf(Ω)e
jΩn dΩ =

1

2π

∫ π

−π

π (δ(Ω− Ω0) + δ(Ω + Ω0)) e
jΩn dΩ

=
1

2

(
ejΩ0n + e−jΩ0n

)
= cos(Ω0n).

Solution 9.2-5

(a) The DTFT of x[n] is determined as

X(Ω) =

∞∑

n=−∞
x[n]e−jΩn =

5∑

n=−5

x[n]e−jΩn

=
1

7
ej6Ω +

2

7
ej5Ω +

3

7
ej4Ω +

4

7
ej3Ω +

5

7
ej2Ω +

6

7
ejΩ + 1

+
6

7
e−jΩ +

5

7
e−j2Ω +

4

7
e−j3Ω +

3

7
e−j4Ω +

2

7
e−j5Ω +

1

7
e−j6Ω

=
2

7
cos(6Ω) +

4

7
cos(5Ω) +

6

7
cos(4Ω) +

8

7
cos(3Ω) +

10

7
cos(2Ω) +

12

7
cos(Ω) + 1.

Figure S9.2-5a shows the spectrum X(Ω) over the traditional interval −π ≤ Ω ≤ π.

>> X = @(Om) 2/7*cos(6*Om)+4/7*cos(5*Om)+6/7*cos(4*Om)+8/7*cos(3*Om)+...

>> 10/7*cos(2*Om)+12/7*cos(Om)+1;

>> Omega = -pi:2*pi/2000:pi;

>> plot(Omega,X(Omega),’k’); xlabel(’\Omega’); ylabel(’X(\Omega)’);

>> axis([-pi pi 0 7.5]); grid on; set(gca,’xtick’,-pi:pi/2:pi);

>> set(gca,’xticklabel’,{’-\pi’,’-\pi/2’,’0’,’\pi/2’,’\pi’});
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4

6
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Figure S9.2-5a

(b) Using Ex. 9.5 as a guide, we next use MATLAB and the FFT to validate the DTFT calculations
and plot of part (a). As shown in Fig. S9.2-5b, the FFT samples align exactly with the
analytical DTFT, thereby confirming the result of part (a).

>> X = @(Om) 2/7*cos(6*Om)+4/7*cos(5*Om)+6/7*cos(4*Om)+8/7*cos(3*Om)+...

>> 10/7*cos(2*Om)+12/7*cos(Om)+1;

>> Omega = 0:2*pi/2000:2*pi;

>> N_0 = 64; x = [7 6 5 4 3 2 1 zeros(1,N_0-13) 1 2 3 4 5 6]/7;

>> Xr = fft(x); Omega_0 = 2*pi/N_0; r = 0:N_0-1;

>> plot(Omega,abs(X(Omega)),’k-’,Omega_0*r,abs(Xr),’k.’);

>> axis([0 2*pi 0 7.5]); xlabel(’\Omega’); ylabel(’|X(\Omega)|’);
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Figure S9.2-5b

Solution 9.2-6

As shown in Fig. S9.2-6, the spectrum X(Ω) = rect
(

Ω−π/4
π

)
is just a π-width rectrangle function

that is shifted to the right by π/4. Furthermore, the shifted rectangle remains within the
fundamental band. Using Eq. (9.18), we compute the IDTFT as

x[n] =
1

2π

∫ π

−π

X(Ω)ejΩn dΩ =
1

2π

∫ 3π
4

−π
4

ejΩn dΩ

=
1

2π

ejΩn

jn

∣∣∣∣

3π
4

Ω=−π
4

=
1

2π

(
e−jπn/4

jn
− ej3πn/4

jn

)

=
1

πn

(
ejπn/2 − e−jπn/2

2j
ejπn/4

)
=

1

2

(
sin(πn/2)

πn/2

)
ejπn/4

= 0.5sinc(πn/2)ejπn/4.

This is the result that needed to be shown.
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Figure S9.2-6

Solution 9.2-7

(a) For xa[n] = an(u[n]− u[n− (N0 + 1)]) and 0 < a < 1, we use Eq. (9.19) to obtain

Xa(Ω) =

N0∑

n=0

ane−jΩn =

N0∑

n=0

(
ae−jΩ

)n
=

1− aN0+1e−j(N0+1)Ω

1− ae−jΩ
.

(b) For xb[n] = an(u[n]− u[n− (N0 + 1)]) and a > 1, we use Eq. (9.19) to obtain

Xb(Ω) =

N0∑

n=0

ane−jΩn =

N0∑

n=0

(
ae−jΩ

)n
=

1− aN0+1e−j(N0+1)Ω

1− ae−jΩ
.
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Notice that Xa(Ω) and Xb(Ω) have exactly the same form. The only difference is that 0 < a < 1
for Xa(Ω) and a > 1 for Xb(Ω).

Solution 9.2-8

(a) Using Eq. (9.19), the DTFT of xa[n] is

Xa(Ω) =
∞∑

n=−∞
xa[n]e

−jΩn =
6∑

n=0

2e−jΩn +
12∑

n=7

e−jΩn

= 2
1− e−j7Ω

1− e−jΩ
+

e−j7Ω − e−j13Ω

1− e−jΩ

=
2− e−j7Ω − e−j13Ω

1− e−jΩ
.

(b) Using Eq. (9.19), the DTFT of xb[n] is

Xb(Ω) =
∞∑

n=−∞
xb[n]e

−jΩn =
−1∑

n=−(N0−1)

( −n

N0 − 1

)
e−jΩn +

N0−1∑

n=0

(
n

N0 − 1

)
e−jΩn

=
1

N0 − 1

(
N0−1∑

n′=1

n′ejΩn′

+

N0∑

n=0

ne−jΩn

)
=

1

N0 − 1

(
N0∑

n=0

nejΩn +

N0∑

n=0

ne−jΩn

)
.

Using the fourth sum of Sec. B.8.3, we obtain

Xb(Ω) =
1

N0 − 1

(
ejΩ + [(N0 − 1)(ejΩ − 1)− 1]ejΩN0

(ejΩ − 1)2

+
e−jΩ + [(N0 − 1)(e−jΩ − 1)− 1]e−jΩN0

(e−jΩ − 1)2

)
.

Solution 9.2-9

(a) Using Eq. (9.18), the IDTFT of Xa(Ω) is

xa[n] =
1

2π

∫ π

−π

Xa(Ω)e
jΩn dΩ =

∫ 0.75π

−0.75π

Ω2ejΩn dΩ

=
1

2π

ejΩn

(jn)3
[
−Ω2n2 − 2jΩn+ 2

]∣∣∣∣
0.75π

−0.75π

=
(0.5625π2n2 − 2) sin(0.75πn) + 1.5πn cos(0.75πn)

πn3
.

(b) Computation of the IDTFT of Xb(Ω) can be simplified by observing that Xb(Ω) can be
expressed as a sum of two gate functions rect(Ω/2) and rect(Ω/4). Using this fact and Eq. (9.18)
we obtain

xb[n] =
1

2π

∫ π

−π

Xb(Ω)e
jΩn dΩ =

1

2π

∫ π

−π

[rect(
Ω

2
) + rect(

Ω

4
)]ejΩn dΩ

=
1

2π

(∫ 2

−2

ejΩn dΩ +

∫ 1

−1

ejΩn dΩ

)

=
sin(2n) + sin(n)

πn
=

1

π
sinc (n) +

2

π
sinc (2n) .
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Solution 9.2-10

(a) Using Eq. (9.18), the IDTFT of Xa(Ω) is

xa[n] =
1

2π

∫ π

−π

Xa(Ω)e
jΩn dΩ =

1

2π

∫ π/2

−π/2

cos(Ω)ejΩn dΩ

=
1

2π

∫ π/2

−π/2

1

2

(
ejΩ + e−jΩ

)
ejΩn dΩ =

1

4π

∫ π/2

−π/2

(
ejΩ(n+1) + ejΩ(n−1)

)
dΩ

=

(
1

4πj(n+ 1)
ejΩ(n+1) +

1

4πj(n− 1)
ejΩ(n−1)

)∣∣∣∣
π/2

Ω=−π/2

=
1

2π

(
sin(π(n+1)

2 )

n+ 1
+

sin(π(n−1)
2 )

n− 1

)

=
1

2π

(
cos(πn2 )

n+ 1
− cos(πn2 )

n− 1

)
=

1

2π

−2 cos(πn2 )

n2 − 1

=
cos(πn2 )

π(1 − n2)
.

(b) Since it is not specified in the problem, designate parameter P as the peak height of Xb(Ω).
Using Eq. (9.18), the IDTFT of Xb(Ω) is

xb[n] =
1

2π

∫ π

−π

Xb(Ω)e
jΩn dΩ

=
1

2π

∫ π

−π

Xb(Ω) cos(Ωn) dΩ +
j

2π

∫ π

−π

Xb(Ω) sin(Ωn) dΩ

Because Xb(Ω) is even function, Xb(Ω) sin(Ωn) is an odd function of Ω and the corresponding
integral evaluates to zero. The integrand of the remaining integral is an even function so that

xb[n] =
1

π

∫ π

0

Xb(Ω) cos(Ωn) dΩ =
1

π

∫ π/3

0

4P

π
Ωcos(Ωn) dΩ

=
4P

π2

cos(nΩ) + nΩ sin(nΩ)

n2

∣∣∣∣
π/4

Ω=0

=
4P

π2n2

[
cos(πn/4) +

πn

4
sin(πn/4)− 1

]
.

Solution 9.2-11

(a) Using Eq. (9.19), the DTFT of xa[n] is

Xa(Ω) =

∞∑

n=−∞
xa[n]e

−jΩn

=

∞∑

n=−∞
(δ[n+ 2] + 2δ[n+ 1] + 3δ[n] + 2δ[n− 1] + δ[n− 2]) e−jΩn

= 3 + 2(e−jΩ + ejΩ) + (e−j2Ω + ej2Ω)

= 3 + 4 cos(Ω) + 2 cos(2Ω).
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(b) Using Eq. (9.19), the DTFT of xb[n] is

Xb(Ω) =

∞∑

n=−∞
xb[n]e

−jΩn

=

∞∑

n=−∞
(δ[n] + 2δ[n− 1] + 3δ[n− 2] + 2δ[n− 3] + δ[n− 4]) e−jΩn

= e−jΩ + 2e−j2Ω + 3e−j3Ω + 2e−j4Ω + e−j5Ω

= e−j3Ω[3 + 2(ejΩ + e−jΩ) + (ej2Ω + e−j2Ω)]

= e−j3Ω[3 + 4 cos(Ω) + 2 cos(2Ω)].

(c) Using Eq. (9.19), the DTFT of xc[n] is

Xc(Ω) =

∞∑

n=−∞
xc[n]e

−jΩn

=

∞∑

n=−∞
(−9δ[n+ 3]− 6δ[n+ 2]− 3δ[n+ 1] + 3δ[n− 1] + 6δ[n− 2] + 9δ[n− 3]) e−jΩn

= −9ej3Ω − 6ej2Ω − 3ejΩ + 3e−jΩ + 6e−j2Ω + 9e−j6Ω

= −3(ejΩ − e−jΩ)− 6(ej2Ω − e−j2Ω)− 9(ej3Ω − e−j3Ω)

= −6j[sin(Ω) + 2 sin(2Ω) + 3 sin(3Ω)].

(d) Using Eq. (9.19), the DTFT of xd[n] is

Xd(Ω) =

∞∑

n=−∞
xd[n]e

−jΩn

=

∞∑

n=−∞
(4δ[n+ 2] + 2δ[n+ 1] + 2δ[n− 1] + 4δ[n− 2]) e−jΩn

= 4ej2Ω + 2ejΩ + 2e−jΩ + 4e−j2Ω

= 4 cos(Ω) + 8 cos(2Ω).

Solution 9.2-12

(a) Here, the IDTFT is

x[n] =
1

2π

∫ Ω0

−Ω0

e−jΩn0ejΩn dΩ =
1

2π

∫ Ω0

−Ω0

ejΩ(n−n0) dΩ

=
1

(2π)j(n− n0)
ejΩ(n−n0)

∣∣∣∣
Ω0

−Ω0

=
sinΩ0(n− n0)

π(n− n0)
=

Ω0

π
sinc[Ω0(n− n0)].

(b) In this case, the IDTFT is

x[n] =
1

2π

[∫ 0

−Ω0

jejΩn dΩ +

∫ Ω0

0

−jejΩn dΩ

]

=
1

2πn
ejΩn

∣∣∣∣
0

−Ω0

− 1

2πn
ejΩn

∣∣∣∣
Ω0

0

=
1− cosΩ0n

πn
.
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Although the magnitude spectra for parts (a) and (b) are identical, the different phase spectra
ensure that the two time-domain signals are dramatically different from one another.

Solution 9.2-13

(a) Let us consider the sum
∞∑

k=−∞
x[k]δ[n− Lk].

When n 6= mL where m is an integer, then for any integer values of k, n− Lk cannot be zero
and δ[n−Lk] = 0 for all k and the sum on the left-hand side is zero for all n 6= mL (m integer).
When n = mL (m integer), then δ[mL− Lk] = 1 for k = m and is zero for all k 6= m. Hence,
the sum on the left-hand side has only one term x[m] or, in terms of n, the one term is x[n/L].
Putting these two conditions together, we see that

∞∑

k=−∞
x[k]δ[n− Lk] =

{
x
[
n
L

]
n = 0,±L,±2L, · · ·

0 otherwise

= xe[n]

(b) Here,

Xe(Ω) =

∞∑

n=−∞

( ∞∑

k=−∞
x[k]δ[n− Lk]

)
e−jΩn.

Interchanging the order of the summation yields

Xe(Ω) =
∞∑

n=−∞
x[k]

( ∞∑

k=−∞
δ[n− Lk]e−jΩn

)

=

∞∑

k=−∞
x[k]e−jΩLk = X(LΩ).

(c) The signal z[n] is just the signal x[n] = 1 expanded by factor L = 3. Using pair 11 of Table 9.1
and the result of part (b), we obtain

Z(Ω) = 2π

∞∑

k=−∞
δ(3Ω− 2πk) =

2π

3

∞∑

k=−∞
δ(Ω− 2πk

3
).

Solution 9.2-14

(a) We shall consider spectra within the band |Ω| ≤ π only.

Pair 8: Ωc

π sinc (Ωcn) ⇐⇒ rect
(

Ω
2Ωc

)
. This is identical to pair 18 in Table 7.1 with W replaced

by Ωc and t replaced by n.
Pair 9: In the same way, we see that pair 9 is identical to pair 20 in Table 7.1.
Pair 11: is identical to pair 7 in Table 7.1.
Pair 12: is identical to pair 8 in Table 7.1.
Pair 13: is identical to pair 9 in Table 7.1.
Pair 14: is identical to pair 10 in Table 7.1.

(b) This method cannot be used for pairs 2, 3, 4, 5, 6, 7, 10, 15 and 16 because in all these cases
X(Ω) is not bandlimited.
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Solution 9.2-15

(a) The spectrum Xa(Ω) = Ω + π is not a valid DTFT because it is not 2π-periodic.

(b) The spectrum Xb(Ω) = j + π is a valid DTFT because it is a constant, which satisfies the
requirement of being 2π-periodic.

(c) The spectrum Xc(Ω) = sin(10Ω) is a valid DTFT because it is a 2π
10 -periodic, hence also a

2π-periodic, function of Ω.

(d) The spectrum Xd(Ω) = sin(Ω/10) is not a valid DTFT because although it is 20π-periodic, it
is not 2π-periodic.

(e) The spectrum Xe(Ω) = δ(Ω) is not a valid DTFT because it is not 2π-periodic.

Solution 9.3-1

We determine the DTFTs of the each of the following signals using pairs 2 and 5 (Table 9.1) and
the time-shifting property of Eq. (9.31).

(a) The DTFT of xa[n] = u[n]− u[n− 9] is

Xa(Ω) =

[
ejΩ

ejΩ − 1
+ πδ(Ω)

]
−
[

ejΩ

ejΩ − 1
+ πδ(Ω)

]
e−j9Ω.

We know that δ(Ω)e−j9Ω = δ(Ω) because e−j9Ω = 1 at Ω = 0. Therefore,

Xa(Ω) =
ejΩ

ejΩ − 1

[
1− e−j9Ω

]

=
ejΩe−j4.5Ω

[
ej4.5Ω − e−j4.5Ω

]

ejΩ/2
[
ejΩ/2 − e−jΩ/2

]

= e−j4Ω sin(4.5Ω)

sin(0.5Ω)
.

(b) The DTFT of xb[n] = an−mu[n−m] is

Xb(Ω) = e−jmΩ

(
ejΩ

ejΩ − a

)
=

ej(1−m)Ω

ejΩ − a
.

(c) To begin, we rewrite the signal xc[n] as

xc[n] = an−3 (u[n]− u[n− 10]) == a−3anu[n]− a7an−10u[n− 10].

Thus, the DTFT of xc[n] = an−3 (u[n]− u[n− 10]) is

Xc(Ω) = a−3 ejΩ

ejΩ − a
− a7

ejΩ

ejΩ − a
e−j10Ω

=
ejΩ

(
a−3 − a7e−j10Ω

)

ejΩ − a
.

(d) Because xd[n] = an−mu[n] = a−manu[n], the DTFT is

Xd(Ω) = a−m ejΩ

ejΩ − a
.
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(e) Because xe[n] = anu[n−m] = aman−mu[n−m], the DTFT is

Xe(Ω) = am
ejΩ

ejΩ − a
e−jmΩ

= am
ej(1−m)Ω

ejΩ − a
.

(f) The DTFT of xf [n] = (n−m)an−mu[n−m] is

Xf(Ω) =
aejΩe−jmΩ

(ejΩ − a)2
=

aej(1−m)Ω

(ejΩ − a)2
.

(g) Because xg[n] = (n−m)anu[n] = nanu[n]−manu[n], the DTFT is

Xg(Ω) =
aejΩ

(ejΩ − a)2
− mejΩ

ejΩ − a

=
ejΩ(a−mejΩ +ma)

(ejΩ − a)2
.

(h) To begin, we rewrite the signal xh[n] as

xh[n] = nan−mu[n−m] = (n−m)an−mu[n−m] +man−mu[n−m].

Thus, the DTFT of xh[n] = (nan−mu[n−m] is

Xh(Ω) =
aejΩe−jmΩ

(ejΩ − a)2
+

mejΩe−jmΩ

ejΩ − a

=
ej(1−m)Ω

(ejΩ − a)2
(
a+mejΩ −ma

)
.

Solution 9.3-2

We represent the DTFTs of signals x1[n], x2[n], x3[n], and x4[n] in terms of X(Ω). In the first case,
notice that x1[n] = x[n− 4] + x[−n− 4]− 4δ[n]. Thus,

X1(Ω) = X(Ω)e−j4Ω +X(−Ω)ej4Ω − 4.

In the second case, notice that x2[n] = x[n] + x[−n]. Thus,

X2(Ω) = X(Ω) +X(−Ω).

In the third case, notice that x3[n] = x[n− 2] + x[−n− 2]. Thus,

X3(Ω) = X(Ω)e−j2Ω +X(−Ω)ej2Ω.

In the fourth case, notice that x4[n] = x3[n] + x[n− 7] + x[−n− 7]. Thus,

X4 = X(Ω)e−j2Ω +X(−Ω)ej2Ω +X(Ω)e−j7Ω +X(−Ω)ej7Ω.

In all these expression, we define

X(Ω) =
4ej6Ω − 5ej5Ω + ejΩ

(ejΩ − 1)2
.
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Solution 9.3-3
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Figure S9.3-3

(a) From pair 9 of Table 9.1, we know that

x[n] = sinc2(πn/2) ⇐⇒ 2

∞∑

k=−∞
∆

(
Ω− 2πk

2π

)
= X(Ω).

The spectrum X(Ω) is shown in Fig. S9.3-3.

(b) Using the modulation property of Eq. (9.33), we see that

yb[n] = x[n] cos(πn/2) ⇐⇒ 1

2

[
X(Ω− π

2
) +X(Ω +

π

2
)
]
= Yb(Ω).

The spectrum Yb(Ω), shown in Fig. S9.3-3, completely loses the information in X(Ω). The
overlap in the shifted spectra results in Yb(Ω) being a constant value of 1. Thus, yb[n] = δ[n].
This is easily confirmed in MATLAB.

>> snc = @(t) sinc(t/pi); x = @(n) (snc(pi*n/2)).^2; n = -5:5; ya = x(n).*cos(pi/2*n)

ya = 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(c) Using the modulation property of Eq. (9.33), we see that

yc[n] = x[n] cos(3πn/4) ⇐⇒ 1

2

[
X(Ω− 3π

4
) +X(Ω +

3π

4
)

]
= Yc(Ω).

The spectrum Yc(Ω) is shown in Fig. S9.3-3. Again, the overlap in the shifted spectra results
in a loss of (most of) X(Ω) in Yc(Ω).

(d) Using the modulation property of Eq. (9.33), we see that

yd[n] = x[n] cos(πn) ⇐⇒ 1

2
[X(Ω− π) +X(Ω + π)] = Yd(Ω).
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The spectrum Yd(Ω) is shown in Fig. S9.3-3. In this case, there is no distortion of the original
spectrum X(Ω). In fact, we see that Yd(Ω) is just X(Ω) shifted by π, a result known as
spectral inversion. This is more readily seen by noting that yd[n] = x[n] cos(πn) can be
equivalently written as yd[n] = x[n](−1)n = x[n]ejπn. Using the shifting property, we see that
Yd(Ω) = X(Ω− π).

Solution 9.3-4

From pair 7 of Table 9.1, we know that

Y (Ω) =
sin(5Ω/2)

sin(Ω/2)
e−j2Ω ⇐⇒ u[n]− u[n− 5] = δ[n] + δ[n− 1] + δ[n− 2] + δ[n− 3] + δ[n− 4] = y[n].

Furthermore, using pair 1 of Table 9.1, we know that

X(Ω) =

4∑

k=0

ak e
−jkΩ ⇐⇒ a0δ[n] + a1δ[n− 1] + a2δ[n− 2] + a3δ[n− 3] + a4δ[n− 4] = x[n].

Both x[n] and y[n] are zero outside the range 0 ≤ n ≤ 4, and y[n] is unity over the range 0 ≤ n ≤ 4.
Thus, we see that

x[n]y[n] = x[n].

Using the frequency convolution property, the DTFT of this expression yields the desired result of

1

2π
Y (Ω) ∗©X(Ω) = X(Ω) or Y (Ω) ∗©X(Ω) = 2πX(Ω),

where Y (Ω) = sin(5Ω/2)
sin(Ω/2) e−j2Ω and X(Ω) =

∑4
n=0 cn e

−jnΩ.

Solution 9.3-5

We determine the DTFTs of the each of the following signals using only pair 2 from Table 9.1 and
properties of the DTFT. In each case, we assume that |a| < 1 and Ω0 < π.

(a) Applying the modulation property of Eq. (9.33) to pair 2 from Table 9.1, the DTFT of xa[n] =
an cos(Ω0n)u[n] is

Xa(Ω) =
1

2

[
ej(Ω−Ω0)

ej(Ω−Ω0) − a
+

ej(Ω+Ω0)

ej(Ω+Ω0) − a

]

=
1

2

(
ej(Ω−Ω0)

(
ej(Ω+Ω0) − a

)
+ ej(Ω+Ω0)

(
ej(Ω−Ω0) − a

)

ej2Ω − aejΩ (e−jΩ0 + ejΩ0) + a2

)

=
1

2

(
2ej2Ω − aej(Ω−Ω0) − aej(Ω+Ω0)

ej2Ω − 2aejΩ cos(Ω0) + a2

)

=
ejΩ

(
ejΩ − a cos(Ω0)

)

ej2Ω − 2aejΩ cos(Ω0) + a2
.

(b) Applying the differentiation property of Eq. (9.30) to pair 2 from Table 9.1 yields

nanu[n] ⇐⇒ j

(
j

ejΩ

ejΩ − a
− jejΩ

ejΩ

(ejΩ − a)2

)
=

aejΩ

(ejΩ − a)2
.

Next, we apply the differentiation property of Eq. (9.30) to this result to obtain the DTFT of
xb[n] = n2an u[n] as

Xb(Ω) = j

(
j

aejΩ

(ejΩ − a)2
− 2jejΩ

aejΩ

(ejΩ − a)3

)

=
aejΩ(ejΩ + a)

(ejΩ − a)3
.
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(c) To begin, we note that we can represent the signal xc[n] as

xc[n] = (n− k)a2n u[n−m] = a2m(n−m)a2(n−m)u[n−m] + a2m(m− k)a2(n−m)u[n−m].

Working to transform the first term, we apply the differentiation property of Eq. (9.30) to pair
2 from Table 9.1 to obtain

na2nu[n] ⇐⇒ j

(
j

ejΩ

ejΩ − a2
− jejΩ

ejΩ

(ejΩ − a2)2

)
=

a2ejΩ

(ejΩ − a2)2
.

Next, we apply the shifting property of Eq. (9.31) to this result and also pair 2 from Table 9.1
to obtain

Xc(Ω) = a2me−jmΩ a2ejΩ

(ejΩ − a2)2
+ a2m(m− k)e−jmΩ ejΩ

ejΩ − a2

=
a2mejΩ(1−m)

ejΩ − a2

(
a2

ejΩ − a2
+m− k

)
.

Solution 9.3-6

In this problem, we derive pairs 11, 12, 13, 14, 15 and 16 in Table 9.1 using only pair 10 and
properties of the DTFT.

(a) To derive pair 11, we first note that

1 = u[n] + u[−(n+ 1)].

From pair 10, we know that

u[n] ⇐⇒ ejΩ

ejΩ − 1
+ π

∞∑

k=−∞
δ(Ω−2πk).

Using the time-reversal and time-shifting properties, we know that

DTFT{u[−(n+ 1)]} = ejΩ

(
e−jΩ

e−jΩ − 1
+ π

∞∑

k=−∞
δ(Ω−2πk)

)

=
1

e−jΩ − 1
+ π

∞∑

k=−∞
ejΩδ(Ω−2πk)

= − ejΩ

ejΩ − 1
+ π

∞∑

k=−∞
δ(Ω−2πk).

The last step follows since ejΩδ(Ω−2πk) = δ(Ω−2πk). Using these results, we see that

DTFT{1} =

(
ejΩ

ejΩ − 1
+ π

∞∑

k=−∞
δ(Ω−2πk)

)
−
(

ejΩ

ejΩ − 1
+ π

∞∑

k=−∞
δ(Ω−2πk)

)

= 2π

∞∑

k=−∞
δ(Ω−2πk).

(b) To derive pair 12, we simply apply the frequency-shifting property of Eq. (9.32) to the result
of part (a). Thus,

ejΩ0n ⇐⇒ 2π

∞∑

k=−∞
δ(Ω−Ω0−2πk).
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(c) To derive pair 13, we first note that

cos(Ω0n) =
ejΩ0n

2
+

e−jΩ0n

2
.

As done in part (b), we next apply the frequency-shifting property of Eq. (9.32) to the result
of part (a) to obtain

DTFT{cos(Ω0n)} =

(
2π

2

∞∑

k=−∞
δ(Ω−Ω0−2πk)

)
+

(
2π

2

∞∑

k=−∞
δ(Ω+Ω0−2πk)

)

= π
∞∑

k=−∞
δ(Ω−Ω0−2πk) + δ(Ω+Ω0−2πk).

(d) To derive pair 14, we first note that

sin(Ω0n) =
ejΩ0n

2j
− e−jΩ0n

2j
.

As done in part (b), we next apply the frequency-shifting property of Eq. (9.32) to the result
of part (a) to obtain

DTFT{sin(Ω0n)} =

(
2π

2j

∞∑

k=−∞
δ(Ω−Ω0−2πk)

)
−
(
2π

2j

∞∑

k=−∞
δ(Ω+Ω0−2πk)

)

=
π

j

∞∑

k=−∞
δ(Ω−Ω0−2πk)− δ(Ω+Ω0−2πk)

= jπ

∞∑

k=−∞
δ(Ω+Ω0−2πk)− δ(Ω−Ω0−2πk).

(e) To derive pair 15, we first note that

cos(Ω0n)u[n] =
ejΩ0n

2
u[n] +

e−jΩ0n

2
u[n].

We next apply the frequency-shifting property of Eq. (9.32) to pair 10 to obtain

DTFT{cos(Ω0n)u[n]} =
1

2

(
ej(Ω−Ω0)

ej(Ω−Ω0) − 1
+ π

∞∑

k=−∞
δ(Ω−Ω0−2πk)

)

+
1

2

(
ej(Ω+Ω0)

ej(Ω+Ω0) − 1
+ π

∞∑

k=−∞
δ(Ω+Ω0−2πk)

)

=
1
2

(
ej2Ω − ej(Ω−Ω0) + ej2Ω − ej(Ω+Ω0)

)

ej2Ω − 2 cos(Ω0)ejΩ + 1

+
π

2

∞∑

k=−∞
δ(Ω−Ω0−2πk) + δ(Ω+Ω0−2πk)

=
ej2Ω − ejΩ cos(Ω0)

ej2Ω − 2 cos(Ω0)ejΩ + 1
+

π

2

∞∑

k=−∞
δ(Ω−Ω0−2πk) + δ(Ω+Ω0−2πk).
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(f) To derive pair 16, we first note that

sin(Ω0n)u[n] =
ejΩ0n

2j
u[n]− e−jΩ0n

2j
u[n].

We next apply the frequency-shifting property of Eq. (9.32) to pair 10 to obtain

DTFT{sin(Ω0n)u[n]} =
1

2j

(
ej(Ω−Ω0)

ej(Ω−Ω0) − 1
+ π

∞∑

k=−∞
δ(Ω−Ω0−2πk)

)

− 1

2j

(
ej(Ω+Ω0)

ej(Ω+Ω0) − 1
+ π

∞∑

k=−∞
δ(Ω+Ω0−2πk)

)

=

1
2j

(
ej2Ω − ej(Ω−Ω0) − ej2Ω + ej(Ω+Ω0)

)

ej2Ω − 2 cos(Ω0)ejΩ + 1

+
π

2j

∞∑

k=−∞
δ(Ω−Ω0−2πk)− δ(Ω+Ω0−2πk)

=
ejΩ sin(Ω0)

ej2Ω − 2 cos(Ω0)ejΩ + 1
+

π

2j

∞∑

k=−∞
δ(Ω−Ω0−2πk)− δ(Ω+Ω0−2πk).

Solution 9.3-7

From the time-shifting property of Eq. (9.31), we know that

x[n+ k] ⇐⇒ ejΩkX(Ω) and x[n− k] ⇐⇒ e−jΩkX(Ω).

Thus,

x[n+ k] + x[n− k] ⇐⇒ ejΩkX(Ω) + e−jΩkX(Ω) = 2X(Ω)

(
ejΩk + e−jΩk

2

)
.

Simplifying using Euler’s formula, we obtain the desired result of

x[n+ k] + x[n− k] ⇐⇒ 2X(Ω) cos(kΩ).

(a) To determine the DTFT of signal ya[n], let us start by defining a signal x[n] = u[n−2]−u[n−3].
From pair 7 of Table 9.1 and the time-shifting property, we know that

X(Ω) =

(
sin(5Ω/2)

sin(Ω/2)
e−j2Ω

)
ej2Ω =

sin(5Ω/2)

sin(Ω/2)
.

Because ya[n] = x[n+ 4] + x[n− 4], we know from our previous derivation that

Ya(Ω) = 2X(Ω) cos(4Ω) = 2
sin(5Ω/2)

sin(Ω/2)
cos(4Ω).

(b) To determine the DTFT of signal yb[n], let us start by defining a signal z[n] = u[n]− u[n− 4].
From pair 7 of Table 9.1, we know that

Z(Ω) =
sin(2Ω)

sin(Ω/2)
e−j3Ω/2.

Next, we define x[n] = z[n] ∗ z[−n], which is a triangle function described vector-style as

x[n] = z[n] ∗ z[−n] = [1, 2, 3,
n=0
↓

4 , 3, 2, 1].
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Using the convolution property of Eq. (9.34) and the reversal property of Eq. (9.29), we see
that

X(Ω) = Z(Ω)Z(−Ω) =
sin2(2Ω)

sin2(Ω/2)
.

Because yb[n] = x[n+ 8] + x[n− 8], we know from our previous derivation that

Yb(Ω) = 2X(Ω) cos(8Ω) = 2
sin2(2Ω)

sin2(Ω/2)
cos(8Ω).

Solution 9.3-8

From the time-shifting property of Eq. (9.31), we know that

x[n+ k] ⇐⇒ ejΩkX(Ω) and x[n− k] ⇐⇒ e−jΩkX(Ω).

Thus,

x[n+ k]− x[n− k] ⇐⇒ ejΩkX(Ω)− e−jΩkX(Ω) = 2jX(Ω)

(
ejΩk − e−jΩk

2j

)
.

Simplifying using Euler’s formula, we obtain the desired result of

x[n+ k]− x[n− k] ⇐⇒ 2jX(Ω) sin(kΩ).

To determine the DTFT of signal y[n], let us start by defining a signal x[n] = u[n − 2] − u[n − 3].
From pair 7 of Table ?? and the time-shifting property, we know that

X(Ω) =

(
sin(5Ω/2)

sin(Ω/2)
e−j2Ω

)
ej2Ω =

sin(5Ω/2)

sin(Ω/2)
.

Because y[n] = x[n+ 6]− x[n− 6], we know from our previous derivation that

Y (Ω) = 2jX(Ω) sin(6Ω) = 2j
sin(5Ω/2)

sin(Ω/2)
sin(6Ω).

Solution 9.3-9

To begin, notice that we can express y[n] in the more convenient form of

y[n] =

(
1

2
+

1

2
(−1)n

)
x[n] =

1

2
x[n] +

1

2
ejπnx[n].

Using the frequency-shifting property of Eq. (9.32), the spectrum of y[n] is easily computed as

Y (Ω) =
1

2
X(Ω) +

1

2
X(Ω− π).

Since the problem restricts X(Ω) to a bandwidth of π/2 rad/sample, the spectrum Y (Ω) will contain
two undistorted (nonoverlapping) copies of X(Ω).

To illustrate, consider the fundamental band spectrum

X(Ω) =

{
|2Ω/π| −π/2 ≤ Ω ≤ π/2

0 otherwise

Figure S9.3-9 shows X(Ω) as well as Y (Ω). Notice that Y (Ω) contains two copies of X(Ω), each
scaled by 1

2 . The first copy is centered at Ω = 0, and the second copy is centered at Ω = π.
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Ω
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1

Y
(Ω

)

Figure S9.3-9

Solution 9.3-10

To begin, notice that we can express y[n] in the more convenient form of

y[n] =

(
1

2
− 1

2
(−1)n

)
x[n] =

1

2
x[n]− 1

2
ejπnx[n].

Using the frequency-shifting property of Eq. (9.32), the spectrum of y[n] is easily computed as

Y (Ω) =
1

2
X(Ω)− 1

2
X(Ω− π).

Since the problem restricts X(Ω) to a bandwidth of π/2 rad/sample, the spectrum Y (Ω) will contain
two undistorted (nonoverlapping) copies of X(Ω).

To illustrate, consider the fundamental band spectrum

X(Ω) =

{
|2Ω/π| −π/2 ≤ Ω ≤ π/2

0 otherwise

Figure S9.3-10 shows X(Ω) as well as Y (Ω). Notice that Y (Ω) contains two copies of X(Ω), each
scaled by 1

2 . The first copy is centered at Ω = 0, and the second (negated) copy is centered at Ω = π.

-π -π/3 0 π/3 π

Ω

0
1.3868

15

|H
(Ω

)|

-π -π/3 0 π/3 π

Ω

-1.2898

0

1.2898

 H
(Ω

)

Figure S9.3-10

Solution 9.3-11

To begin, let us define

W (Ω) = ejΩ/(ejΩ − γ).

Thus,

X(Ω) = e2jΩ/(ejΩ − γ)2 = W 2(Ω).

Using pair 2 in Table 9.1 and the time convolution property of the DTFT, the inverse DTFT of
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X(Ω) is

x[n] = γnu[n] ∗ γnu[n]

=
n∑

m=0

γmγn−m

= γn
n∑

m=0

1

= (n+ 1)γnu[n].

Solution 9.3-12

In this problem, we derive pairs 2, 3, 4, 5, 6, and 7 in Table 9.1 using only pair 1 and properties of
the DTFT.

(a) To derive pair 2, we notice that

γnu[n] = δ[n] + γδ[n− 1] + γ2δ[n− 2] + · · · .

Therefore,

DTFT{γnu[n]} = 1 + γe−jΩ + γ2e−j2Ω + γ3e−j3Ω + · · ·

=

∞∑

k=0

(
γe−jΩ

)k
=

1

1− γe−jΩ

=
ejΩ

ejΩ − γ
, |γ| < 1.

We require that |γ| < 1 to ensure convergence of the sum as k → ∞.

(b) To derive pair 3, we apply the time-reversal property to the result of part (a) to obtain

λ−nu[−n] ⇐⇒ e−jΩ

e−jΩ − λ
, |λ| < 1.

Using this result and pair 1, we see that

λ−nu[−(n+ 1)] = λ−nu[−n]− δ[n] ⇐⇒ −e−jΩ

e−jΩ − λ
+ 1 =

−λ

e−jΩ − λ
, |λ| < 1.

Letting λ = 1/γ, we obtain

−γnu[−(n+ 1)] ⇐⇒ −1/γ

e−jΩ − 1/γ
=

ejΩ

ejΩ − γ
, |γ| > 1.

(c) To derive pair 4, we first note that

γ|n| = γnu[n] +

(
1

γ

)n

u[−(n+ 1)].

Using the results from parts (a) and (b), we obtain

DTFT{γ|n|} =
ejΩ

ejΩ − γ
− ejΩ

ejΩ − 1
γ

=
ejΩ

ejΩ − γ
+

γ

e−jΩ − γ

=
1− γ2

1− 2γ cos(Ω) + γ2
, |γ| < 1.
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(d) To derive pair 5, we apply the differentiation property of Eq. (??) to the result of part (a) to
obtain

DTFT{nγnu[n]} = j
d

dΩ

(
ejΩ

ejΩ − γ

)

= j

(
jejΩ

ejΩ − γ
− jej2Ω

(ejΩ − γ)2

)

=
ej2Ω − ejΩ(ejΩ − γ)

(ejΩ − γ)2

=
γejΩ

(ejΩ − γ)2
, |γ| < 1.

(e) To derive pair 6, we first note that

γn cos(Ω0n+ θ)u[n] =
ejθ

2

(
γejΩ0

)n
u[n] +

e−jθ

2

(
γe−jΩ0

)n
u[n].

Using the result of part (a), we therefore obtain

DTFT{γn cos(Ω0n+ θ)u[n]} =
ejθ

2

(
ejΩ

ejΩ − γejΩ0

)
+

e−jθ

2

(
ejΩ

ejΩ − γe−jΩ0

)

=
ejθ

2 ejΩ
(
ejΩ − γe−jΩ0

)
+ e−jθ

2 ejΩ
(
ejΩ − γejΩ0

)

ej2Ω − 2γ cos(Ω0)ejΩ + γ2

=
ejΩ

[
ejΩ cos(θ)− γ cos(Ω0 − θ)

]

ej2Ω − 2γ cos(Ω0)ejΩ + γ2
, |γ| < 1.

(f) To derive pair 7, we first note that

u[n]− u[n−M ] = δ[n] + δ[n− 1] + δ[n− 2] + · · ·+ δ[n−M + 1] =
M−1∑

k=0

δ[n− k].

Using pair 1, we obtain

DTFT{u[n]− u[n−M ]} =

M−1∑

k=0

e−jkΩ =

M−1∑

k=0

(
e−jΩ

)k
=

1− e−jMΩ

1− e−jΩ

=
e−jMΩ/2

(
ejMΩ/2 − e−jMΩ/2

)

e−jΩ/2
(
ejΩ/2 − e−jΩ/2

)

=
sin(MΩ/2)

sin(Ω/2)
e−jΩ(M−1)/2.

Solution 9.3-13

Throughout this solution, we assume that |Ω0| < π. We solve this problem in the fundamental
band and then periodically extend the result. Using information from the problem statement, let
us first define the (fundamental band) transform pair

x[n] = ej(Ω0/2)n ⇐⇒ 2πδ(Ω− Ω0

2
) = X(Ω).

Thus,

x2[n] =
(
ej

Ω0n
2

)(
ej

Ω0n
2

)
= ejΩ0n.
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To find the DTFT of x2[n], we use the frequency convolution property whereby we convolve 2πδ(Ω−
Ω0

2 ) with itself, multiply by 1/2π, and then extend the result periodically. Over the fundamental
band, we therefore have

DTFT{x2[n]} =
1

2π

[
2πδ

(
Ω− Ω0

2

)
∗ 2πδ

(
Ω− Ω0

2

)]

= 2π

∫ ∞

−∞
δ

(
λ− Ω0

2

)
δ

(
Ω− λ+

Ω0

2

)
dλ

= 2πδ

(
Ω− Ω0

2
− Ω0

2

)

= 2πδ (Ω− Ω0) .

Periodically extending the result, we obtain

X(Ω) = 2π

∞∑

k−∞
δ (Ω− Ω0 − 2πk) .

This result matches pair 12 of Table 9.1, as expected.

Solution 9.3-14

(a) This case constrains Ωc < π. Let

x[n] = sinc(Ωcn).

From pair 8 of Table 9.1, we have

X(Ω) =
π

Ωc
rect

(
Ω

2Ωc

)
, |Ω| ≤ π.

From the definition of the DTFT, we know that

X(Ω) =

∞∑

n=−∞
x[n]e−jΩn.

Hence,

X(0) =

∞∑

n=−∞
x[n] =

∞∑

n=−∞
sinc(Ωcn) =

π

Ωc
rect

(
Ω

2Ωc

)∣∣∣∣
Ω=0

=
π

Ωc
.

This proves the desired result of

∞∑

n=−∞
sinc(Ωcn) =

π

Ωc
.

(b) This case constrains Ωc < π. From part (a), we know that

x[n] = sinc(Ωcn) ⇐⇒ π

Ωc
rect

(
Ω

2Ωc

)
= X(Ω), |Ω| ≤ π.

Next, define

y[n] = (−1)nx[n] = (−1)nsinc(Ωcn).
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Now, if x[n] ⇐⇒ X(Ω), then (−1)nx[n] ⇐⇒ X(Ω−π). To prove this fact, we use the definition
of the DTFT to write

DTFT {(−1)nx[n]} =
∞∑

n=−∞
(−1)nx[n]e−jΩn =

∞∑

n=−∞
x[n]ejπne−jΩn

=
∞∑

n=−∞
x[n]e−j(Ω−π)n = X(Ω− π).

Thus,

y[n] = (−1)nsinc(Ωcn) ⇐⇒ π

Ωc
rect

(
Ω− π

2Ωc

)
= Y (Ω), |Ω| ≤ π.

From the definition of the DTFT, we know that

Y (Ω) =

∞∑

n=−∞
y[n]e−jΩn.

Hence,

Y (0) =
∞∑

n=−∞
y[n] =

∞∑

n=−∞
(−1)nsinc(Ωcn).

Since rect
(

Ω−π
2Ωc

)∣∣∣
Ω=0

= 0 for 0 < Ωc < π, we see that Y (0) = 0. This proves the desired

result of ∞∑

n=−∞
(−1)nsinc(Ωcn) = 0.

(c) This case constrains Ωc < π/2. Let

x[n] = sinc2(Ωcn).

From pair 9 of Table 9.1, we have

X(Ω) =
π

Ωc
∆

(
Ω

4Ωc

)
, |Ω| ≤ π.

From the definition of the DTFT, we know that

X(Ω) =

∞∑

n=−∞
x[n]e−jΩn.

Hence,

X(0) =

∞∑

n=−∞
x[n] =

∞∑

n=−∞
sinc2(Ωcn) =

π

Ωc
∆

(
Ω

4Ωc

)∣∣∣∣
Ω=0

=
π

Ωc
.

This proves the desired result of

∞∑

n=−∞
sinc2(Ωcn) =

π

Ωc
.

(d) This case constrains Ωc < π/2. From part (c), we know that

x[n] = sinc2(Ωcn) ⇐⇒ π

Ωc
∆

(
Ω

4Ωc

)
= X(Ω), |Ω| ≤ π.
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Next, define

y[n] = (−1)nx[n] = (−1)nsinc2(Ωcn).

From part (b), we know that if x[n] ⇐⇒ X(Ω), then (−1)nx[n] ⇐⇒ X(Ω− π). Thus,

y[n] = (−1)nsinc2(Ωcn) ⇐⇒ π

Ωc
∆

(
Ω− π

4Ωc

)
= Y (Ω), |Ω| ≤ π.

From the definition of the DTFT, we know that

Y (Ω) =

∞∑

n=−∞
y[n]e−jΩn.

Hence,

Y (0) =

∞∑

n=−∞
y[n] =

∞∑

n=−∞
(−1)nsinc2(Ωcn).

Since ∆
(

Ω−π
4Ωc

)∣∣∣
Ω=0

= 0 for 0 < Ωc < π/2, we see that Y (0) = 0. This proves the desired

result of
∞∑

n=−∞
(−1)nsinc2(Ωcn) = 0.

(e) By the definition of the inverse DTFT, we know that

x[n] =
1

2π

∫ π

−π

X(Ω)ejΩndΩ.

Hence

x[0] =
1

2π

∫ π

−π

X(Ω)dΩ

or ∫ π

−π

X(Ω)dΩ = 2πx[0].

Using pair 7 of Table 9.1, if we left-shift x[n] by M−1
2 units (where M is odd), then we obtain

x[n] = u

[
n+

M − 1

2

]
− u

[
n− M + 1

2

]
⇐⇒ sin(MΩ/2)

sin(Ω/2)
.

Since x[0] = 1, applying this pair to
∫ π

−π X(Ω)dΩ = 2πx[0] produces the desired result of

∫ π

−π

sin(MΩ/2)

sin(Ω/2)
dΩ = 2π.

(f) This case constrains Ωc < π/2. From part (c), we know that

x[n] = sinc2(Ωcn) ⇐⇒ π

Ωc
∆

(
Ω

4Ωc

)
= X(Ω), |Ω| ≤ π.
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Application of Parseval’s theorem [Eq. (9.36)] yields

∞∑

n=−∞

∣∣sinc2(Ωcn)
∣∣2 =

2

2π

∫ 2Ωc

0

π2

Ω2
c

∣∣∣∣1−
Ω

2Ωc

∣∣∣∣
2

dΩ

=
π

Ω2
c

∫ 2Ωc

0

(
1− Ω

Ωc
+

Ω2

4Ω2
c

)
dΩ

=
π

Ω2
c

(
Ω− Ω2

2Ωc
+

Ω3

12Ω2
c

∣∣∣∣
2Ωc

Ω=0

)

=
π

Ω2
c

(
2Ωc − 2Ωc +

2

3
Ωc

)

=
2π

3Ωc

This proves the desired result of

∞∑

n=−∞
|sinc(Ωcn)|4 =

2π

3Ωc
.

Solution 9.3-15

We know from Eq. (8.6) that the bandlimited interpolation of x[n] is

xc(t) =
∞∑

n=−∞
x[n] sinc

(
π
t− nT

T

)
.

The energy of xc(t) is computed as

Exc =

∫ ∞

−∞
|xc(t)|2 dt =

∫ ∞

−∞
xc(t)x

∗
c (t) dt

=

∫ ∞

−∞

[ ∞∑

n=−∞
x[n]sinc

(
π
t− nT

T

)][ ∞∑

m=−∞
x[n]∗(mT )sinc

(
π
t−mT

T

)]
dt

Applying a change of variable from t to t/T to the problem statement hint, we see that

∫ ∞

−∞
sinc(π

t

T
− πm)sinc(π

t

T
− πn) dt =

{
0 m 6= n
T m = n

.

Because of this property, all the m 6= n cross-product terms vanish. Moreover when m = n, the
integral is T . Hence, we obtain the desired result that

Exc = T

∞∑

n=−∞
|x[n]|2 = TEx.

Solution 9.4-1

Using pair 2 of Table 9.1

X(Ω) =
1

1 + 0.5e−jΩ
=

ejΩ

ejΩ + 0.5
.
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Thus,

Y (Ω) = X(Ω)H(Ω) =
ejΩ

(
ejΩ + 0.32

)

(ejΩ + 0.5) (ejΩ + 0.8) (ejΩ + 0.2)

= ejΩ
(

ejΩ + 0.32

(ejΩ + 0.5) (ejΩ + 0.8) (ejΩ + 0.2)

)

= ejΩ
(

2

ejΩ + 0.5
− 8/3

ejΩ + 0.8
+

2/3

ejΩ + 0.2

)

= 2
ejΩ

ejΩ + 0.5
− 8

3

ejΩ

ejΩ + 0.8
+

2

3

ejΩ

ejΩ + 0.2
.

Inverting, we obtain

y[n] =

[
2 (−0.5)n − 8

3
(−0.8)n +

2

3
(−0.2)n

]
u[n].

Solution 9.4-2

Using pair 10 of Table 9.1, the DTFT of x[n] = u[n] is

X(Ω) =
ejΩ

ejΩ − 1
+ πδ(Ω), |Ω| ≤ π.

From Eq. (9.37), the DTFT of the output y[n] is

Y (Ω) = X(Ω)H(Ω) =

(
ejΩ

ejΩ − 1
+ πδ(Ω)

)(
ejΩ + 0.32

ej2Ω + ejΩ + 0.16

)
, |Ω| ≤ π.

Using the fact that f(x)δ(x) = f(0)δ(x), we obtain

Y (Ω) =
1.32π

2.16
δ(Ω) + ejΩ

(
ejΩ + 0.32

(ejΩ − 1)(ejΩ + 0.2)(ejΩ + 0.8)

)
, |Ω| ≤ π.

To invert Y (Ω), we first use MATLAB to perform the needed partial fraction expansion.

>> [r,p,k] = residue(poly(-0.32),poly([1,-0.2,-0.8]))

r = 0.6111 -0.4444 -0.1667

p = 1.0000 -0.8000 -0.2000

k = []

Thus,

Y (Ω) =
11π

18
δ(Ω) +

11

18

(
ejΩ

ejΩ − 1

)
− 4

9

(
ejΩ

ejΩ + 4
5

)
− 1

6

(
ejΩ

ejΩ + 1
5

)
, |Ω| ≤ π.

Using Table 9.1 to compute the IDTFT, the system output is given as

y[n] =
(
11
18 − 4

9

(
− 4

5

)n − 1
6

(
− 1

5

)n)
u[n].

Solution 9.4-3

Using pairs 2 and 3 of Table 9.1, the DTFT of x[n] = (0.8)nu[n] + 2(2)nu[−n− 1] is

X(Ω) =
ejΩ

ejΩ − 4
5

− 2
ejΩ

ejΩ − 2
.

From Eq. (9.37), the DTFT of the output y[n] is

Y (Ω) = X(Ω)H(Ω) =

(
ejΩ

ejΩ − 4
5

− 2
ejΩ

ejΩ − 2

)(
ejΩ

ejΩ − 1
2

)
.
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Thus,
Y (Ω)

ejΩ
=

ejΩ

(ejΩ − 4
5 )(e

jΩ − 1
2 )

− 2
ejΩ

(ejΩ − 2)(ejΩ − 1
2 )

.

To invert Y (Ω), we first use MATLAB to perform the needed partial fraction expansions.

>> [r,p,k] = residue(poly(0),poly([4/5,1/2]))

r = 2.6667 -1.6667

p = 0.8000 0.5000

k = []

>> [r,p,k] = residue(-2*poly(0),poly([2,1/2]))

r = -2.6667 0.6667

p = 2.0000 0.5000

k = []

Thus,

Y (Ω) =
8
3e

jΩ

ejΩ − 4
5

+
(− 5

3 + 2
3 )e

jΩ

ejΩ − 1
2

+
− 8

3e
jΩ

ejΩ − 2
.

Using Table 9.1 to compute the IDTFT, the system output is given as

y[n] =
(
8
3

(
4
5

)n −
(
1
2

)n)
u[n] + 8

3 (2)
n
u[−n− 1].

Solution 9.4-4

Taking the DTFT of the system’s difference equation yields

Y (Ω)

(
1 +

1

2
e−jΩ

)
= X(Ω)

(
1− 9

10
e−jΩ

)
.

The system frequency response is therefore

H(Ω) =
Y (Ω)

X(Ω)
=

ejΩ + 1
2

ejΩ − 9
10

.

The corresponding magnitude and phase responses are shown in Fig. S9.4-4.

-π -π/3 0 π/3 π

Ω

0
1.3868

15

|H
(Ω

)|

-π -π/3 0 π/3 π

Ω

-1.2898

0

1.2898
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(Ω
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Figure S9.4-4

The sinusoidal input x[n] = cos(πn3 +0.5) has frequency Ω0 = π
3 . SinceH(π/3) = 1.3868e−j1.2898,

the system output is

y[n] = 1.3868 cos(
πn

3
+ 0.5− 1.2898) = 1.3868 cos(

πn

3
− 0.7898).

Solution 9.4-5

Taking the DTFT of the system’s difference equation yields

Y (Ω)

(
1− 1

2
e−jΩ

)
= X(Ω)

(
1 +

9

10
e−jΩ

)
.
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The system frequency response is therefore

H(Ω) =
Y (Ω)

X(Ω)
=

ejΩ − 1
2

ejΩ + 9
10

.

The corresponding magnitude and phase responses are shown in Fig. S9.4-5.

-π -π/3 0 π/3 π

Ω
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Figure S9.4-5

The sinusoidal input x[n] = cos(πn3 +0.5) has frequency Ω0 = π
3 . Since H(π/3) = 0.5261ej1.0168,

the system output is

y[n] = 0.5261 cos(
πn

3
+ 0.5 + 1.0168) = 0.5261 cos(

πn

3
+ 1.5168).

Solution 9.4-6

(a) The accumulator system of this problem has an input-output relationship given by

y[n] =

n∑

k=−∞
x[k].

Now, when x[n] = δ[n], the output is h[n]. Making these substitutions into the input-output
equation yields the impulse response as

h[n] =
n∑

k=−∞
δ[k] = u[n].

Using pair 10 of Table 9.1, the system’s (fundamental-band) frequency response is

H(Ω) =
ejΩ

ejΩ − 1
+ πδ(Ω).

(b) Since the impulse response of the accumulator system is h[n] = u[n], we can use the system
frequency response found in part (a) to determine the DTFT of u[n] as

DTFT(u[n]) = DTFT(h[n]) = H(Ω) =
ejΩ

ejΩ − 1
+ πδ(Ω).

Solution 9.4-7

(a) The (noncausal) 7-point moving average difference equation is given as

y[n] =
1

7

3∑

k=−3

x[n− k].
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Taking the DTFT of this equation yields

Y (Ω) =
1

7

3∑

k=−3

X(Ω)e−jΩk.

The frequency response is therefore

H(Ω) =
Y (Ω)

X(Ω)
=

1

7

3∑

k=−3

e−jΩk =
1

7

(
ejΩ3 − e−jΩ4

1− e−jΩ

)
=

1

7

(
sin(7Ω/2)

sin(Ω/2)

)
.

The corresponding magnitude and phase responses, plotted using MATLAB, are shown in
Fig. S9.4-7a.

>> Om = linspace(-pi,pi,1000); H = @(Om) 1/7*sin(7*Om/2)./sin(Om/2);

>> subplot(121); plot(Om,abs(H(Om))); axis([-pi pi 0 1.1]);

>> xlabel(’\Omega’); ylabel(’|H(\Omega)|’); grid on

>> set(gca,’xtick’,-pi:pi/2:pi,’xticklabel’,{’-\pi’,’-\pi/2’,’0’,’\pi/2’,’\pi’});

>> subplot(122); plot(Om,angle(H(Om))); axis([-pi pi -1.1*pi 1.1*pi]);

>> xlabel(’\Omega’); ylabel(’\angle H(\Omega)’); grid on

>> set(gca,’xtick’,-pi:pi/2:pi,’xticklabel’,{’-\pi’,’-\pi/2’,’0’,’\pi/2’,’\pi’});

>> set(gca,’ytick’,-pi:pi:pi,’yticklabel’,{’-\pi’,’0’,’\pi’});

Despite appearances, the phase response of Fig. S9.4-7a does satisfies the requirement of odd
symmetry since the angle π is equivalent to −π.
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Figure S9.4-7a

(b) To make the system causal, we adjust the difference equations so that the output no longer
depends on future inputs. This is accomplished by delaying the input terms by 3 to obtain

y[n] =
1

7

6∑

k=0

x[n− k].

Taking the DTFT of this equation yields

Y (Ω) =
1

7

6∑

k=0

X(Ω)e−jΩk.

The frequency response of this causal realization is therefore

Hcausal(Ω) =
Y (Ω)

X(Ω)
=

1

7

6∑

k=0

e−jΩk =
1

7

(
1− e−jΩ7

1− e−jΩ

)
=

1

7

(
sin(7Ω/2)

sin(Ω/2)

)
e−jΩ3 = H(Ω)e−jΩ3.

The corresponding magnitude and phase responses, plotted using MATLAB, are shown in
Fig. S9.4-7b.
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>> Om = linspace(-pi,pi,1000);

>> Hcausal = @(Om) 1/7*sin(7*Om/2)./sin(Om/2).*exp(-3j*Om);

>> subplot(121); plot(Om,abs(Hcausal(Om))); axis([-pi pi 0 1.1]);

>> xlabel(’\Omega’); ylabel(’|H_{causal}(\Omega)|’); grid on

>> set(gca,’xtick’,-pi:pi/2:pi,’xticklabel’,{’-\pi’,’-\pi/2’,’0’,’\pi/2’,’\pi’});

>> subplot(122); plot(Om,angle(Hcausal(Om))); axis([-pi pi -1.1*pi 1.1*pi]);

>> xlabel(’\Omega’); ylabel(’\angle H_{causal}(\Omega)’); grid on

>> set(gca,’xtick’,-pi:pi/2:pi,’xticklabel’,{’-\pi’,’-\pi/2’,’0’,’\pi/2’,’\pi’});

>> set(gca,’ytick’,-pi:pi:pi,’yticklabel’,{’-\pi’,’0’,’\pi’});

As can be seen by comparing the frequency responses of the two systems, the causal system
differs from the noncausal system only in the addition of a linear phase term. The magnitude
responses of the two systems are identical.
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Figure S9.4-7b

Solution 9.4-8

Over the fundamental band, the system frequency response is H(Ω) = rect
(
Ω
π

)
e−j2Ω. This corre-

sponds to a distortionless system over the passband |Ω| < π/2.

(a) For xa[n] = sinc(πn/2), we know from pair 8 of Table 9.1 that

Xa(Ω) = 2rect

(
Ω

π

)
.

Thus,

Ya(Ω) = Xa(Ω)H(Ω) = 2rect

(
Ω

π

)
rect

(
Ω

π

)
e−j2Ω = Xa(Ω)e

−j2Ω.

Consequently, the system output is

ya[n] = xa[n− 2] = sinc

(
π
n− 2

2

)
.

(b) For xb[n] = sinc(πn), we know from pair 8 of Table 9.1 that

Xb(Ω) = rect

(
Ω

2π

)
.

Thus,

Yb(Ω) = Xb(Ω)H(Ω) = rect

(
Ω

2π

)
rect

(
Ω

π

)
e−j2Ω =

1

2
Xa(Ω)e

−j2Ω.

Consequently, the system output is

yb[n] =
1

2
xa[n− 2] =

1

2
sinc

(
π
n− 2

2

)
.
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(c) For xc[n] = sinc2(πn/4), we know from pair 9 of Table 9.1 that

Xc(Ω) = 4∆

(
Ω

π

)
.

Thus,

Yc(Ω) = Xc(Ω)H(Ω) = 4∆

(
Ω

π

)
rect

(
Ω

π

)
e−j2Ω = Xc(Ω)e

−j2Ω.

Consequently, the system output is

yc[n] = xc[n− 2] = sinc2
(
π
n− 2

4

)
.

Solution 9.4-9

(a) To begin, we notice that

(−1)nx[n] = ejπnx[n].

Using the frequency-shifting property of Eq. (9.32), we immediately obtain the desired result
of

DTFT {(−1)nx[n]} = X(Ω− π).

Thus, the spectrum X(Ω − π) is just a π-shifted version of the spectrum X(Ω). Thus, the
dc content of X(Ω) becomes the high-frequency content of X(Ω− π), and the high-frequency
content of X(Ω) becomes the low-frequency content of X(Ω− π). With the roles of high and
low frequencies reversed, it is reasonable to describe this as a spectral inversion system.

(b) The signals x1[n] = (0.8)nu[n] and x2[n] = (−0.8)nu[n] are shown in Figs. S9.4-9b. Since
x2[n] = (−1)nx1[n], we can obtain X2(Ω) = X1(Ω− π). Applying a π-shift to Figs. 9.5b and
9.5c, Fig. S9.4-9b shows the magnitude and phase spectra of x2[n].
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Figure S9.4-9b
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(c) From pair 8 of Table 9.1, the impulse response h[n] that corresponds to frequency response
H(Ω) = rect (Ω/2Ωc) is

h[n] =
Ωc

π
sinc (Ωcn) .

Since h′[n] = (−1)nh[n], we know that H ′(Ω) = H(Ω − π). Figure S9.4-9c shows H ′(Ω) for
Ωc = π/3. Clearly, the filter with impulse response h′[n] = (−1)nh[n] is a highpass filter.
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Figure S9.4-9c

Solution 9.4-10

Taking the DTFT of the backward difference system’s difference equation yields

Y (Ω) =
1

T
X(Ω)

(
1− e−jΩ

)
.

The system frequency response is therefore

H(Ω) =
Y (Ω)

X(Ω)
=

1

T

(
1− e−jΩ

)
.

The corresponding magnitude and phase responses are shown in Fig. S9.4-10. The (magnitude)
response of an ideal differentiator is shown dotted in Fig. S9.4-10. Clearly, this digital approximation
to a differentiator works best for low frequencies (near Ω = 0) and works least well at high frequencies
(near Ω = ±π).
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Figure S9.4-10

Solution 9.4-11

Figure S9.4-11 shows the system with additional signal path labels of x0[n] and y0[n].
To begin, we show that multiplying a signal by (−1)n simply shifts its spectrum by

π. Since (−1)nx[n] = ejπnx[n], the frequency-shifting property of Eq. (9.32) tells us that
DTFT {(−1)nx[n]} = X(Ω− π). Using this fact, we see that

x0[n] = (−1)nx[n] ⇐⇒ X0(Ω) = X(Ω− π) and y[n] = (−1)ny0[n] ⇐⇒ Y (Ω) = Y0(Ω− π).
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x[n] ×
x0[n]

H0(Ω)
y0[n]

× y[n]

(−1)n (−1)n
H(Ω)

Figure S9.4-11

From Eq. (9.37), we know that the spectrum of y0[n] is

Y0(Ω) = X0(Ω)H0(Ω) = X(Ω− π)H0(Ω).

Thus,
Y (Ω) = Y0(Ω− π) = X(Ω− 2π)H0(Ω− π) = X(Ω)H0(Ω− π).

Since Y (Ω) = X(Ω)H(Ω), it follows that

H(Ω) = H0(Ω− π) and h[n] = (−1)nh0[n].

Solution 9.4-12

(a) Setting a0 = 1, system S1 can be specified by Eq. (3.16) as

y1[n] +

N∑

i=1

aiy1[n− i] =

N∑

i=0

bix[n− i].

Taking the DTFT of this equation yields

Y1(Ω)

[
1 +

N∑

i=1

aie
−jiΩ

]
= X(Ω)

N∑

i=0

bie
−jiΩ.

The frequency response of this system is therefore given by

H1(Ω) =
Y1(Ω)

X(Ω)
=

∑N
i=0 bie

−jiΩ

1 +
∑N

i=1 aie
−jiΩ

.

Next, coefficients ai (i = 1, 2, . . . , N) are replaced by coefficients (−1)iai and all coefficients
bi (i = 0, 1, 2, . . . , N) are replaced by coefficients (−1)ibi to produce a new system S2 with
frequency response

H2(Ω) =

∑N
i=0(−1)ibie

−jiΩ

1 +
∑N

i=1(−1)iaie−jiΩ

=

∑N
i=0 e

jπibie
−jiΩ

1 +
∑N

i=1 e
jπiaie−jiΩ

=

∑N
i=0 bie

−ji(Ω−π)

1 +
∑N

i=1 aie
−ji(Ω−π)

= H1(Ω− π).

(b) As shown in part (a), the frequency response H2(Ω) is just a π-shifted version of the frequency
responseH1(Ω). Thus, the low frequency content ofH1(Ω) becomes the high-frequency content
of H2(Ω), and vice-versa. If H1(Ω) is a lowpass filter, then H2(Ω) = H1(Ω − π) is a highpass
filter.
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(c) The DTFT of the first system equation y[n]− 0.8y[n− 1] = x[n] is

Y (Ω)
[
1− 0.8e−jΩ

]
= X(Ω).

The corresponding frequency response is

H1(Ω) =
Y (Ω)

X(Ω)
=

1

1− 0.8e−jΩ
.

The magnitude spectra for this system, shown in Fig. 9.5b, shows that this is a lowpass system.

The system equation y[n] + 0.8y[n− 1] = x[n] is the system y[n] − 0.8y[n − 1] = x[n] where
coefficients ai (i = 1, 2, . . . , N) are replaced by coefficients (−1)iai and all coefficients bi
(i = 0, 1, 2, . . . , N) are replaced by coefficients (−1)ibi. Using the results of part (a), the
frequency response of this second system is

H2(Ω) = H1(Ω− π) =
1

1− 0.8e−j(Ω−π)
=

1

1 + 0.8e−jΩ
.

Since H1(Ω) is a lowpass system, H2(Ω) = H(Ω− π) will be a highpass system.

Solution 9.4-13

To facilitate our derivation, Fig. S9.4-13 shows the system with additional signal path labels of p1,
p2, p3, p4, p5, and p6.

x[n]

×
p1

H0(Ω)
p3

×
p5

Σ y[n]

2 cos(Ωcn) cos(Ωcn)

×
p2

H0(Ω)
p4

×
p6

2 sin(Ωcn) sin(Ωcn)

Figure S9.4-13

(a) Let us compute the response h[n] to the unit impulse input δ[n]. Because the system contains
time-varying multipliers, however, we must test whether it is a time-variant or a time-invariant
system. It is therefore appropriate to consider the system response to an input δ[n− k]. This
is an impulse at n = k. Using the fact that x[n] δ[n − k] = x[k]δ[n − k], we can express the
signals at the labeled points as follows:

point p1: 2 cos(Ωck)δ[n− k]

point p2: 2 sin(Ωck)δ[n− k]

point p3: 2 cos(Ωck)h0[n− k]

point p4: 2 sin(Ωck)h0[n− k]

point p5: 2 cos(Ωck) cos(Ωcn)h0[n− k]

point p6: 2 sin(Ωck) sin(Ωcn)h0[n− k]

Thus, the system output is

y[n] = 2h0[n− k] [cos(Ωck) cos(Ωcn) + sin(Ωck) sin(Ωcn)]

= 2h0[n− k] cos(Ωc[n− k]).
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Thus, the system response to the input δ[n−k] is 2h0[n−k] cos(Ωc[n−k]). Clearly, the system
is time-invariant with impulse response

h[n] = 2h0[n] cos(Ωcn).

The system is also linear, a fact that easily follows since the system components of H0, multi-
plication, and additional are all linear operators.

(b) From the modulation property of Eq. (9.33), it follows that

H(Ω) = H0(Ω− Ωc) +H0(Ω + Ωc).

If H0(Ω) = rect(Ω/2W ), then

H(ω) = rect

(
Ω− Ωc

2W

)
+ rect

(
Ω+ Ωc

2W

)
.

As long as Ωc + W ≤ π, H(ω) is an ideal bandpass response (see Fig. 9.15b) with passband
bandwidth of 2W centered at Ωc.

Solution 9.5-1

Referencing pair 10 of Table 7.1, the CTFT of xc(t) = sin(ω0t) is given as

Xc(ω) = jπ [δ(ω + ω0)− δ(ω − ω0)] .

We are interested in finding the DTFT of

x[n] = xc(nT ) = sin(ω0nT ) = sin(Ω0n).

Now, the DTFT is determined from the CTFT as [see Eq. (8.2) or (9.42)]

X(Ω) =
1

T

∞∑

k=−∞
Xc

(
Ω− 2πk

T

)

=
1

T

∞∑

k=−∞
jπ

[
δ

(
Ω− 2πk

T
+ ω0

)
− δ

(
Ω− 2πk

T
− ω0

)]

= jπ

∞∑

k=−∞

1

T

[
δ

(
Ω + Ω0 − 2πk

T

)
− δ

(
Ω− Ω0 − 2πk

T

)]
.

Noting that 1
|a|δ(

x
a ) = δ(x), this expression simplifies to

X(Ω) = jπ

∞∑

k=−∞
δ (Ω + Ω0 − 2πk)− δ (Ω− Ω0 − 2πk) .

This result matches pair 14 of Table 9.1, as expected.

Solution 9.5-2

From the problem statement, we know that a CT signal xc(t), bandlimited to 25 kHz, is sampled
at 50 kHz to produce

x[n] = δ[n+4]− 2δ[n+2] + δ[n+1]− 3δ[n]− δ[n−1]− 2δ[n−2]− δ[n−4].

Taking the DTFT, we obtain

X(Ω) = ej4Ω − 2ej2Ω + ejΩ − 3− e−jΩ − 2e−j2Ω − e−j4Ω

= −3 + 2j sin(Ω)− 4 cos(2Ω) + 2j sin(4Ω).
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Since x(t) is sampled at the Nyquist rate (fs = 50 kHz), no aliasing occurs and Xc(ω) can be
recovered from X(Ω). Using Eq. (9.42) and the fact that Xc(ω) = TXc(ω) and Ω = ωT , we obtain

Xc(ω) =

{
TX(ωT ) |ω| ≤ π/T

0 otherwise

=
1

50000

[
−3+2j sin

( ω

50000

)
−4 cos

(
2ω

50000

)
+2j sin

(
4ω

50000

)]
rect

( ω

2π50000

)
.

As Fig. S9.5-2 shows, the resulting magnitude spectrum is bandlimited to 25 kHz, as required.
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Figure S9.5-2

Solution 9.7-1

(a) The inverse DTFS is given by x[n] =
∑N0−1

r=0 Dre
jrΩ0n. Like the DTFS, the IDTFS can be

computed using a matrix based approach. First, define WN0 = ejΩ0 , which is a constant for a

given N0. Substituting WN0 into the IDTFS equation yields x[n] =
∑N0−1

n=0 DrW
nr
N0

. An inner
product of two vectors computes x[n].

x[n] =
[
1,Wn

N0
,W 2n

N0
, · · · ,W (N0−1)r

N0

]




D0

D1

D2

...
DN0−1



.

Stacking the results for all n yields:




x[0]
x[1]
x[2]
...

x[N0 − 1]



=




1, 1, 1, · · · , 1

1, W 1
N0

, W 2
N0

, · · · , W
(N0−1)
N0

1, W 2
N0

, W 4
N0

, · · · , W
2(N0−1)
N0

...
...

...
. . .

...

1, W
(N0−1)
N0

, W
2(N0−1)
N0

, · · · , W
(N0−1)2

N0







D0

D1

D2

...
DN0−1



.

In matrix notation, the IDTFS is compactly written as x = W∗
N0

D. Notice, W∗
N0

is just the
conjugate of the DFT matrix WN0 .

In MATLAB, the N0-by-N0 IDTFS matrix is easily computed according to

>> Wconj= (exp(j*2*pi/N_0)).^((0:N_0-1)’*(0:N_0-1));

(b) MATLAB code, similar to that presented in Sec. 9.7, is used to test the execution speed of the
matrix IDTFS approach to the inverse FFT approach. First, test vectors and IDTFS matrices
are created.



Student use and/or distribution of solutions is prohibited 665

>> X10 = fft(randn(10,1)); X100 = fft(randn(100,1)); X1000 = fft(randn(1000,1));

>> W10 = (exp(j*2*pi/10)).^((0:10-1)’*(0:10-1));

>> W100 = (exp(j*2*pi/100)).^((0:100-1)’*(0:100-1));

>> W1000 = (exp(j*2*pi/1000)).^((0:1000-1)’*(0:1000-1));

Next, execution speeds are measured by repeating calculations within a loop. Notice, output
from MATLAB’s ifft command must be scaled by 1/N0 to compute the IDTFS.

>> tic; for t=1:50000, ifft(X10)/10; end; T10ifft =toc;

>> tic; for t=1:50000, W10*X10; end; T10mat = toc;

>> tic; for t=1:5000, ifft(X100)/100; end; T100ifft =toc;

>> tic; for t=1:5000, W100*X100; end; T100mat = toc;

>> tic; for t=1:500, ifft(X1000)/1000; end; T1000ifft =toc;

>> tic; for t=1:500, W1000*X1000; end; T1000mat = toc;

>> [T10mat/T10ifft, T100mat/T100ifft, T1000mat/T1000ifft]

ans = 1.0323 3.5000 101.4754

For these trials, these results indicate that the IFFT approach is about as fast as the matrix
approach for N0 = 10, about an order of magnitude faster than the matrix approach for
N0 = 100, and about two orders of magnitude faster than the matrix approach for N0 = 1000.
While actual times will vary considerably from computer to computer and from trial to trial,
the general trend is clear: the matrix based approach is less efficient than the inverse FFT
approach, and this difference grows rapidly as N0 increases.

(c) Substituting D = 1
N0

WN0x into x = W∗
N0

D yields x = W∗
N0

1
N0

WN0x = 1
N0

W∗
N0

WN0x. For

equality, 1
N0

W∗
N0

WN0 = IN0 , where IN0 is the N0-by-N0 identity matrix. Thus, W∗
N0

WN0 =
N0IN0 = WN0W

∗
N0

.

Thus, multiplying the DFT matrix WN0 by the inverse DTFS matrix W∗
N0

, or vice versa,
yields the scaled identity matrix N0IN0 :

W∗
N0

WN0 = WN0W
∗
N0

= N0IN0 .

This result is consistent with the fact that the DTFS represents a signal using an orthogonal
set of basis functions. Since the columns (or rows) of WN0 are orthogonal, W∗

N0
WN0 must

be a diagonal matrix. The scale factor of N0 results from mixing matrices from the DFT and
DTFS (recall, the DFT is N0 times the DFTS).

Solution 9.7-2

(a) We know that

|H(ejΩc)|2 =
1

2
=

(1 + α)2

4

|1− e−jΩ|2
|1− αe−jΩ|2

=
1 + 2α+ α2

4

(1 − cos(−Ωc))
2 + (− sin(−Ωc))

2

(1 − α cos(−Ωc))2 + (α sin(−Ωc))2

=
1 + 2α+ α2

4

1− 2 cos(Ωc) + cos2(Ωc) + sin2(Ωc)

1− 2α cos(Ωc) + α2 cos2(Ωc) + α2 sin2(Ωc)

=
1 + 2α+ α2

4

2− 2 cos(Ωc)

1 + α2 − 2α cos(Ωc)

=
1 + 2α+ α2

4

2− 2 cos(Ωc)

1 + α2 − 2α cos(Ωc)
.
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Thus,
2(1 + α2 − 2α cos(Ωc)) = (1 + 2α+ α2)(2− 2 cos(Ωc))

or
2 + 2α2 − 4α cos(Ωc) = 2 + 4α+ 2α2 − 2 cos(Ωc)− 4α cos(Ωc)− 2α2 cos(Ωc).

This simplifies to 0 = −2α2 cos(Ωc)+4α−2 cos(Ωc) or cos(Ωc)α
2−2α+cos(Ωc). Solving with

the quadratic formula yields α =
2±

√
4−4 cos2(Ωc)

2 cos(Ωc)
= 1±sin(Ωc)

cos(Ωc)
. For 0 ≤ Ωc ≤ π,

∣∣∣ 1+sin(Ωc)
cos(Ωc)

∣∣∣ ≥ 1

and
∣∣∣ 1−sin(Ωc)

cos(Ωc)

∣∣∣ ≤ 1. Since a stable system is desired,

α =
1− sin(Ωc)

cos(Ωc)
.

(b) For this part, Ωc = 2π fc
fs

= 2π
5 . Using this value and the results of part (a), we use MATLAB

to compute α.

>> Omega_c = 2*pi/5; alpha = (1-sin(Omega_c))/cos(Omega_c)

alpha = 0.1584

Using MATLAB, the corresponding difference equation is determined from H(z) = Y (z)
X(z) =

B(z)
A(z) =

(
1+α
2

) (
1−z−1

1−αz−1

)
.

>> B = (1+alpha)/2*[1,-1], A = [1,-alpha]

B = 0.5792 -0.5792

A = 1.0000 -0.1584

Thus, the difference equation is

y[n]− 0.1584y[n− 1] = 0.5792x[n]− 0.5792x[n− 1].

This first order system has one pole at z = α = 0.1584. Since this pole is inside the unit circle,
the system is stable. The system’s frequency response is computed using MATLAB.

>> Omega = -pi:2*pi/2000:pi; H = freqz(B,A,Omega);

>> H3dB = freqz(B,A,[-Omega_c,Omega_c]);

>> plot(Omega,(abs(H)),’k’); grid on;

>> axis([-pi,pi,0,1.1]); xlabel(’\Omega’); ylabel(’|H(\Omega)|’);

>> set(gca,’ytick’,[0,1/sqrt(2),1],’xtick’,[-pi,-2*pi/5,0,2*pi/5,pi],...

>> ’xticklabel’,{’-\pi’,’-2\pi/5’,’0’,’2\pi/5’,’\pi’});

-π -2π/5 0 2π/5 π

Ω

0

0.7071

1

|H
(Ω

)|

Figure S9.7-2

As seen if Fig. S9.7-2, the filter is highpass with a cutoff frequency Ωc = 2π/5, as desired.
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(c) Since α, and therefore H(z), is held constant, the cutoff frequency Ωc remains constant as
well. That is, changing the sampling frequency does not affect the digital cutoff frequency Ωc

of the filter. However, the cut-off frequency expressed in hertz scales directly with the sampling
frequency. That is, as fs = 5 kHz is increased to fs = 50 kHz, fc = 1 kHz is increased to
fc = 10 kHz.

(d) The inverse to H(z) =
(
1+α
2

) (
1−z−1

1−αz−1

)
is

H−1(z) =

(
2

1 + α

)(
1− αz−1

1− z−1

)
.

Since the inverse has a root on the unit circle, it is not BIBO stable and therefore not well
behaved.

(e) For Ωc = π/2, α = 1−sin(Ωc

cos(Ωc)
= 1−1

0 , which is indeterminant. Using L’Hospital’s rule,

limΩc→π/2
1−sin(Ωc

cos(Ωc)
= limΩc→π/2

d
dt

(
1−sin(Ωc

cos(Ωc)

)
= limΩc→π/2

− cos(Ωc

− sin(Ωc)
= 0

1 = 0. Using α = 0,

the system function is H(z) = 0.5(1 − z−1). What is particularly interesting is that when
Ωc = π/2 this normally IIR filter H(z) becomes an FIR filter. Notice that the impulse re-
sponse is h[n] = 0.5δ[n]− 0.5δ[n− 1], which is a finite duration signal.

Solution 9.7-3

We follow the frequency sampling method presented in Sec. 9.7 to design a length-35 linear phase
FIR highstop (lowpass) filter that has cutoff frequency Ωc = 2π/3. To ensure proper filter behavior,
we specify the desired response to have linear phase characteristics. Plots of the designed filter’s
impulse response h[n] and magnitude response |H(Ω)| are shown in Fig. S9.7-3
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n
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0

0.2

0.4

0.6

h[
n]

0 2π/3 4π/3 2π

Ω

0

0.5

1

|H
(Ω

)|

Figure S9.7-3

>> Hd = @(Omega) (mod(Omega,2*pi)<=2*pi/3)+(mod(Omega,2*pi)>=2*pi-2*pi/3);

>> N = 35; Omega = linspace(0,2*pi*(1-1/N),N)’; H = Hd(Omega).*exp(-j*Omega*((N-1)/2));

>> H(fix(N/2)+2:N,1) = H(fix(N/2)+2:N,1)*((-1)^(N-1)); h = real(ifft(H));

>> subplot(211); stem(0:N-1,h,’k.’); xlabel(’n’); ylabel(’h[n]’);

>> axis([-.5 N-.5 -0.3 0.8]); grid on; samples = linspace(0,2*pi*(1-1/N),N)’;

>> Omega = 0:2*pi/2001:2*pi; H = freqz(h,1,Omega);

>> subplot(212); plot(samples,Hd(samples),’k.’,Omega,abs(H),’k’);

>> ylabel(’|H(\Omega)|’); xlabel(’\Omega’); grid on; axis([0 2*pi 0 1.2]);

>> set(gca,’xtick’,[0 2*pi/3 4*pi/3 2*pi],’xticklabel’,{’0’,’2\pi/3’,’4\pi/3’,’2\pi’});
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Solution 9.7-4

We follow the frequency sampling method presented in Sec. 9.7 to design a length-71 linear phase
FIR bandstop filter that has stopband (π/3 < |Ω| < π/2). To ensure proper filter behavior, we
specify the desired response to have linear phase characteristics. Plots of the designed filter’s
impulse response h[n] and magnitude response |H(Ω)| are shown in Fig. S9.7-4

>> Hd = @(Omega) (mod(Omega,2*pi)<=pi/3)+(mod(Omega,2*pi)>=2*pi-pi/3)+...

>> ((mod(Omega,2*pi)>pi/2)&(mod(Omega,2*pi)<3*pi/2));

>> N = 71; Omega = linspace(0,2*pi*(1-1/N),N)’;

>> H = Hd(Omega).*exp(-j*Omega*((N-1)/2));

>> H(fix(N/2)+2:N,1) = H(fix(N/2)+2:N,1)*((-1)^(N-1));

>> h = real(ifft(H));

>> subplot(211); stem(0:N-1,h,’k.’); xlabel(’n’); ylabel(’h[n]’);

>> axis([-.5 N-.5 -0.3 1]); grid on;

>> samples = linspace(0,2*pi*(1-1/N),N)’;

>> Omega = 0:2*pi/2001:2*pi; H = freqz(h,1,Omega);

>> subplot(212); plot(samples,Hd(samples),’k.’,Omega,abs(H),’k’);

>> ylabel(’|H(\Omega)|’); xlabel(’\Omega’); grid on; axis([0 2*pi 0 1.2]);

>> set(gca,’xtick’,[0 pi/3 pi/2 3*pi/2 5*pi/3 2*pi],...

>> ’xticklabel’,{’0’,’\pi/3’,’\pi/2’,’3\pi/2’,’5\pi/3’,’2\pi’});
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Figure S9.7-4

Solution 9.7-5

(a) It would be unlikely if not impossible to achieve this exact magnitude response with a practical
FIR filter. Since the magnitude response has points of derivative discontinuities, an infinite
length filter would be required, which is not practical.

(b) We follow the frequency sampling method presented in Sec. 9.7 to design a length-71 linear
phase FIR filter that reasonably approximates the desired response. Different approximations
are easily accomplished by changing N . Plots of the designed filter’s impulse response h[n]
and magnitude response |H(Ω)| are shown in Fig. S9.7-5

>> Hd = @(Omega) ((mod(Omega,2*pi)>=0)&(mod(Omega,2*pi)<pi/4)).*(4*mod(Omega,2*pi)/pi)+...

>> ((mod(Omega,2*pi)>=pi/4)&(mod(Omega,2*pi)<pi/2)).*(2-4*mod(Omega,2*pi)/pi)+...

>> ((mod(Omega,2*pi)>7*pi/4)&(mod(Omega,2*pi)<=2*pi)).*(-4*(mod(Omega,2*pi)-2*pi)/pi)+...
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>> ((mod(Omega,2*pi)>3*pi/2)&(mod(Omega,2*pi)<=7*pi/4)).*(2+4*(mod(Omega,2*pi)-2*pi)/pi);

>> N = 71; Omega = linspace(0,2*pi*(1-1/N),N)’;

>> H = Hd(Omega).*exp(-j*Omega*((N-1)/2));

>> H(fix(N/2)+2:N,1) = H(fix(N/2)+2:N,1)*((-1)^(N-1));

>> h = real(ifft(H));

>> subplot(211); stem(0:N-1,h,’k.’); xlabel(’n’); ylabel(’h[n]’);

>> axis([-.5 N-.5 -0.15 .35]); grid on;

>> samples = linspace(0,2*pi*(1-1/N),N)’;

>> Omega = 0:2*pi/2001:2*pi; H = freqz(h,1,Omega);

>> subplot(212); plot(samples,Hd(samples),’k.’,Omega,abs(H),’k’);

>> ylabel(’|H(\Omega)|’); xlabel(’\Omega’); grid on; axis([0 2*pi 0 1.1]);

>> set(gca,’xtick’,[0 pi/2 pi 3*pi/2 2*pi],...

>> ’xticklabel’,{’0’,’\pi/2’,’\pi’,’3\pi/2’,’2\pi’});
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Figure S9.7-5

Solution 9.7-6

A simple first-order highpass filter is given by Hhp(z) = k(1 − z−1). To achieve a gain of 3, solve
3 = k|1 − e−jπ | = 2k. Thus, k = 3/2. To realize the desired comb filter, the HPF response needs
to be compressed by a factor of 4, which effectively replicates the original response four times over
[0, 2π). Compression is achieved by letting z = z4. Thus,

Hcomb(z) = 1.5(1− z−4).

The corresponding impulse response is

hcomb = 1.5δ[n]− 1.5δ[n− 4].

MATLAB is used to verify operation:

>> Omega =0:2*pi/2000:2*pi;

>> B = [1.5 0 0 0 -1.5]; A = 1; H = freqz(B,A,Omega);

>> plot(Omega,(abs(H)),’k’); grid on;

>> axis([0,2*pi,0,3.2]); xlabel(’\Omega’); ylabel(’|H(\Omega)|’);

>> set(gca,’ytick’,0:3,’xtick’,0:pi/2:2*pi,...

>> ’xticklabel’,{’0’,’\pi/2’,’\pi’,’3\pi/2’,’2\pi’});
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Figure S9.7-6

Solution 9.7-7

(a) Reversing the order of the elements of column vector x can be accomplished using a N0-by-N0

permutation matrix RN0 that is simply a 90-degree rotated N0-by-N0 identity matrix. For
example, R5 is

R5 =




0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0



.

(b) Let integer i ∈ {0, 1, . . . , N0 − 1} be used to designate row or column of WN0 . Row
i of WN0 is represented as ri = ej2π[0,1,...,N0−1]i/N0 . Column i of WN0 is represented

as ci = ej2π[0,1,...,N0−1]T i/N0 . For i ≥ 1, notice that column N0 − i is cN0−i =

ej2π[0,1,...,N0−1]T (N0−i)/N0 = ej2π[0,1,...,N0−1]T e−j2π[0,1,...,N0−1]T i/N0 = e−j2π[0,1,...,N0−1]T i/N0 =
rHi . That is, for i ≥ 1, column (N0 − i) is the complex-conjugate transpose of row i. Also
notice that WN0 is composed of orthogonal rows,

rir
H
k =

{
0 i 6= k
N0 i = k

.

Combining these facts yields

W2
N0

= N0




1 0 . . . 0
0
...
0

RN0−1


 .

For example, if N0 = 5 then

W2
5 = 5




1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0



.

By inspection, it is clear that W2
N0

is a scaled permutation matrix. The operation W2
N0

x
scales and reorders the vector x: the first element of x is not moved, but the order of the
remaining N0 − 1 elements are reversed.

MATLAB is used to confirm these conclusions.
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>> x = [1 2 3 4 5]’;

>> W_5 = dftmtx(5);

>> real(W_5*W_5*x)’

ans = 5.0000 25.0000 20.0000 15.0000 10.0000

The last line includes the real command to remove minute imaginary components that result
due to computer round-off. As expected, vector x is scaled by N0 = 5 and the order of the
last four elements is reversed.

(c) Using the previous result, W4
N0

x = (W2
N0

)(W2
N0

)x = N2
0x. The first multiplication by (W2

N0
)

scales x by N0 and reverses the order of the last N0 − 1 elements. The second multiplication
again scales x by N0 for a total of N2

0 and reverses the previously reversed last N0−1 elements,
effectively leaving the order of x unchanged. MATLAB is used to confirm these conclusions.

>> x = [1 2 3 4 5]’;

>> W_5 = dftmtx(5);

>> real(W_5*W_5*W_5*W_5*x)’

ans = 25.0000 50.0000 75.0000 100.0000 125.0000

The result is just x scaled by N2
0 = 25.



Chapter 10 Solutions

Solution 10.2-1

(a) Here,
ÿ + 10ẏ + 2y = x.

Choosing q1 = y and q2 = ẏ = q̇1 =⇒ q̇2 = ÿ, we obtain

q̇1 = q2
q̇2 = −2q1 − 10q2 + x

.

In matrix form we get

[
q̇1
q̇2

]
=

[
0 1
−2 −10

] [
q1
q2

]
+

[
0
1

]
x.

(b) In this case,
ÿ + 2eyẏ + log y = x.

Choosing q1 = y and q2 = ẏ = q̇1, we obtain

q̇1 = q2
q̇2 = −2eq1q2 − log q1 + x

.

It is easy to see that this set is nonlinear.

(c) Here,
ÿ + φ1(y)ẏ + φ2(y)y = x.

Choosing q1 = y and q2 = ẏ, we obtain

q̇1 = q2
q̇2 = −φ1(q1)q2 − φ2(q1)q1 + x

.

This case is also a nonlinear set, since φ2(q1) and φ1(q1) are not constants.

Solution 10.3-1

Refer to Fig. S10.3-1. Writing the loop equations we get

x = q1 + 2i+ 3i2,

where

i2 =
x− q1 − q̇2

2
− q2 and i =

x− q1 − q̇2
2

.

Also we have
1

2
q̇1 =

x− q1 − q̇2
2

− q1.

672
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Therefore,
q̇1 = x− q1 − q̇2 − 2q1 = −3q1 − q̇2 + x (10.3-1a)

We can also write

q̇2 = 3i2 = 3

[
x− q1 − q̇2

2
− q2

]
=

3

2
x− 3

2
q1 −

3

2
q̇2 − 3q2.

Hence, 5
2 q̇2 = − 3

2q1 − 3q2 +
3
2x, or

q̇2 = −3

5
q1 −

6

5
q2 +

3

5
x (10.3-1b)

Substituting Eq. (10.3-1b) in Eq. (10.3-1a) we obtain

q̇1 = −3q1 + x−
[
−3

5
q1 −

6

5
q2 +

3

5
x

]
= −12

5
q1 +

6

5
q2 +

2

5
x.

Hence the state equations are:
[

q̇1

q̇2

]
=

[
− 12

5
6
5

− 3
5 − 6

5

][
q1

q2

]
+

[
2
5

3
5

]
x(t).

2
1/2

+

+

q1

q1 q2

2

3
x(t) x(t)+

1
1 3

i i

i2

i2

– –

–
+

q1

–

Figure S10.3-1

Solution 10.3-2

Refer to Fig. S10.3-2. In the first loop, the current i1 can be computed as

x =
1

3
i1 + q1 =⇒ i1 = 3(x− q1).

Using node equation, we also have

1

2
q̇1 = −2q1 − q2 − 3q1 + 3x = −5q1 − q2 + 3x.

Hence,
q̇1 = −10q1 − 2q2 + 6x. (10.3-2a)

Writing the equations in the rightmost loop we get

q1 = q2 + q̇2 and q̇2 = q1 − q2. (10.3-2b)

Hence from Eq. (10.3-2a) and Eq. (10.3-2b) the state equations are found as
[

q̇1
q̇2

]
=

[
−10 −2
1 −1

] [
q1
q2

]
+

[
6
0

]
x.

The output equation is y = q̇2 = q1 − q2 or

y =
[
1 −1

] [ q1
q2

]
.
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1/3

+

–
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1

+

–

11/3

1/2 1/21/2+
–

+
–

+
–

Figure S10.3-2

Solution 10.3-3

Refer to Fig. S10.3-3. Let’s choose the voltage across the capacitor and the current through the
inductor as state variables q1 and q2, respectively. Writing the loop equations we get

x1 = q1 +
1

5
[q̇1 − q2].

Here we use the fact that q̇1 = i1 and q2 = i2. Further,

x2 = −1

2
q̇2 − q2 +

1

5
[q̇1 − q2].

Thus,
q̇1 = −5q1 + q2 + 5x1

q̇2 = −2q1 − 2q2 + 2x1 − 2x2
.

Hence the state equations are
[

q̇1
q̇2

]
=

[
−5 1
−2 −2

] [
q1
q2

]
+

[
5 0
2 −2

] [
x1

x2

]
.

The output equation is

y(t) = [ 1 1 ]

[
q1
q2

]
+ 0x(t).

+

1/5

–

x1(t)

q1
q2

x2(t)

i1 i2

q2 q1

1
1 1

+ –

+
– +

–

+
–

+
–

x1(t)
x2(t)

1/5

1/2

y(t) y(t)++ ––

Figure S10.3-3

Solution 10.3-4

Refer to Fig. S10.3-4. The loop equations yield, with i2 = q̇2 and i1 = q1 + i2 = q1 + q̇2,

x = 2i1 + q1 + q̇1 = 2q1 + 2q̇2 + q1 + q̇1 = 3q1 + q̇1 + 2q̇2 (10.3-4a)

and
x = 2i1 + q̇2 + q2 = 2q1 + 2q̇2 + q̇2 + q2 = 2q1 + q2 + 3q̇2. (10.3-4b)

The last equation gives

q̇2 = −2

3
q1 −

1

3
q2 +

1

3
x. (10.3-4c)

Substituting q̇2 in Eq. (10.3-4a) we get

q̇1 = −5

3
q1 +

2

3
q2 +

1

3
x. (10.3-4d)
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From Eq. (10.3-4c) and Eq. (10.3-4d) the state equations are obtained as
[

q̇1

q̇2

]
=

[
− 5

3
2
3

− 2
3 − 1

3

] [
q1

q2

]
+

[
1
3

1
3

]
x(t).

Further, the output equations are y1 = q1 and y2 = i2 = q̇2 = − 2
3q1 − 1

3q2 +
1
3x so that

y =

[
y1
y2

]
=

[
1 0
− 2

3 − 1
3

] [
q1
q2

]
+

[
0
1
3

]
x(t).

1

+

1

1 1 1
+

–

x(t)
i1

i2

i2

q2

y2(t) i1

q1

x(t)

q1

q2

22

+
–

+
–+

–

1
–

+
y1(t)

–

Figure S10.3-4

Solution 10.3-5

Refer to Fig. S10.3-5. We have

i = q1 + q̇1 =
x− q1

2
+

ẋ− q̇1
2

.

Multiplying both sides of this equations by 2, we get

2q1 + 2q̇1 = x− q1 + ẋ− q̇1 or 3q̇1 = −3q1 + x+ ẋ.

Thus the only state equation is

q̇1 = −q1 +
x

3
+

ẋ

3
.

The output equation is y = −q1 + x.
Note that although there are two capacitors, there is only one independent capacitor voltage.

This is because the two capacitors form a loop with the voltage source. In such a case the state
equation contains the terms x as well as ẋ. A similar situation exists with inductors with a current
source.

+

+

–

–

x(t)

i

i

y(t)

q1

1

2+
– 1/2

Figure S10.3-5

Solution 10.3-6

Let us choose q1, q2 and q3 as the outputs of the subsystem shown in Fig. S10.3-6.
From the block diagram we obtain:

5q2 = q̇1 + 10q1 =⇒ q̇1 = −10q1 + 5q2

q1 = q̇3 + q3 =⇒ q̇3 = q1 − q3

w = q̇2 + 2q2 =⇒ q̇2 = w − 2q2

q̇2 = −2q2 − q3 + x
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–
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1
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5

s + 10q2
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Figure S10.3-6

From these equations, the state equations can be written as




q̇1
q̇2
q̇3


 =




−10 5 0
0 −2 −1
1 0 −1






q1
q2
q3


+




0
1
0


x,

and the output equation is

y = q1 =
[
1 0 0

]



q1
q2
q3


 .

Solution 10.3-7

From Fig. P10.3-7, it is easy to write the state equations as

q̇1 = λ1q1

q̇2 = λ2q2 + x1

q̇3 = λ3q3 + x2

q̇4 = λ4q4 + x2

or 


q̇1
q̇2
q̇3
q̇4


 =




λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4







q1
q2
q3
q4


+




0 0
1 0
0 1
0 1



[

x1

x2

]
.

The output equation is

y1 = q1 + q2
y2 = q2 + q3

=⇒
[

y1
y2

]
=

[
1 1 0 0
0 1 1 0

]



q1
q2
q3
q4


 .

Solution 10.3-8

Here,

H(s) =
3s+ 10

s2 + 7s+ 12
.

Direct Form II:
We can write the state and output equations straightforward from the transfer function H(s). Thus
we get [

q̇1
q̇2

]
=

[
0 1

−12 −7

] [
q1
q2

]
+

[
0
1

]
x

and

y =
[
10 3

] [ q1
q2

]
.
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Transposed Direct Form II:
In this case the block diagram can be drawn as shown in Fig. S10.3-8a. Hence,

q̇1 = −7q1 + q2 + 3x

q̇2 = −12q1 + 10x

or [
q̇1
q̇2

]
=

[
−7 1
−12 0

] [
q1
q2

]
+

[
3
10

]
x.

The output equation is

y = q1 =
[
1 0

] [ q1
q2

]
.

10

Σ Σ1/s 1/s

3

712

X(s)

Y(s)

– –

q1
q2

Figure S10.3-8a

Cascade Form:
Writing the transfer function in factored form yields

H(s) =
3s+ 10

s2 + 7s+ 12
=

(
3s+ 10

s+ 4

)(
1

s+ 3

)
.

Referring to the left side of Fig. S10.3-8b, we can write

q̇1 + 4q1 = 3q̇2 + 10q2
q̇2 = −3q2 + x

}
=⇒ q̇1 = −4q1 − 9q2 + 10q2 + 3x

q̇2 = −3q2 + x

[
q̇1
q̇2

]
=

[
−4 1
0 −3

] [
q1
q2

]
+

[
3
1

]
x

and

y = q1 =
[
1 0

] [ q1
q2

]
.

1

s + 3

2
1

s + 4

1
s + 3

3s+10

s + 4

X(s) X(s)Y(s) Y(s)q2 q1
Σ

q1

q2

Figure S10.3-8b

Parallel Form:
Performing a partial fraction expansion on H(s) yields

H(s) =
2

s+ 4
+

1

s+ 3
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Referring to the right side of Fig. S10.3-8b, the state equations are

q̇1 = −4q1 + x
q̇2 = −3q1 + x

=⇒
[

q̇1
q̇2

]
=

[
−4 0
0 −3

] [
q1
q2

]
+

[
1
1

]
x

and the output equation is

y = 2q1 + q2 =
[
2 1

] [ q1
q2

]
.

Solution 10.3-9

(a) Here,

H(s) =
4s

(s+ 1)(s+ 2)2
=

4s

s3 + 5s2 + 8s+ 4
.

Direct Form II:
We can write the state and output equations straightforward from the transfer function H(s).
Thus 


q̇1
q̇2
q̇3


 =




0 1 0
0 0 1
−4 −8 −5






q1
q2
q3


+




0
0
1


 x

and

y =
[
0 4 0

]



q1
q2
q3


 .

Transposed Direct Form II:
In this case the block diagram can be drawn as shown in Fig. S10.3-9a-1. Hence, the state
equations are

q̇1 = −5q1 + q2
q̇2 = −8q1 + q3 + 4x
q̇3 = −q1

or 


q̇1
q̇2
q̇3


 =




−5 1 0
−8 0 1
−4 0 0






q1
q2
q3


+




0
4
0


 x.

The output equation is

y = q1 =
[
1 0 0

]



q1
q2
q3


 .

Σ Σ Σ

X(s)

Y(s)

4

1/s 1/s 1/s

8 5
4

q3 q2 q1

–––

Figure S10.3-9a-1

Cascade Form:
Writing the transfer function in factored form yields

H(s) =

(
1

s+ 1

)(
4s

s+ 2

)(
1

s+ 2

)
.
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Referring to Fig. S10.3-9a-2, we can write the state equations as

q̇1 = −2q1 + q2
q̇2 + 2q2 = 4q̇3
q̇3 = −q3 + x

=⇒





q̇1 = −2q1 + q2
q̇2 = −4q3 − 2q2 + 4x
q̇3 = −q3 + x

or 


q̇1
q̇2
q̇3


 =




−2 1 0
0 −2 −4
0 0 −1






q1
q2
q3


+




0
4
1


x.

The output equation is

y = q1 =
[
1 0 0

]



q1
q2
q3


 .

1

s + 1

4s

s + 2

1

s + 2

X(s) Y(s)

q3 q2 q1

Figure S10.3-9a-2

Parallel Form:
Performing a partial fraction expansion on H(s) yields

H(s) =
−4

s+ 1
+

4

s+ 2
+

8

(s+ 2)2
.

Referring to Fig. S10.3-9a-3, the state equations are

q̇1 = −q1 + x

q̇2 = −2q2 + q3

q̇3 = −2q3 + x

or 


q̇1
q̇2
q̇3


 =




−1 0 0
0 −2 1
0 0 −2






q1
q2
q3


+




1
0
1


x.

The output equation is

y = −4q1 + 8q2 + 4q3 =
[
−4 8 4

]



q1
q2
q3


 .

1

s + 2

1

s + 2

4

8

4

1

s + 1

Σ

X(s) Y(s)–

+
+

q1

q3 q2

Figure S10.3-9a-3
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(b) In this case, the transfer function is

H(s) =
s3 + 7s2 + 12s

(s+ 1)3(s+ 2)
=

s3 + 7s2 + 12s

s4 + 5s3 + 9s2 + 7s+ 2
.

Direct Form II:
Straightforward from H(s), the state equations are




q̇1
q̇2
q̇3
q̇4


 =




0 1 0 0
0 0 1 0
0 0 0 1
−2 −7 −9 −5







q1
q2
q3
q4


+




0
0
0
1


x

and the output equation is

y =
[
0 12 7

]



q1
q2
q3
q4


 .

Transposed Direct Form II:
Similar to the DFII case, we can write the state equation directly from H(s) as




q̇1
q̇2
q̇3
q̇4


 =




−5 1 0 0
−9 0 1 0
−7 0 0 1
−2 0 0 0







q1
q2
q3
q4


+




1
7
12
0


 x.

The output equation is

y = q1 =
[
1 0 0 0

]



q1
q2
q3
q4


 .

Cascade Form:
Writing the transfer function in factored form yields

H(s) =
s(s+ 3)(s+ 4)

(s+ 2)(s+ 1)3
=

(
1

s+ 2

)(
s

s+ 1

)(
s+ 3

s+ 1

)(
s+ 4

s+ 1

)

Referring to Fig. S10.3-9b-1, we can write

q̇1 + q1 = q̇2 + 4q2
q̇2 + q2 = q̇3 + 3q3
q̇3 = −q3 + q̇4
q̇4 = −2q4 + x

=⇒





q̇1 = −q1 + 4q2 − q2 + 2q3 − 2q4 + x
q̇2 = −q2 + 3q3 − q3 − 2q4 + x
q̇3 = −q3 − 2q4 + x
q̇4 = −2q4 + x

.

Hence 


q̇1
q̇2
q̇3
q̇4


 =




−1 3 2 −2
0 −1 2 −2
0 0 −1 −2
0 0 0 −2







q1
q2
q3
q4


+




1
1
1
1


x

and

y = q1 =
[
1 0 0 0

]



q1
q2
q3
q4


 .
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1
s + 2

s
s + 1 s + 1

s + 3
s + 1
s + 4

q4 q3 q2 q1

X(s) Y(s)

Figure S10.3-9b-1

Parallel Form:
Performing a partial fraction expansion on H(s) yields

H(s) =
6

s+ 2
+

11

s+ 1
+

7

(s+ 1)2
− 6

(s+ 1)3
.

Referring to Fig. S10.3-9b-2, the state equations are

q̇1 = −2q1 + x
q̇2 = −q2 + q3
q̇3 = −q3 + q4
q̇4 = −q4 + x

or 


q̇1
q̇2
q̇3
q̇4


 =




−2 0 0 0
0 −2 1 0
0 0 −1 1
0 0 0 −1







q1
q2
q3
q4


+




1
0
0
1


 x.

The output equation can be written as y = 6q1 − 6q2 + 7q3 + 11q4 or

y =
[
6 −6 7 11

]



q1
q2
q3
q4


 .

Σ

Y(s)

1
s + 2

6

6

–

11

7

1
s + 1

1
s + 1

1
s + 1

X(s)

q4 q3 q2

q1

Figure S10.3-9b-2

Solution 10.4-1

The problem provides
q̇ = Aq+Bx

where

A =

[
0 2
−1 −3

]
B =

[
0
1

]

q(0) =

[
2
1

]
x(t) = 0.

The solution of the state equation in the frequency domain is given by

Q(s) = Φ(s)q(0) +Φ(s)BX(s).
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In the current case x(t) = 0 =⇒ X(s) = 0, so Q(s) = Φ(s)q(0) where Φ(s) = (sI − A)−1.
Computing:

Φ(s) = (sI−A)−1 (sI−A) =

[
s 0
0 s

]
−
[

0 2
−1 −3

]

sI−A =

[
s −2
1 s+ 3

]
=⇒ Φ(s) = (sI−A)−1 =

[
s+ 3 2
−1 s

]
1

s2 + 3s+ 2

Φ(s) =

[ s+3
s2+3s+2

2
s2+3s+2

−1
s2+3s+2

s
s2+3s+2

]
=

[ s+3
(s+1)(s+2)

2
(s+1)(s+2)

−1
(s+1)(s+2)

s
(s+1)(s+2)

]

Hence

Q(s) = Φ(s)q(0) =




2(s+3)+2
(s+1)(s+2)

−2+s
(s+1)(s+2)


 =

[ 2s+8
(s+1)(s+2)

s−2
(s+1)(s+2)

]
=

[ 6
s+1 − 4

s+2

−3
s+1 + 4

s+2

]
.

Finally,

q(t) =

[
q1(t)
q2(t)

]
= L−1

[
Q(s)

]
=

[
(6e−t − 4e−2t)u(t)
(−3e−t + 4e−2t)u(t)

]
.

Solution 10.4-2

The problem provides

A =

[
−5 −6
1 0

]
B =

[
1
0

]

q(0) =

[
5
4

]
x(t) = sin(100t)u(t).

The solution of the state equation in the frequency domain is given by

Q(s) = Φ(s)q(0) +Φ(s)BX(s) = Φ(s)[q(0) +BX(s)].

Computing:

(sI−A) =

[
s+ 5 6
−1 s

]
and Φ(s) = (sI−A)−1 =

1

s2 + 5s+ 6

[
s −6
1 s+ 5

]

Φ(s) =

[ s
(s+3)(s+2)

−6
(s+3)(s+2)

1
(s+3)(s+2)

s+5
(s+3)(s+2)

]

Hence

Q(s) = Φ(s) [q(0) +BX(s)] =

[ s
(s+3)(s+2)

−6
(s+3)(s+2)

1
(s+3)(s+2)

s+5
(s+3)(s+2)

][
5 + 100

s2+104

4

]

=

[ −34.02
s+2 + 39.03

s+3 − 10−2s
s2+104

17.01
s+2 − 13.01

s+3 − 0
s2+104

]
.

Inverting, we obatin

q(t) =

[
q1(t)
q2(t)

]
= L−1(Q(s)) =

[ (
−34.02e−2t + 39.03e−3t − 0.01 cos 100t

)
u(t)(

17.01e−2t − 13.01e−3t
)
u(t)

]
.
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Solution 10.4-3

The problem provides

A =

[
−2 0
1 −1

]
B =

[
1
0

]

q(0) =

[
0
−1

]
x(t) = u(t).

The solution of the state equation in the frequency domain is given by

Q(s) = Φ(s)[q(0) +BX(s)].

Computing:

(sI−A) =

[
s+ 2 0
−1 s+ 1

]

and

Φ(s) = (sI−A)−1 =
1

(s+ 1)(s+ 2)

[
s+ 1 0
1 s+ 2

]
=

[ 1
s+2 0

1
(s+1)(s+2)

1
s+1

]

Since x(t) = u(t) =⇒ X(s) = 1
s , we see that

BX(s) =

[
1
s
0

]
and q(0) +BX(s) =

[
1
s
−1

]
.

Thus

Q(s) =

[ 1
s+2 0

1
(s+1)(s+2)

1
s+1

] [
1
s

−1

]
=

[ 1
s(s+2)

1
s(s+1)(s+2) − 1

s+1

]
=

[ 1
2s − 1

2(s+2)

1
2s − 2

s+1 − 1
2(s+2)

]
.

Inverting, we obatin

q(t) = L−1(Q(s)) =

[
q1(t)

q2(t)

]
=

[
(12 − 1

2e
−2t)u(t)

(12 − 2e−t + 1
2e

−2t)u(t)

]
.

Solution 10.4-4

The problem provides

A =

[
−1 1
0 −2

]
B =

[
1 1
0 1

]

q(0) =

[
1
2

]
x =

[
u(t)
δ(t)

]
.

The solution of the state equation in the frequency domain is given by

Q(s) = Φ(s)[q(0) +BX(s)].

Computing:

(sI−A) =

[
s+ 1 −1
0 s+ 2

]

Φ(s) = (sI−A)−1 =
1

(s+ 1)(s+ 2)

[
s+ 2 1
0 s+ 1

]
=

[ 1
s+1

1
(s+1)(s+2)

0 1
s+2

]
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x(t) =

[
u(t)
δ(t)

]
=⇒ X(s) =

[
1
s
1

]

BX(s) =

[
1 1
0 1

] [
1
s
1

]
=

[
s+1
s
1

]

q(0) +BX(s) =

[
s+1
s + 1
2 + 1

]
=

[
2s+1
s
3

]

Thus,

Q(s) = Φ(s)[q(0) +BX(s)] =

[ 1
s+1

1
(s+1)(s+2)

0 1
s+2

] [
2s+1

s

3

]

=




(2s+1)(s+2)+3s
s(s+1)(s+2)

3
s+2


 =

[ 1
s + 4

s+1 − 3
s+2

3
s+2

]
.

Inverting, we obtain

q(t) = L−1(Q(s)) =

[
q1(t)
q2(t)

]
=

[
(1 + 4e−t − 3e−2t)u(t)

3e−2tu(t)

]
.

Solution 10.4-5

The problem defines

q̇ = Aq+Bx(t)

y = Cq+Dx(t)

where

A =

[
−3 1
−2 0

]
B =

[
1
0

]

C = [0 1] D = 0

and

x(t) = u(t) q(0) =

[
2
0

]
.

The Laplace transform method solution states

Y(s) = CQ(s) +DX(s) = CΦ(s)q(0) + [CΦ(s)B+D]X(s)].

Computing:

(sI−A) =

[
s+ 3 −1
2 s

]
BX(s) =

[
1
s

0

]

Φ(s) = (sI−A)−1 =
1

(s+ 1)(s+ 2)

[
s 1
−2 s+ 3

]
=

[ s
(s+1)(s+2)

1
(s+1)(s+2)

−2
(s+1)(s+2)

s+3
(s+1)(s+2)

]

Since D = 0 =⇒ Y (s) = CΦ(s)[q(0) +BX(s)], we see that

q(0) +BX(s) =

[
2 + 1

s
0

]
=

[
2s+1
s
0

]

and

Φ(s)[q(0) +BX(s)] =

[ s
(s+1)(s+2)

1
(s+1)(s+2)

−2
(s+1)(s+2)

s+3
(s+1)(s+2)

] [
2s+1

s

0

]
=




2s+1
(s+1)(s+2)

−2(2s+1)
s(s+1)(s+2)


 .
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Combining everything together, we see that

Y(s) = CΦ(s)[q(0) +BX(s)] =
[
0 1

]



2s+1
(s+1)(s+2)

−2(2s+1)
s(s+1)(s+2)




=
−4s− 2

s(s+ 1)(s+ 2)
=

−1

s
− 2 · 1

s+ 1
+

3

s+ 2
.

Inverting, we obtain
y(t) = L−1[y(s)] = (−1− 2e−t + 3e−2t)u(t).

Solution 10.4-6

The problem provides

A =

[
−1 1
−1 −1

]
B =

[
0
1

]

C = [1 1] D = 1

x(t) = u(t) q(0) =

[
2
1

]
.

The Laplace transform method solution is

Y(s) = CQ(s) +DX(s) = CΦ(s)q(0) + [CΦ(s)B+D]X(s)

= C{Φ(s)[q(0) +BX(s)]} +DX(s).

Computing:

(sI−A) =

[
s+ 1 −1

1 s+ 1

]

Φ(s) = (sI−A)−1 =
1

s2 + 2s+ 2

[
s+ 1 1

−1 s+ 1

]
=

[ s+1
s2+2s+2

1
s2+2s+2

−1
s2+2s+2

s+1
s2+2s+2

]

BX(s) =

[
0
1
s

]
and q(0) +BX(s) =

[
2

s+1
s

]

Hence,

Φ(s)[q(0) +BX(s)] =

[ s+1
(s+1)2+1

1
(s+1)2+1

−1
(s+1)2+1

s+1
(s+1)2+1

][
2

s+1
s

]

=




2(s+1)
(s+1)2+1 + s+1

s[(s+1)2+1]

−2
(s+1)2+1 + (s+1)2

s[(s+1)2+1]


 =




2s2+3s+1
s[(s+1)2+1]

s2+1
s[(s+1)2+1]


 .

Now,

CΦ(s)[q(0) +BX(s)] =
[
1 1

]
Φ(s)[q(0) +BX(s)] =

[
2s2 + 3s+ 1 + s2 + 1

s{(s+ 1)2 + 1}

]
.

Combined with DX(s) = 1
s , we see that

Y(s) = CΦ(s)[q(0) +BX(s)] +DX(s) =
3s2 + 3s+ 2

s{(s+ 1)2 + 1} +
1

s
=

4s2 + 5s+ 4

s{(s+ 1)2 + 1} .
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Using partial fractions and clearing fractions we get

Y (s) =
2

s
+

2s+ 1

(s+ 1)2 + 12
=

2

s
+ 2

(s+ 1)

(s+ 1)2 + 12
− 1

(s+ 1)2 + 12
.

Inverting yields
y(t) = L−1[Y (s)] = (2 + 2e−t cos t− e−t sin t)u(t).

Solution 10.4-7

Expanding the cascade, we see that

H(s) =

(
1

s+ 3

)(
3s+ 10

s+ 4

)
=

3s+ 10

s2 + 7s+ 12
.

This is the same transfer function as in Prob. 10.3-8, where the cascade form state equations were
found to be [

q̇1
q̇2

]
=

[
−4 1
0 −3

] [
q1
q2

]
+

[
3
1

]
x

and

y = q1 =
[
1 0

] [ q1
q2

]
.

In this case:

sI−A =

[
s+ 4 −1

0 s+ 3

]

Φ(s) = (sI−A)−1 =
1

(s+ 3)(s+ 4)

[
s+ 3 1

0 s+ 4

]
=

[ 1
s+4

1
(s+3)(s+4)

0 1
s+3

]

Further,

C =
[
1 0

]
, B =

[
3
1

]
, and D = 0.

Hence

Φ(s)B =

[ 1
s+4

1
(s+3)(s+4)

0 1
s+3

][
3

1

]
=




3(s+3)+1
(s+3)(s+4)

1
s+3


 =

[ 3s+10
(s+3)(s+4)

1
s+3

]

and

Cφ(s)B =
[
1 0

]
[ 3s+10

(s+3)(s+4)

1
s+3

]
=

3s+ 10

(s+ 3)(s+ 4)
.

Since H(s) = Cφ(s)B+D, we see that

H(s) = CΦ(s)B =
3s+ 10

s2 + 7s+ 12
.

This confirms our earlier expansion of H(s).

Solution 10.4-8

We know that
H(s) = CΦ(s)B+D.

The solutions to Prob. 10.4-5 shows that

Φ(s) =

[ s
(s+1)(s+2)

1
(s+1)(s+2)

−2
(s+1)(s+2)

s+3
(s+1)(s+2)

]
.
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Thus,

Φ(s)B =

[ s
(s+1)(s+2)

1
(s+1)(s+2)

−2
(s+1)(s+2)

s+3
(s+1)(s+2)

][
1

0

]
=

[ s
(s+1)(s+2)

−2
(s+1)(s+2)

]

and

CΦ(s)B =
[
0 1

]
Φ(s)B =

−2

(s+ 1)(s+ 2)
.

Since D = 0, we see that

H(s) = CΦ(s)B =
−2

s2 + 3s+ 2
.

Solution 10.4-9

From Prob. 10.4-6,

Φ(s)B =

[ s+1
(s+1)2+1

1
(s+1)2+1

−1
(s+1)2+1

s+1
(s+1)2+1

] [
0

1

]
=

[ 1
(s+1)2+1

s+1
(s+1)2+1

]

and

CΦ(s)B =
[
1 1

]
[ 1

(s+1)2+1

s+1
(s+1)2+1

]
=

s+ 1 + 1

(s+ 1)2 + 1
=

s+ 2

(s+ 1)2 + 1
.

Thus,

H(s) = CΦ(s)B+D =
s+ 2

(s+ 1)2 + 1
+ 1 =

s2 + 3s+ 4

s2 + 2s+ 2
.

Solution 10.4-10

The problem provides

q̇ = Aq+Bx

y = Cq+Dx

where

A =

[
0 1
−1 −2

]
B =

[
0 1
1 0

]
x =

[
x1(t)
x2(t)

]

C =



1 2
4 1
1 1


 D =



0 0
0 0
1 0


 .

Computing:

sI−A =

[
s −1

1 s+ 2

]

Φ(s) = (sI−A)−1 =
1

(s+ 1)2

[
s+ 2 1

−1 s

]
=

[ s+2
(s+1)2

1
(s+1)2

−1
(s+1)2

s
(s+1)2

]

Furthermore,

Φ(s)B =

[ s+2
(s+1)2

1
(s+1)2

−1
(s+1)2

s
(s+1)2

][
0 1

1 0

]
=

[ 1
(s+1)2

s+2
(s+1)2

s
(s+1)2

−1
(s+1)2

]
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and

CΦ(s)B =




1 2

4 1

1 1




[ 1
(s+1)2

s+2
(s+1)2

s
(s+1)2

−1
(s+1)2

]
.

The transfer function is thus

H(s) = CΦ(s)B+D =




2s+1
(s+1)2

s
(s+1)2

4+s
(s+1)2

4s+7
(s+1)2

s+2
s+1

1
s+1


 .

Solution 10.4-11

In the time domain, the solution q(t) is given by

q(t) = eAtq(0) +

∫ t

0

eA(t−τ)Bx(τ) dτ

= eAtq(0) + eAt ∗Bx(t),

where
eAt = L−1[(sI−A)−1] = L−1(Φ(s)).

Using Φ(s) from the solution to Prob. 10.4-1, we see that

Φ(s) =

[ s+3
(s+1)(s+2)

2
(s+1)(s+2)

−1
(s+1)(s+2)

s
(s+1)(s+2)

]
=

[ 2
s+1 − 1

s+2
2

s+1 − 2
s+2

−1
s+1 + 1

s+2
−1
s+1 + 2

s+2

]
.

Thus,

eAt = L−1(Φ(s)) =

[
(2e−t − e−2t)u(t) (2e−t − 2e−2t)u(t)
(−e−t + e−2t)u(t) (−e−t + 2e−2t)u(t)

]

and

eAtq(0) =

[
(4e−t − 2e−2t + 2e−t − 2e−2t)u(t)
(−2e−t + 2e−2t − e−t + 2e−2t)u(t)

]
=

[
(6e−t − 4e−2t)u(t)
(−3e−t + 4e−2t)u(t)

]
.

Since Bx(t) =

[
0
1

]
× 0 = 0, we therefore see that

q(t) =

[
(6e−t − 4e−2t)u(t)
(−3e−t + 4e−2t)u(t)

]
.

This matches the result of Prob. 10.4-1.

Solution 10.4-12

From Prob. 10.4-2,

Φ(s) =

[ s
(s+2)(s+3)

−6
(s+2)(s+3)

1
(s+2)(s+3)

s+5
(s+2)(s+3)

]
=

[ −2
s+2 + 3

s+3
−6
s+2 + 6

s+3

1
s+2 − 1

s+3
3

s+2 − 2
s+3

]
.

Hence,

eAt = L−1(Φ(s)) =

[
(−2e−2t + 3e−3t)u(t) (−6e−2t + 6e−3t)u(t)

(e−2t − e−3t)u(t) (3e−2t − 2e−3t)u(t)

]
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and

eAtq(0) =

[
(−10e−2t + 15e−3t − 24e−2t + 24e−3t)u(t)

(5e−2t − 5e−3t + 12e−2t − 8e−3t)u(t)

]
=

[
(−34e−2t + 39e−3t)u(t)

(17e−2t − 13e−3t)u(t)

]
.

Also,

Bx(t) =

[
1
0

]
sin(100t)u(t) =

[
sin(100t)u(t)

0

]

and

eAt ∗Bx(t) =

[
−2e−2tu(t) ∗ sin(100t)u(t) + 3e−3tu(t) ∗ sin(100t)u(t)
e−2tu(t) ∗ sin(100t)u(t)− e−3tu(t) ∗ sin(100t)u(t)

]

=


 − 2e−2tu(t)

100 + 2 cos(100t)u(t)
100 + 3e−3tu(t)

100 − 3 cos(100t)u(t)
100

+ e−2tu(t)
100 − cos(100t)u(t)

100 − e−3tu(t)
100 + cos(100t)u(t)

100




=

[
−0.02e−2tu(t) + 0.03e−3tu(t)− 0.01 cos(100t)u(t)

0.01e−2tu(t)− 0.01e−3tu(t)

]
.

Hence

q(t) = eAtq(0) + eAt ∗Bx(t) =

[ (
−34.02e−2t + 39.03e−3t − 0.01 cos100t

)
u(t)(

17.01e−2t − 13.01e−3t
)
u(t)

]
.

This matches the result of Prob. 10.4-2.

Solution 10.4-13

From Prob. 10.4-3,

Φ(s) =

[ 1
s+2 0

1
(s+1)(s+2)

1
s+1

]
=

[ 1
s+2 0

1
s+1 − 1

s+2
1

s+1

]
.

Hence,

eAt = L−1(Φ(s)) =

[
e−2tu(t) 0

(e−t − e−2t)u(t) e−tu(t)

]

and

eAtq(0) =

[
e−2tu(t) 0

(e−t − e−2t)u(t) e−tu(t)

] [
0
−1

]
=

[
0

−e−tu(t)

]
.

Also,

Bx(t) =

[
1
0

]
u(t) =

[
u(t)
0

]

and

eAt ∗Bx(t) =

[
e−2tu(t) ∗ u(t)

e−tu(t) ∗ u(t)− e−2tu(t) ∗ u(t)

]
=

[
1
2 (1− e−2t)u(t)

(1 − e−t)u(t)− 1
2 (1− e−2t)u(t)

]
.

Since q(t) = eAtq(0) + eAt ∗Bx(t), we see that

q(t) =

[
0

−e−tu(t)

]
+

[
(12 − 1

2e
−2t)u(t)

(12 − e−t + 1
2e

−2t)u(t)

]
=

[
(12 − 1

2e
−2t)u(t)

(12 + 1
2e

−2t − 2e−t)u(t)

]
.

This matches the result of Prob. 10.4-3.
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Solution 10.4-14

From Prob. 10.4-4,

Φ(s) =

[ 1
s+1

1
(s+1)(s+2)

0 1
s+2

]
=

[ 1
s+1

1
s+1 − 1

s+2

0 1
s+2

]
.

Hence,

eAt = L−1(Φ(s)) =

[
e−tu(t) (e−t − e−2t)u(t)

0 e−2tu(t)

]
,

eAtq(0) =

[
e−tu(t) (e−t − e−2t)u(t)

0 e−2tu(t)

][
1

2

]
=

[
(3e−t − 2e−2t)u(t)

2e−2tu(t)

]
,

Bx(t) =

[
1 1

0 1

][
u(t)

δ(t)

]
=

[
u(t) + δ(t)

δ(t)

]
,

and

eAt ∗Bx(t) =

[
e−tu(t) ∗ u(t) + e−tu(t) ∗ δ(t) + e−tu(t) ∗ δ(t)− e−2tu(t) ∗ δ(t)

e−2tu(t) ∗ δ(t)

]

=

[
(1− e−t)u(t) + e−tu(t) + e−tu(t)− e−2tu(t)

e−2tu(t)

]
=

[
(1 + e−t − e−2t)u(t)

e−2tu(t)

]
.

Thus,

q(t) = eAtq(0) + eAt ∗Bx(t) =

[
(3e−t − 2e−2t + 1 + e−t − e−2t)u(t)

(2e−2t + e−2t)u(t)

]

=

[
(1 + 4e−t − 3e−2t)u(t)

3e−2tu(t)

]
.

This matches the result of Prob. 10.4-4.

Solution 10.4-15

From Prob. 10.4-5,

Φ(s) =

[ s
(s+1)(s+2)

1
(s+1)(s+2)

−2
(s+1)(s+2)

s+3
(s+1)(s+2)

]
=

[ −1
s+1 + 2

s+2
1

s+1 − 1
s+2

−2
s+1 + 2

s+2
2

s+1 − 1
s+2

]
.

Now, output y(t) is given by

y(t) = C[eAtq(0) + eAtB ∗ x(t)] +Dx(t),

where

eAt = L−1(Φ(s)) =

[
(−e−t + 2e−2t)u(t) (e−t − e−2t)u(t)

(−2e−t + 2e−2t)u(t) (2e−t − e−2t)u(t)

]
,

eAtq(0) = eAt

[
2

0

]
=

[
(−2e−t + 4e−2t)u(t)

(−2e−t + 4e−2t)u(t)

]
,



Student use and/or distribution of solutions is prohibited 691

and

eAtB = eAt

[
1

0

]
=

[
(−e−t + 2e−2t)u(t)

(−2e−t + 2e−2t)u(t)

]
.

Further,

eAt ∗Bx(t) =

[
(−e−t + 2e−2t)u(t)

(−2e−t + 2e−2t)u(t)

]
∗ u(t) =

[
−e−tu(t) ∗ u(t) + e−2tu(t) ∗ u(t)

−2e−tu(t) ∗ u(t) + 2e−2tu(t) ∗ u(t)

]

=

[
(e−t − e−2t)u(t)

(−1 + 2e−t − e−2t)u(t)

]
.

Since D = 0 =⇒ y(t) = C[eAtq(0) + eAt ∗Bx(t)] and

eAtq(0) + eAt ∗Bx(t) =

[
(−2e−t + 4e−2t)u(t)

(−4e−t + 4e−2t)u(t)

]
+

[
(e−t − e−2t)u(t)

(−1 + 2e−t − e−2t)u(t)

]

=

[
(−e−t + 3e−2t)u(t)

(−1− 2e−t + 3e−2t)u(t)

]
,

we see that

y(t) =
[
0 1

] [ (−e−t + 3e−2t)u(t)

(−1− 2e−t + 3e−2t)u(t)

]
= (−1− 2e−t + 3e−2t)u(t).

This matches the result of Prob. 10.4-5.

Solution 10.4-16

To begin, recall that

y(t) = C[eAtq(0) + eAt ∗Bx(t)] +Dx(t).

From Prob. 10.4-6,

Φ(s) =

[ s+1
(s+1)2+1

1
(s+1)2+1

−1
(s+1)2+1

s+1
(s+1)2+1

]
.

Hence

eAt = L−1(Φ(s)) =

[
e−t cos t e−t sin t
−e−t sin t e−t cos t

]
u(t),

eAtq(0) = eAt

[
2
1

]
=

[
2e−t cos t+ e−t sin t
−2e−t sin t+ e−t cos t

]
u(t),

and

eAtB = eAt

[
0
1

]
=

[
e−t sin t
e−t cos t

]
u(t).

Further,

eAt ∗Bx(t) =

[
e−t sin t u(t) ∗ u(t)
e−t cos t u(t) ∗ u(t)

]
=




cos(π
2 −φ)√
2

− e−t
√
2
cos(t− π

2 − φ)

cos(−φ)√
2

− e−t
√
2
cos(t− φ)


u(t),

where φ = tan−1 −1
1 = −π

4 . Thus,

eAtq(0) + eAt ∗Bx(t) =

[
1
2 + 3

2e
−t cos t+ 1

2e
−t sin t

1
2 + 1

2e
−t cos t− 3

2e
−t sin t

]
u(t)
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and

y(t) = C[eAtq(0) + eAt ∗Bx(t)] +Dx(t)

=
[
1 1

]
[eAtq(0) + eAt ∗Bx(t)] + u(t)

= [1 + 2e−t cos t− e−t sin t+ 1]u(t) = [2 + 2e−t cos t− e−t sin t]u(t).

This matches the result of Prob. 10.4-6.

Solution 10.4-17

Here,

H(s) =
3s+ 10

s2 + 7s+ 12
.

From Eq. (10.45) we have

h(t) = Cφ(t)B+Dδ(t), where φ(t) = eAt.

From Prob. 10.4-7,

Φ(s) =

[ 1
s+4

1
(s+3)(s+4)

0 1
s+1

]
, B =

[
3

1

]
, C =

[
1 0

]
, and D = 0.

Hence

eAt = L−1(Φ(s)) =

[
e−4t e−3t − e−4t

0 e−3t

]
u(t)

and

φ(t)B =

[
3e−4t + e−3t − e−4t

e−3t

]
u(t) =

[
e−3t + 2e−4t

e−3t

]
u(t).

Since D = 0, we see that

h(t) = Cφ(t)B = [ 1 0 ]φ(t)B = (e−3t + 2e−4t)u(t).

Solution 10.4-18

From Prob. 10.4-6,

Φ(s) =

[ s+1
(s+1)2+1

1
(s+1)2+1

−1
(s+1)2+1

s+1
(s+1)2+1

]
.

Hence

φ(t) = L−1(Φ(s)) =

[
e−t cos t e−t sin t

−e−t sin t e−t cos t

]
u(t),

φ(t)B = φ(t)

[
0
1

]
=

[
e−t sin t
e−t cos t

]
u(t),

and

Cφ(t)B =
[
1 1

]
φ(t)B = (e−t sin t+ e−t cos t)u(t).

Finally,

h(t) = Cφ(t)B+ δ(t) = (e−t sin t+ e−t cos t)u(t) + δ(t).
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Solution 10.4-19

From Prob. 10.4-10,

φ(s) =




2s+1
(s+1)2

s
(s+1)2

4+s
(s+1)2

4s+7
(s+1)2

s+2
s+1

1
s+1


 =




2
s+1 − 1

(s+1)2
1

s+1 − 1
(s+1)2

1
s+1 + 3

(s+1)2
4

s+1 + 3
(s+1)2

1 + 1
s+1

1
s+1


 .

Inverting, the unit impulse response matrix h(t) is

h(t) = L−1{H(s)} =




(2e−t − te−t)u(t) (e−t − te−t)u(t)
(e−t + 3te−t)u(t) (4e−t + 3te−t)u(t)
δ(t) + e−tu(t) e−tu(t)


 .

Solution 10.5-1

Written in matrix form, the system state equations are

[
q̇1
q̇2

]
=

[
0 1
−1 −1

] [
q1
q2

]
+

[
2
1

]
x.

The new state vector w is

w =

[
0 1
−1 1

] [
q1
q2

]
= Pq.

The new state equations of the system are given by

ẇ = PAP−1w+PḂ = Âw+ B̂x,

where

P−1 =

[
1 −1
1 0

]
=⇒ PA =

[
0 1
−1 1

] [
0 1
−1 −1

]
=

[
−1 −1
−1 −2

]
,

PAP−1 =

[
−1 −1
−1 −2

] [
1 −1
1 0

]
=

[
−2 1
−3 1

]
,

and

PB =

[
0 1
−1 1

] [
2
1

]
=

[
1
−1

]
x.

Hence the desired state equations are

[
ẇ1

ẇ2

]
=

[
−2 1
−3 1

] [
w1

w2

]
+

[
1
−1

]
x.

Now, the eigenvalues are the roots of the characteristic equation. In the original system, we have

|sI−A| =
∣∣∣∣
s −1
1 s+ 1

∣∣∣∣ = (s+ 1)s+ 1 = s2 + s+ 1 = 0.

The roots, and thus the eigenvalues, are thus

s1,2 =
−1± j

√
3

2
.

In the transformed system, the characteristic equation is given by

|sI− Â| =
∣∣∣∣
[

s+ 2 −1
3 s− 1

]∣∣∣∣ = (s+ 2)(s− 1) + 3 = s2 − s+ 2s− 2 + 3 = s2 + s+ 1
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and the eigenvalues are given by

s1, 2 =
−1± j

√
3

2
.

Notice that the eigenvalues are the same for the original and transformed systems.

Solution 10.5-2

Written in matrix form, the state equations are
[

q̇1
q̇2

]
=

[
0 1
−2 −3

] [
q1
q2

]
+

[
0
2

]
x(t).

(a) The characteristic equation is given by

|sI−A| = 0 =

∣∣∣∣
s −1
2 s+ 3

∣∣∣∣ = s(s+ 3) + 2 = s2 + 3s+ 2 = (s+ 1)(s+ 2) = 0.

Clearly, λ1 = −1 and λ2 = −2 are the eigenvalues, and

Λ =

[
−1 0
0 −2

]
.

The transformed state vector w has w = Pq and ẇ = PAP−1w + PBx = Λw + B̂x. To
produce the desired diagonalized form, we therefore have to find P such that PAP−1 = Λ or
ΛP = PA. That is, we need

[
−1 0
0 −2

] [
p11 p12
p21 p22

]
=

[
p11 p12
p21 p22

] [
0 1
−2 −3

]
.

Solving:
−p11 = −2p12
−p12 = p11 − 3p12
−2p21 = −2p22
−2p22 = p21 − 3p22





=⇒
p11 = 2p12 and p21 = p22
If we choose p11 = 2 and p21 = 1,
then p12 = 1 and p22 = 1 .

Therefore,

P =

[
2 1
1 1

]
,

and

w =

[
w1

w2

]
=

[
2 1
1 1

] [
q1
q2

]
=

[
2q1 + q2
q1 + q2

]
.

(b) The system output is given by y = Cq + Dx. Since D = 0 we see that y = Cq. Further,
w = Pq =⇒ P−1w = q so that y = CP−1w. Now,

P−1 =

[
1 −1
−1 2

]
and CP−1 =

[
1 1
−1 2

] [
1 −1
−1 2

]
=

[
0 1
−3 5

]
,

so that

y =

[
0 1
−3 5

] [
w1

w2

]
=

[
w2

5w2 − 3w1

]
.

Solution 10.5-3

From the problem statement, we have

q̇ =




0 1 0
0 0 1
0 −2 −3


q+




0
0
1


x.
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The characteristic equation is given by:

|sI−A| =

∣∣∣∣∣∣

s −1 0
0 s −1
0 2 s+ 3

∣∣∣∣∣∣
= s{(s)(s+ 3) + 2} = s(s+ 1)(s+ 2) = 0.

Clearly the eigenvalues are λ1 = 0, λ2 = −1, and λ3 = −2, so that

Λ =




0 0 0
0 −1 0
0 0 −2


 .

In the transformed system we have w = Pq and ẇ = PAP−1w+PBx. To achieve diagonalization,
we need to find P such that PAP−1 = Λ or ΛP = PA. That is,




0 0 0
0 −1 0
0 0 −2






p11 p12 p13
p21 p22 p23
p31 p32 p33


 =




p11 p12 p13
p21 p22 p23
p31 p32 p33






0 1 0
0 0 1
0 −2 −3




or 


0 0 0
−p21 −p22 −p23
−2p31 −2p32 −2p33


 =




0 p11 − 2p13 p12 − 3p13
0 p21 − 2p23 p22 − 3p23
0 p31 − 2p33 p32 − 3p33




or 


0 p11 = 2p13 p12 = 3p13
p21 = 0 p21 + p22 = 2p23 p22 + p23 = 3p23
p31 = 0 p31 + 2p32 = 2p33 p32 + 2p33 = 3p33


 .

Solving:
p21 = 0 p31 = 0
p11 = 2p13 if p11 = 2, then p13 = 1
p12 = 3p13 and p12 = 3
p22 = 2p23 − p21 if p23 = 1, then p22 = 2
p23 = 3p23 − p22
2p33 = 3p33 − p32 =⇒ p32 = p33
2p32 = 2p33 − p31 if p32 = 1, then p33 = 1

Thus one (non-unique) solution is

w = Pq =




2 3 1
0 2 1
0 1 1






q1
q2
q3


 =




w1

w2

w3


 .

Solution 10.5-4

From the time-domain method, we know that

y(t) = C[eAtq(0) + eAt ∗Bx(t)],

where
eAt = L−1(φ(s)).

In this problem,

(φ(s))−1 = [sI−A] =




s+ 1 0 0
0 s+ 3 0
0 0 s+ 2
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and

φ(s) = (sI−A)−1 =




1
s+1 0 0

0 1
s+3 0

0 0 1
s+2


 .

Thus,

eAt =




e−tu(t) 0 0
0 e−3tu(t) 0
0 0 e−2tu(t)


 ,

eAtq(0) = eAt




1
2
1


 =




e−tu(t)
2e−3tu(t)
e−2tu(t)


 , and eAtB = eAt




1
1
1


 =




e−tu(t)
e−3tu(t)
e−2tu(t)


 .

Further,

eAt ∗Bx(t) = eAt ∗Bu(t) =




e−tu(t) ∗ u(t)
e−3tu(t) ∗ u(t)
e−2tu(t) ∗ u(t)


 =




(1 − e−t)u(t)

1
3 (1 − e−3t)u(t)

1
2 (1 − e−2t)u(t)


 .

Hence,

eAtq(0) + eAt ∗Bx(t) =




e−t + 1− e−t

2e−3t + 1
3 − 1

3e
−3t

e−2t + 1
2 − 1

2e
−2t


 =




1

1
3 + 5

3e
−3t

1
2 + 1

2e
−2t


 .

Using C =
[
1 3 1

]
with y(t) = C[eAtq(0) + eAt ∗Bx(t)], we obtain

y(t) =

(
1 + 1 + 5e−3t +

1

2
+

1

2
e−2t

)
u(t) =

(
5

2
+

1

2
e−2t + 5e−3t

)
u(t).

Solution 10.6-1

(a) Refer to the block diagram on the left side of Fig. S10.6-1. Deriving the state equations, we
see that

q̇2 + bq2 = (a− b)x =⇒ q̇2 = −bq2 + (a− b)x
q̇1 + aq1 = q2 + x =⇒ q̇1 = −aq1 + q2 + x

so that [
q̇1
q̇2

]
=

[
−a 1
0 −b

] [
q1
q2

]
+

[
1

(a− b)

]
x.

The output equation is

y = q1 =
[
1 0

] [ q1
q2

]
.

Now, the characteristic equation is

|sI−A| = 0 =

∣∣∣∣
s+ a −1
0 s+ b

∣∣∣∣ = (s+ a)(s+ b) = 0.

Clearly, λ1 = −a and λ2 = −b are the eigenvalues and

Λ =

[
−a 0
0 −b

]
.
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Under transformation, w = Pq and ẇ = PAP−1w +PBx. We are looking for P such that
PAP−1 = Λ or ΛP = PA. That is, we require that

[
−a 0
0 −b

] [
p11 p12
p21 p22

]
=

[
p11 p12
p21 p22

] [
−a 1
0 −b

]
.

Solving:

−ap11 = −ap11
−bp21 = −ap21 =⇒ p21 = 0
−ap12 = p11 − bp12 = 0
−bp22 = p21 − bp22 =⇒ p21 = 0





=⇒
If p11 = (b − a), then p12 = 1, p21 = 0,
and p22 can be anything.
Let us take p22 = 1.

Thus,

w = Pq =

[
b− a 1
0 1

] [
q1
q2

]
.

Now, the output in terms of w is y = Cq = CP−1w = Ĉw, where

P−1 =
1

b− a

[
1 −1
0 b− a

]
=

[
1

b−a
−1
b−a

0 1

]
.

Observability: In the new (diagonalized form) system,

Ĉ = CP−1 =
[
1 0

] [ 1
b−a

−1
b−a

0 1

]
=
[

1
b−a

−1
b−a

]
.

We notice that in Ĉ, there is no column with all zeros, hence we conclude that the system is
observable.

Controllability: In the new (diagonalized form) system,

B̂ = PB =

[
b− a 1
0 1

] [
1

a− b

]
=

[
0

a− b

]
.

Since the first row in B̂ is zero, we see that this system is not controllable.

(b) Refer to the block diagram on the right side of Fig. S10.6-1. The state equations are

[
q̇1
q̇2

]
=

[
−b 0
0 −a

] [
q1
q2

]
+

[
1
1

]
x,

and the output equation is

y = q1 =
[
1 0

] [ q1
q2

]
.

Although matrix A is already in the diagonal form, we can use it transform the system to
another diagonal form using

P = A =

[
−b 0
0 −a

]
=⇒ P−1 =

1

ab
=

[
−a 0
0 −b

]
=

[
− 1

b 0
0 − 1

a

]
.

In the transformed system ẇ = PAP−1w+PBx = Aw+ B̂x.

Observability: In the new (diagonalized form) system,

Ĉ = CP−1 =
[
1 0

] [ − 1
b 0
0 − 1

a

]
=
[
− 1

b 0
]
.
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Since the second column in Ĉ is zero, this system is not observable. The same conclusion can
also be drawn using the original matrix C.

Controllability: In the new (diagonalized form) system,

B̂ = PB =

[
−b 0
0 −a

] [
1
1

]
=

[
−b
−a

]
.

Since there is no row of zeros in B̂, this system is controllable.

s + b

a - b
s + a

1
s + a

1

s + b
s + aX(s) X(s)Y(s) Y(s)

q2 q1 q2 q1

Σ

Figure S10.6-1

Solution 10.7-1

(a) Using the time-domain method, the output y[n] is given by

y[n] = CAnq[0] +CAn−1u[n− 1] ∗Bx[n] +Dx[n].

The characteristic equation of A is

|λI−A| =
∣∣∣∣
λ− 2 0
−1 λ− 1

∣∣∣∣ = (λ− 1)(λ− 2) = 0,

so λ1 = 1 and λ2 = 2 are the eigenvalues of A. Also,

An = β0I+ β1A,

where [
β0

β1

]
=

[
1 1
1 2

]−1 [
1
2n

]
=

[
2 −1
−1 1

] [
1
2n

]
=

[
2− 2n

−1 + 2n

]
.

Hence

An =

[
β0 0
0 β0

]
+

[
2β1 0
β1 β1

]
=

[
2n 0

2n − 1 1

]

and
CAn =

[
0 1

]
An =

[
2n − 1 1

]
.

The zero-input response is

yzir[n] = CAnq(0) = CAn

[
2
1

]
= (2n+1 − 1)u[n].

The zero-state component is given by

yzsr[n] = CAn−1u[n− 1] ∗Bx[n] +Dx[n].

But

CAnu[n] ∗Bx[n] =
[
2n − 1 1

]
u[n] ∗

[
0

u[n]

]
= (n+ 1)u[n],

so that
yzsr[n] = nu[n− 1] +Dx[n] = nu[n− 1] + u[n] = (n+ 1)u[n].

Thus,
y[n] = yzir[n] + yzsr[n] = [2n+1 + n]u[n]
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(b) Using the frequency-domain method, the output Y [z] is given by

Y[z] = C(I− z−1A)−1q[0] + [C(zI−A)−1B+D]X [z].

Now,

(I− z−1A)−1 =

[
1− 2z−1 0

−z−1 1− z−1

]−1

=

[
1− 2

z 0

− 1
z 1− 1

z

]−1

=

[
z−2
z 0

− 1
z

z−1
z

]−1

=
z2

(z − 1)(z − 2)

[
z−1
z 0

1
z

z−2
z

]
=

[ z
z−2 0

z
(z−1)(z−2)

z
z−1

]

and

(zI−A)−1 =

[
z − 2 0
−1 z − 1

]−1

=
1

(z − 1)(z − 2)

[
z − 1 0
1 z − 2

]

=

[ 1
z−2 0

1
(z−1)(z−2)

1
z−1

]
.

Thus,

C(I− z−1A)−1 =
[

z
(z−1)(z−2)

z
z−1

]
.

and

C(I− z−1A)−1q(0) =
[

2z
(z−1)(z−2) +

z
z−1

]
=

z2

(z − 1)(z − 2)
.

Also,

C(zI−A)−1 =
[

1
(z−1)(z−2)

1
z−1

]
and C(zI−A)−1B =

1

z − 1
.

Hence

C(zI−A)−1B+D =
1

z − 1
+D =

1

z − 1
+ 1 =

z

z − 1
.

Now, x[n] = u[n] and X [z] = z
z−1 so that

(C(zI−A)−1B+D)X [z] =

[
z

z − 1

]2
=

z2

(z − 1)2
.

Thus,

Y[z] = C(I− z−1A)−1q(0) + [C(zI−A)−1B+D]X [z] =
z2

(z − 1)(z − 2)
+

z2

(z − 1)2
,

Y[z]

z
=

1

z − 2
+

z

(z − 1)2
=

2

z − 2
+

1

(z − 1)2
,

and

Y[z] =
2z

z − 2
+

z

(z − 1)2
.

Inverting, we obtain

y[n] = z−1[Y[z]] = [2n + 1]u[n] + (n+ 1)u[n] = [2n+1 + n]u[n].

As hoped, this result matches the result of part (a).
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Solution 10.7-2

In advance operator form, the system is described as

(E2 + E + 0.16) {y[n]} = (E + 0.32) {x[n]} .

(a) In this case,

H [z] =
Y [z]

X [z]
=

z + 0.32

z2 + z + 0.16
=

z + 0.32

(z + 0.2)(z + 0.8)
=

0.2

z + 0.2
+

0.8

z + 0.8
.

The corresponding DFII, TDFII, cascade, and parallel system realizations are shown in
Fig. S10.7-2.

Σ Σ

ΣΣ

Σ ΣΣ

Σ

Σ

Σ

x[n]

x[n]

x[n]

x[n]
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y[n]
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y[n]

q2

q2

q2 q1

q1

q2

q1

q1
0.32

0.32

0.32

controller canonical

observer canonical

cascade

parallel

0.16
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–

–

–
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z
–1

1

z
–1

z
–1
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–1

z
–1

z
–1

z
–1

z
–1

Figure S10.7-2

(b) Direct Form II: Using the output of each delay as a state variable (see the controller canonical
diagram in Fig. S10.7-2) we get

q1[n+ 1] = q2[n]

q2[n+ 1] = −0.16q1[n]− q2[n] + x[n].

The DFII state equations are thus
[

q1[n+ 1]
q2[n+ 1]

]
=

[
0 1

−0.16 −1

] [
q1[n]
q2[n]

]
+

[
0
1

]
x[n],
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and the output equation is

y[n] = 0.32q1[n] + q[n] =
[
0.32 1

] [ q1[n]
q2[n]

]
.

Transposed Direct Form II: Using the output of each delay as a state variable (see the
observer canonical diagram in Fig. S10.7-2) we get

q1[n+ 1] = −q1[n] + q2[n] + x[n]

q2[n+ 1] = −0.16q1[n] + 0.32x[n].

The TDFII state equations are thus
[

q1[n+ 1]
q2[n+ 1]

]
=

[
−1 1

−0.16 0

] [
q1[n]
q2[n]

]
+

[
1

0.32

]
x[n],

and the output equation is

y[n] = q1[n] =
[
1 0

] [ q1[n]
q2[n]

]
.

Cascade Form: Using the output of each delay as a state variable (see the cascade diagram
in Fig. S10.7-2) we get

q1[n+ 1] = −0.8q1[n] + q2[n]

q2[n+ 1] = −0.2q2[n] + x[n].

The cascade-form state equations are thus
[

q1[n+ 1]
q2[n+ 1]

]
=

[
−0.8 1
0 −0.2

] [
q1[n]
q2[n]

]
+

[
0
1

]
x[n],

and the output equation is

y[n] = 0.32q1[n]− 0.8q1[n] + q2[n] =
[
−0.48 1

] [ q1[n]
q2[n]

]
.

Parallel Form: Using the output of each delay as a state variable (see the parallel diagram
in Fig. S10.7-2) we get

q1[n+ 1] = −0.2q1[n] + x[n]

q2[n+ 1] = −0.8q2[n] + x[n].

The parallel-form state equations are thus
[

q1[n+ 1]
q2[n+ 1]

]
=

[
−0.2 0
0 −0.8

] [
q1[n]
q2[n]

]
+

[
1
1

]
x[n],

and the output equation is

y[n] = 0.2q1[n] + 0.8q2[n] =
[
0.2 0.8

] [ q1[n]
q2[n]

]
.

Solution 10.7-3

In advance operator form, the system is described as

E(2E + 1) {y[n]} = (E2 + E − 6) {x[n]} .
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(a) In this case,

H [z] =
Y [z]

X [z]
=

2z2 + z

z2 + z − 6
=

(
z

z − 2

)(
2z + 1

z + 3

)
=

z

z − 2
+

z

z + 3
.

The corresponding DFII, TDFII, cascade, and parallel system realizations are shown in
Fig. S10.7-3.
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(b) Direct Form II: Using the output of each delay as a state variable (see the controller canonical
diagram in Fig. S10.7-3) we get

q1[n+ 1] = q2[n]

q2[n+ 1] = 6q1[n]− q2[n] + x[n].

The DFII state equations are thus
[

q1[n+ 1]
q2[n+ 1]

]
=

[
0 1
6 −1

] [
q1[n]
q2[n]

]
+

[
0
1

]
x[n],

and the output equation is

y[n] = q2[n] + 2[6q1[n]− q2[n] + x[n]] = 12q1[n]− 2q2[n] + 2x[n]

or

y[n] =
[
12 −2

] [ q1[n]
q2[n]

]
+ 2x[n].

Transposed Direct Form II: Using the output of each delay as a state variable (see the
observer canonical diagram in Fig. S10.7-3) we get

q1[n+ 1] = −q1[n] + q2[n]− x[n]

q2[n+ 1] = 6q1[n] + 12x[n].

The TDFII state equations are thus
[

q1[n+ 1]
q2[n+ 1]

]
=

[
−1 1
6 0

] [
q1[n]
q2[n]

]
+

[
−1
12

]
x[n],

and the output equation is

y[n] = q1[n] + 2x[n] =
[
1 0

] [ q1[n]
q2[n]

]
+ 2x[n].
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Cascade Form: Using the output of each delay as a state variable (see the cascade diagram
in Fig. S10.7-3) we get

q1[n+ 1] = −3

7
q1[n] +

2

7
q2[n] +

1

7
x[n]

q2[n+ 1] = 2q2[n] + x[n].

The cascade-form state equations are thus

[
q1[n+ 1]
q2[n+ 1]

]
=

[
− 3

7
2
7

0 2

] [
q1[n]
q2[n]

]
+

[
1
7
1

]
x[n],

and the output equation is

y[n] =
1

7
q1[n] +

4

7
q2[n] +

2

7
x[n] =

[
1
7

4
7

] [ q1[n]
q2[n]

]
+

2

7
x[n].

Parallel Form: Using the output of each delay as a state variable (see the parallel diagram
in Fig. S10.7-3) we get

q1[n+ 1] = 2q1[n] + x[n]

q2[n+ 1] = −3q2[n] + x[n].

The parallel-form state equations are thus

[
q1[n+ 1]
q2[n+ 1]

]
=

[
2 0
0 −3

] [
q1[n]
q2[n]

]
+

[
1
1

]
x[n],

and the output equation is

y[n] = 2q1[n] + x[n] + x[n]− 3q2[n] =
[
2 −3

] [ q1[n]
q2[n]

]
+ 2x[n].

Solution 10.8-1

Figure S10.8-1 is used to help determine the state and output equations.

Σ

Σ Σ

Σx[n] y[n]
1

q2[n]

z–1

z–1

q1[n]

1/2–5/6

–1/6

Figure S10.8-1

Directly from the diagram, note that q1[n+1] = q2[n]+0x[n] and q2[n+1] = − 5
6q2[n]− 1

6q1[n]+
x[n]. Taken together, the state equation is therefore

Q[n+ 1] =

[
q1[n+ 1]
q2[n+ 1]

]
=

[
0 1
− 1

6 − 5
6

] [
q1[n]
q2[n]

]
+

[
0
1

]
x[n] = AQ[n] +Bx[n].
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The diagram is also used to write the output equation as y[n] = 1
2q2[n]− 5

6q2[n]− 1
6q1[n] + x[n].

Simplifying, the output equation is

y[n] =
[
− 1

6 − 1
3

] [ q1[n]
q2[n]

]
+ 1x[n] = CQ[n] +Dx[n].

Solution 10.8-2

Figure S10.8-2 is used to help determine the state and output equations.

x[n]
1

ν2[n]

ν1[n]

1/2 –5/6

–1/6

y[n]Σ

Σ

z–1

z–1

Figure S10.8-2

Directly from the diagram, note that y[n] = v2[n] + x[n]. In standard form, the output equation
is thus

y[n] =
[
0 1

] [ v1[n]
v2[n]

]
+ 1x[n] = CV[n] +Dx[n].

Also using the diagram, note that v2[n + 1] = v1[n] + − 5
6y[n] +

1
2x[n] and v1[n + 1] = − 1

6y[n].
Substituting y[n] = v2[n] + x[n] into each yields v2[n + 1] = v1[n] − 5

6 (v2[n] + x[n]) + 1
2x[n] and

v1[n + 1] = − 1
6 (v2[n] + x[n]). Simplifying to standard form, the state equations are represented in

matrix form as

V[n+ 1] =

[
v1[n+ 1]
v2[n+ 1]

]
=

[
0 − 1

6
1 − 5

6

] [
v1[n]
v2[n]

]
+

[
− 1

6
− 1

3

]
x[n] = AV[n] +Bx[n].



Chapter B Solutions

Solution B.1-1

Given w = rejθ = r (cos(θ) + j sin(θ)) = x+ jy,

w∗ = (x+ jy)∗ = x− jy = r (cos(θ)− j sin(θ)) = re−jθ .

Solution B.1-2

(a) For wa = 1 + j, r =
√
12 + 12 =

√
2 and θ = arctan

(
1
1

)
= π/4 = 0.7854. Thus,

wa = 1 + j =
√
2ejπ/4 = 1.414ej0.7854.

(b) Here, wb = ej + 1 = cos(1) + j sin(1) + 1. Thus, r =
√

(cos(1) + 1)2 + (sin(1))2 = 1.7552 and

θ = arctan
(

sin(1)
cos(1)+1

)

= 0.500, which yields

wb = ej + 1 = 1.7552ej/2.

(c) For wc = −4 + j3, r =
√

(−4)2 + 32 = 5 and θ = arctan
(

3
−4

)

= −0.643 + π = 2.4981. Thus,

wc = −4 + j3 = 5ej2.4981.

(d) Using the results from parts (a) and (c),

wd = wawc = (1 + j)(−4 + j3) = (
√
2ejπ/4)(5ej2.4981) = 7.0711ej3.2835 = 7.0711e−j2.9997.

(e) Here, we = ejπ/4+2e−jπ/4 = 1+j√
2
+ 2−j2√

2
= 3−j√

2
. Thus, r =

√
(

3√
2

)2

+
(

−1√
2

)2

=
√
5 = 2.2361

and θ = arctan
(−1

3

)
= −0.3218, which yields

we = ejπ/4 + 2e−jπ/4 = 2.2361e−j0.3218.

(f) For wf =
1+j
2j = 1

2 − j
2 , r =

√
1
4 + 1

4 = 0.7071 and θ = arctan
(

−1/2
1/2

)

= −0.7854. Thus,

wf =
1 + j

2j
= 0.7071e−j0.7854.

1
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(g) Using the results from parts (a) and (c),

wg =
wa

wc
=

1 + j

−4 + j3
=

√
2ejπ/4

5ej2.4981
= 0.2828e−j1.7127.

(h) Here, wh = 1−j
sin(j) . Following the procedure for part (a), we see that 1 − j = 1.414e−j0.7854.

Using Euler’s, we see that sin(j) = ej(j)−e−j(j)

2j = e−1−e1

2j = −2.3504
2j = 1.1752j = 1.1752ejπ/2.

Combining, we obtain

wh =
1− j

sin(j)
=

1.414e−j0.7854

1.1752ejπ/2
= 1.2034e−j2.3562.

Solution B.1-3

(a) Using Euler’s identity,

wa = j + ej = j + cos(1) + j sin(1) = cos(1) + j(1 + sin(1)) = 0.5403 + j1.8415

(b) Using Euler’s identity,

wb = 3ejπ/4 = 3 cos(π/4) + j3 sin(π/4) = 2.1213 + j2.1213.

(c) Using Euler’s identity,

wc =
1

ej
= e−j = cos(−1) + j sin(−1) = 0.5403− j0.8415.

(d) Expanding,
wd = (1 + j)(−4 + j3) = (−4− 3) + j(−4 + 3) = −7− j.

(e) Using Euler’s identity,

we = ejπ/4 + 2e−jπ/4 =
1 + j√

2
+

2− j2√
2

=
3√
2
+ j

−1√
2
= 2.1213− j0.7071.

(f) Using Euler’s identity,

wf = ej + 1 = cos(1) + j sin(1) + 1 = (cos(1) + 1) + j sin(1) = 1.5403 + j0.8415.

(g) Start by expressing the denominator in standard polar form, 1
2j = 1

ej ln(2) = e−j ln(2). Using
Euler’s identity,

wg =
1

2j
= cos(ln(2))− j sin(ln(2)) = 0.7692− j0.6390.

(h) To begin, we notice that j = ejπ/2. Thus, jj = (ejπ/2)j = e−π/2. Continuing, we see that

jj
j

= (ejπ/2)e
−π/2

= ej(πe
−π/2/2), the last step of which is in standard polar form. Thus,

wh = jj
j

= cos
(

πe−π/2/2
)

+ j sin
(

πe−π/2/2
)

= 0.9472 + j0.3208.

It is worthwhile noting that ab
c 6= (ab)c = abc. Thus, jj

j 6= (jj)j = j−1 = −j.
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Solution B.1-4

(a) Re (wa) = Re
(

1
j (j − 5e2−3j)

)

= Re
(
1 + 5je2 (cos(−3) + j sin(−3))

)
= 1+5e2 sin(3) = 6.2137.

(b) Re (wb) = Re ((1 + j)ln(1 + j)) = Re
(
(1 + j)ln

(√
2ej(

π
4 +2πk)

))
=

Re
(
(1 + j)ln

(√
2
)
+ j

(
π
4 + 2πk

))
= Re

(
ln
(√

2
)
− π

4 − 2πk + j
(
ln
(√

2
)
+ π

4 + 2πk
))

=

ln
(√

2
)
− π

4 − 2πk = −0.4388− 2πk.

Solution B.1-5

(a) Im (wa) = Im
(
−jejπ/4

)
= Im (−j cos(π/4) + sin(π/4)) = − cos(π/4) = −0.7071.

(b) Im (wb) = Im
(
1− 2je2−4j

)
= Im

(
1− 2je2 (cos(4)− j sin(4))

)
=

Im
(
1− 2e2 sin(4)− j2e2 cos(4)

)
= −2e2 cos(4) = 9.6596.

(c) Im (wc) = Im (tan(j)) = Im
(

sin(j)
cos(j)

)

= Im

(
1
2j (e

j(j)−e−j(j))
1
2 (ej(j)+e−j(j))

)

= Im

(

−j
(e−1−e1)
(e−1+e1)

)

=

(e1−e−1)
(e1+e−1) = 0.7616.

Solution B.1-6

For each proof, substitute the Cartesian form w = x+ jy.

(a)
w + w∗

2
=

x+ jy + x− jy

2
= x = Re (x+ jy) = Re (w) .

(b)
w − w∗

2j
=

x+ jy − x+ jy

2j
= y = Im (x+ jy) = Im (w) .

Solution B.1-7

(a) Using the previous result that Re (w) = w+w∗

2 , Re (ew) = Re
(
ex−jy

)
= exe−jy+exejy

2 =

ex e−jy+ejy

2 . Using Euler’s identity yields

Re (ew) = ex cos(y).

(b) Using the previous result that Im (w) = w−w∗

2j , Im (ew) = Im
(
ex−jy

)
= exe−jy−exejy

2j =

ex e−jy−ejy

2j . Using Euler’s identity yields

Re (ew) = −ex sin(y).

Solution B.1-8

For arbitrary complex constants w1 and w2,

(a) Re (jw1) = Re (j(x1 + jy1)) = Re (−y1 + jx1) = −y1. Also, −Im (w1) = −Im (x1 + jy1) =
−y1. Thus,

True. Re (jw1) = −Im (w1) .

(b) Im (jw1) = Im (j(x1 + jy1)) = Im (−y1 + jx1) = x1. Also, Re (w1) = x1. Clearly,

True. Im (jw1) = Re (w1) .
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(c) Re(w1) + Re(w2) = x1 + x2. Also, Re(w1 + w2) = Re(x1 + jy1 + x2 + jy2) = x1 + x2. Thus,

True. Re(w1) + Re(w2) = Re(w1 + w2).

(d) Im(w1) + Im(w2) = y1 + y2. Also, Im(w1 + w2) = Im(x1 + jy1 + x2 + jy2) = y1 + y2. Thus,

True. Im(w1) + Im(w2) = Im(w1 + w2).

(e) Re(w1)Re(w2) = x1x2. Also, Re(w1w2) = Re((x1+jy1)(x2+jy2)) = Re(x1x2−y1y2+j(x1y2+
x2y1)) = x1x2 − y1y2). In general x1x2 6= x1x2 − y1y2, so

False. Re(w1)Re(w2) 6= Re(w1w2).

(f) Im(w1)/Im(w2) = y1/y2. Also, Im(w1/w2) = Im
(

x1+jy1

x2+jy2

)

= Im
(

x1+jy1

x2+jy2

x2−jy2

x2−jy2

)

=

Im
(

x1x2+y1y2+j(x2y1−x1y2)
x2
2+y2

2

)

= x2y1−x1y2

x2
2+y2

2
. In general y1/y2 6= x2y1−x1y2

x2
2+y2

2
, so

False. Im(w1)/Im(w2) 6= Im(w1/w2).

Solution B.1-9

First, express w1 in both rectangular and polar coordinates. By inspection, w1 = x1 + jy1 = 3+ j4.
Next, r1 =

√
32 + 42 = 5 and θ1 = arctan

(
4
3

)
= 0.9273 so w1 = r1e

jθ1 = 5ej0.9273.
Second, express w2 in both rectangular and polar coordinates. By inspection, w2 = r2e

jθ2 =
2ejπ/4 = 2ej0.7854. Next, x2 = r2 cos(θ2) = 2 cos(π/4) =

√
2 = 1.4142 and y2 = r2 sin(θ2) =

2 sin(π/4) =
√
2 = 1.4142. Thus, w2 = x2 + jy2 = 1.4142 + j1.4142.

(a) From above,
w1 = r1e

jθ1 = 5ej0.9273.

(b) From above,
w2 = x2 + jy2 = 1.4142 + j1.4142.

(c)
|w1|2 = r21 = 52 = 25.

Similarly,
|w2|2 = r22 = 4.

(d)

w1 + w2 = (x1 + x2) + j(y1 + y2) = (3 + 1.4142) + j(4 + 1.4142) = 4.4142 + j5.4142.

(e) w1−w2 = (x1+x2)− j(y1+ y2) = (3− 1.4142)+ j(4− 1.4142) = 1.5858+ j2.5858. Converting
to polar form, r =

√

(1.5858)2 + (2.5858)2 = 3.0333 and θ = arctan
(
2.5858
1.5858

)
= 1.0207. Thus,

w1 − w2 = rejθ = 3.0333ej1.0207.

(f) w1w2 = r1e
jθ1r2e

jθ2 = 10ej1.7127. Converting to Cartesian form, x = 10 cos(1.7127) = −1.4142
and y = 10 sin(1.7127) = 9.8995. Thus,

w1w2 = x+ jy = −1.4142 + j9.8995.

(g)
w1

w2
=

r1e
jθ1

r2ejθ2
=

r1
r2

ej(θ1−θ2) = 2.5ej0.1419.
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Solution B.1-10

First, express w1 in both rectangular and polar coordinates. For rectangular form,
w1 = (3 + j4)2 = 9 − 16 + j(12 + 12) = −7 + j24. For polar form, r1 =

√

(−7)2 + 242 = 25 and

θ1 = arctan
(

24
−7

)

= −1.287 + π = 1.8546. Thus, w1 = r1e
jθ1 = 25ej1.8546.

Second, express w2 in both rectangular and polar coordinates. Since j = ejπ/2 and e−j40π = 1,
rectangular form is w2 = x2 + jy2 = j2.5. For polar form, w2 = r2e

jθ2 = 2.5ejπ/2 = 2.5ej1.5708.

(a) From above,
w1 = r1e

jθ1 = 25ej1.8546.

(b) From above,
w2 = x2 + jy2 = j2.5.

(c)
|w1|2 = r21 = 252 = 625.

Similarly,
|w2|2 = r22 = 2.52 = 6.25.

(d)
w1 + w2 = (x1 + x2) + j(y1 + y2) = (−7 + 0) + j(24 + 2.5) = −7 + j26.5.

(e) w1 −w2 = (x1 + x2)− j(y1 + y2) = (−7− 0) + j(24− 2.5) = −7 + j21.5. Converting to polar

form, r =
√

(−7)2 + (21.5)2 = 22.6108 and θ = arctan
(

21.5
−7

)

= −1.256 + π = 1.8856. Thus,

w1 − w2 = rejθ = 22.6108ej1.8856.

(f) w1w2 = r1e
jθ1r2e

jθ2 = 62.5ej3.4254 = 62.5e−j2.8578. Converting to Cartesian form, x =
62.5 cos(3.4254) = −60 and y = 62.5 sin(3.4254) = −17.5. Thus,

w1w2 = x+ jy = −60 + j − 17.5.

(g)
w1

w2
=

r1e
jθ1

r2ejθ2
=

r1
r2

ej(θ1−θ2) = 10ej0.2838.

Solution B.1-11

First, express w1 in both rectangular and polar coordinates. By inspection, w1 = x1 + jy1 =
eπ/4 + j = 2.1933 + j. Next, r1 =

√
2.19332 + 12 = 2.4105 and θ1 = arctan

(
1

2.1933

)
= 0.4278 so

w1 = r1e
jθ1 = 2.4105ej0.4278.

Second, express w2 in both rectangular and polar coordinates. Using Euler’s identity, w2 =

cos(j) = ejj+e−jj

2 = e−1+e1

2 = cosh(1) = 1.5431. Thus, w2 = x2 + jy2 = 1.5431. Polar form is
w2 = r2e

jθ2 = 1.5431ej0.

(a) From above,
w1 = r1e

jθ1 = 2.4105ej0.4278.

(b) From above,
w2 = x2 + jy2 = 1.5431.

(c)
|w1|2 = r21 = 5.8105.

Similarly,
|w2|2 = r22 = 2.3811.
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(d)
w1 + w2 = (x1 + x2) + j(y1 + y2) = (2.1933 + 1.5431) + j(1 + 0) = 3.7364 + j.

(e) w1 − w2 = (x1 + x2)− j(y1 + y2) = (2.1933− 1.5431) + j(1 − 0) = 0.6502 + j. Converting to
polar form, r =

√

(0.6502)2 + (1)2 = 1.1928 and θ = arctan
(

1
0.6502

)
= 0.9943. Thus,

w1 − w2 = rejθ = 1.1928ej0.9943.

(f) w1w2 = r1e
jθ1r2e

jθ2 = 3.7196ej0.4278. Converting to Cartesian form, x = 3.7196 cos(0.4278) =
3.3844 and y = 3.7196 sin(0.4278) = 1.5431. Thus,

w1w2 = x+ jy = 3.3844 + j1.5431.

(g)
w1

w2
=

r1e
jθ1

r2ejθ2
=

r1
r2

ej(θ1−θ2) = 1.5621ej0.4278.

Solution B.1-12

(a) (w)
4
= −1 = ejj(π+2πk) ⇒ w = (ej(π+2πk))1/4. Thus,

w = ejπ(1/4+k/2) for k = [0, 1, 2, 3].

>> k = [0:3]; w = exp(j*pi*(1/4+k/2)); t = linspace(0,2*pi,200);

>> plot(real(w),imag(w),’kx’,cos(t),sin(t),’k:’); axis equal;

>> xlabel(’Real’); ylabel(’Imag’); grid;

The 4 unique solutions are shown in Fig. SB.1-12a.
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Figure SB.1-12a

(b) Notice,

(w − (1 + j2))5 =
32√
2
(1 + j) = 32ej(π/4+2πk).

This implies that

w − (1 + j2) =
(

32ej(π/4+2πk)
)1/5

= 2ej(π/20+2πk/5).

Thus,
w = (1 + j2) + 2ej(π/20+2πk/5) for k = [0, 1, 2, 3, 4].

T

XX

X X
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>> k = [0:4]; w = (1+j*2)+2*exp(j*(pi/20+2*pi*k/5));

>> t = linspace(0,2*pi,200);

>> plot(real(w),imag(w),’kx’,1+2*cos(t),2+2*sin(t),’k:’);

>> axis equal; xlabel(’Real’); ylabel(’Imag’); grid;

The 5 unique solutions are shown in Fig. SB.1-12b.
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Figure SB.1-12b

(c) The solution set of | w − 2j |= 3 describes a circle. To see this, note that | w − 2j |2=
(w − 2j)(w − 2j)∗ = (x + j(y − 2))(x + j(2 − y)) = x2 + (y − 2)2 = 32 = 9. The circle has
center (0, 2) and radius r = 3.

>> theta = linspace(0,2*pi,201); x = 3*cos(theta); y = 2+3*sin(theta);

>> plot(x,y,’k-’); axis equal; grid; xlabel(’Real’); ylabel(’Imag’);

The circle of solutions is shown in Fig. SB.1-12c.
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Figure SB.1-12c

(d) Graph w(t) = (1 + t)ejt for (−10 ≤ t ≤ 10).

>> t = [-10:.01:10]; w = (1+t).*exp(j*t);

>> plot(real(w(t==-10)),imag(w(t==-10)),’vk’,...

X^TT

X

X

X.
X
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>> real(w(t<0)),imag(w(t<0)),’k-’,...

>> real(w(t==0)),imag(w(t==0)),’ok’,...

>> real(w(t>0)),imag(w(t>0)),’k:’,...

>> real(w(t==10)),imag(w(t==10)),’k^’);

>> axis equal; xlabel(’Real’); ylabel(’Imag’);

>> legend(’t=-10’,’t<0’,’t=0’,’t>0’,’t=10’,’location’,’EastOutside’)
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t=10

Figure SB.1-12d

Solution B.1-13

Since four distinct solutions are indicated, we know n = 4. The solutions to wn = w2 = r2e
jθ2 lie on

a circle of radius r
1/n
2 . The solutions to (w−w1)

n = w2 lie on the same circle shifted by w1. To find
w1, drop perpendicular lines from the circle center to the real and imaginary axes, respectively. As
shown, two similar triangles are formed. The circle center is w1 = A + jA. Furthermore, we know
that A+B =

√
3+1 and A−B =

√
3− 1. Clearly, A =

√
3 and B = 1. Thus, w1 =

√
3+ j

√
3. The

value of w2 is now easily found by substitution: w2 = (
√
3+1−(

√
3+j

√
3))4 = (1+j

√
3)4 = 16ej2π/3.

Thus,
n = 4, w1 =

√
3 + j

√
3, and w2 = 16ej2π/3.

V

o

A
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Figure SB.1-13

Solution B.1-14

(a) Expressing the righthand side in polar form, we see that w3 = − 8
27 = 8

27e
jπ+j2πk. Taking the

cube root yields three unique solutions,

w =
2

3
ejπ(1+2k)/3 for k = [0, 1, 2].

Figure SB.1-14a graphs these solutions in the complex plane.
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Figure SB.1-14a

(b) In this case, (w + 1)8 = 1 = ej2πk. Taking the eighth root and then subtracting one yields
eight unique solutions,

w = ejπk/4 − 1 for k = [0, 1, . . . , 7].

Figure SB.1-14b graphs these solutions in the complex plane.

X

X

X
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Figure SB.1-14b

(c) In this case, we rearrange w2+ j = 0 as w2 = −j = e−jπ/2+j2πk . Taking the square root yields
two unique solutions,

w = e−jπ/4+jπk for k = [0, 1].

Figure SB.1-14c graphs these solutions in the complex plane.
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Figure SB.1-14c

(d) To begin, we rearrange 16(w − 1)4 + 81 = 0 as (w − 1)4 = − 81
16 = 81

16e
jπ+j2πk. Taking the

fourth root and then adding one yields four unique solutions,

w =
3

2
ejπ/4+jπk/2 + 1 for k = [0, 1, 2, 3].

Figure SB.1-14d graphs these solutions in the complex plane.
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Figure SB.1-14d

(e) Here, (w+2j)3 = −8 = 8ejπ+2πk. Taking the cube root and subtracting 2j yields three unique
solutions,

w = 2ejπ/3+j2πk/3 − 2j for k = [0, 1, 2].

Figure SB.1-14e graphs these solutions in the complex plane.
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Figure SB.1-14e

(f) We can write (j − w)1.5 = (j − w)3/2 =
√
8ejπ/4. Squaring both sides yields (j − w)3 =

8ej(π/2+2πk). Taking the third root of each side yields (j − w) = 2ej(π/6+2πk/3). Rearranging
yields three distinct solutions

w = j − 2ej(π/6+2πk/3) for k = [0, 1, 2].

Figure SB.1-14f graphs these solutions in the complex plane.
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Figure SB.1-14f

(g) Here, we write (w − 1)2.5 = j4
√
2 as (w − 1)5/2 =

√
32ejπ/2. Squaring both sides yields

(w − 1)5 = 32ejπ+j2πk. Taking the fifth root of each side yields (w − 1) = 2ejπ/5+j2πk/5.
Solving for w, the five unique solutions are

w = 2ejπ/5+j2πk/5 + 1 for k = [0, 1, . . . , 4].

Figure SB.1-14g graphs these solutions in the complex plane.
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Figure SB.1-14g

Solution B.1-15

Expressing the righthand side in polar form, w =
√
j =

(
ej(π/2+2πk)

)1/2
= ej(π/4+πk). Thus, there

are two distinct solutions
w = ej(π/4+πk) for k = [0, 1].

That is, w = ±(1 + j)/
√
2.

Solution B.1-16

ln(−e) = ln(e1+j(π+2πk)) = 1+ j(π+2πk). Since k can be any integer, there are an infinite number
of solutions

ln(−e) = 1 + j(π + 2πk) for integer k.

XX

X

X

X



Student use and/or distribution of solutions is prohibited 13

MATLAB and other calculating devices generally give only the k = 0 solution 1 + jπ.

Solution B.1-17

log10(−1) = log10 e
j(π+2πk) = j (π + 2πk) log10(e). Since k can be any integer, there are an infinite

number of solutions

log10(−1) = 0 + j (π + 2πk) log10(e) for integer k.

MATLAB and other calculating devices generally give only the k = 0 solution jπ log10(e).

Solution B.1-18

(a) wa = ln
(

1
1+j

)

= ln
(

1√
2ejπ/4

)

= ln
(
(
√
2)−1ej(−π/4+2πk)

)
= − ln(

√
2) + j(−π/4 + 2πk). Since

k can be any integer, there are an infinite number of solutions

wa = ln

(
1

1 + j

)

= − ln(
√
2) + j(−π/4 + 2πk) for integer k.

MATLAB and other calculating devices generally give only the k = 0 solution.

(b) wb = cos(1+j) = 0.5
(
ej(1+j) + e−j(1+j)

)
= 0.5

(
e−1(cos(1) + j sin(1)) + e1(cos(1)− j sin(1))

)
=

cos(1) cosh(1)− j sin(1) sinh(1). That is

wb = cos(1 + j) = cos(1) cosh(1)− j sin(1) sinh(1).

(c) wc = (1 − j)j =
(√

2e−jπ/4
)j

=
(

eln(
√
2)e−jπ/4

)j

= ej ln(
√
2)eπ/4 =

eπ/4
(
cos(ln(

√
2)) + j sin(ln(

√
2))
)
. Thus,

wc = (1− j)j = eπ/4 cos(ln(
√
2)) + jeπ/4 sin(ln(

√
2)).

Solution B.1-19

Letting w = jy, cos(w) = cos(jy) = 0.5
(
ejjy + e−jjy

)
= 0.5 (e−y + ey) = 2. Multiplying both sides

by 2ey yields 1 + (ey)2 − 4ey = (ey)2 − 4ey + 1 = 0. This is a quadratic equation in ey. Applying

the quadratic formula yields ey = 4±
√
16−4
2 = 2±

√
3. Solving for y gives y = ln

(
2±

√
3
)
. Thus,

w = jy = j ln
(

2±
√
3
)

= ±j1.3170.

Solution B.1-20

(a) To express e−x2

as a Taylor series, recall that a Taylor series of eu about zero is given by

eu =
∑∞

i=0
ui

i! . Substituting −x2 for u yields

e−x2

=

∞∑

i=0

(
−x2

)i

i!
.

(b) Integrating yields
∫
e−x2

dx =
∫ ∑∞

i=0
(−1)ix2i

i! dx =
∑∞

i=0
(−1)i

i!

∫
x2idx or

∫

e−x2

dx =

∞∑

i=0

(−1)i

i!

x2i+1

2i+ 1
.
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(c) Since the lower limit of the definite integral is zero, it does not make any contribution. Thus
∫ 1

0 e−x2

dx =
∑∞

i=0
(−1)i

i!
x2i+1

2i+1

∣
∣
∣
x=1

=
∑∞

i=0
(−1)i

i!(2i+1) . First, MATLAB is used to compute the

first 10 terms of the sum.

>> i = 0:9; terms = (-1).^i./(gamma(i+1).*(2*i+1));

Next, one to ten term truncations are obtained using the MATLAB’s cumulative sum com-
mand.

>> cumsum(terms)

The results are

(1.0000, 0.6667, 0.7667, 0.7429, 0.7475, 0.7467, 0.7468, 0.7468, 0.7468, 0.7468).

At a seven-term truncation, the result appears to converge to four digits.

Solution B.1-21

(a) To express e−x3

as a Taylor series, recall that a Taylor series of eu about zero is given by

eu =
∑∞

i=0
ui

i! . Substituting −x3 for u yields

e−x3

=

∞∑

i=0

(
−x3

)i

i!
.

(b) Integrating yields
∫
e−x3

dx =
∫ ∑∞

i=0
(−1)ix3i

i! dx =
∑∞

i=0
(−1)i

i!

∫
x3idx or

∫

e−x3

dx =

∞∑

i=0

(−1)i

i!

x3i+1

3i+ 1
.

(c) Since the lower limit of the definite integral is zero, it does not make any contribution. Thus
∫ 1

0
e−x3

dx =
∑∞

i=0
(−1)i

i!
x3i+1

3i+1

∣
∣
∣
x=1

=
∑∞

i=0
(−1)i

i!(3i+1) . First, MATLAB is used to compute the

first 10 terms of the sum.

>> i = 0:9; terms = (-1).^i./(gamma(i+1).*(3*i+1));

Next, one to ten term truncations are obtained using the MATLAB’s cumulative sum com-
mand.

>> cumsum(terms)

The results are

(1.0000, 0.7500, 0.8214, 0.8048, 0.8080, 0.8074, 0.8075, 0.8075, 0.8075, 0.8075).

At a seven-term truncation, the result appears to converge to four digits.
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Solution B.1-22

(a) To express cos(x2) = 0.5
(

ejx
2

+ e−jx2
)

as a Taylor series, recall that a Taylor series of eu

about zero is given by eu =
∑∞

i=0
ui

i! . Substituting ±jx2 for u yields

cos(x2) =

∞∑

i=0

0.5

((
jx2
)i

i!
+

(
−jx2

)i

i!

)

.

(b) Integrating yields
∫
cos(x2)dx =

∫ ∑∞
i=0 0.5

(

(jx2)
i

i! +
(−jx2)

i

i!

)

dx =

∑∞
i=0 0.5

(j)i(1+(−1)i)
i!

∫ (
x2
)i
dx or

∫

cos(x2)dx =

∞∑

i=0

0.5
(j)i(1 + (−1)i)

i!

x2i+1

2i+ 1
.

(c) Since the lower limit of the definite integral is zero, it does not make any contribution. Thus
∫ 1

0 cos(x2)dx =
∑∞

i=0 0.5
(j)i(1+(−1)i)

i!
x2i+1

2i+1

∣
∣
∣
x=1

=
∑∞

i=0 0.5
(j)i(1+(−1)i)

i!(2i+1) . First, MATLAB is

used to compute the first 10 terms of the sum.

>> i = 0:9; terms = 0.5*(j).^i.*(1+(-1).^i)./(gamma(i+1).*(2*i+1));

Next, one to ten term truncations are obtained using the MATLAB’s cumulative sum com-
mand.

>> cumsum(terms)

The results are

(1.0000, 1.0000, 0.9000, 0.9000, 0.9046, 0.9046, 0.9045, 0.9045, 0.9045, 0.9045).

At a seven-term truncation, the result appears to converge to four digits.

Solution B.1-23

(a) Using synthetic division, express fa(x) =
1

2−x2 = 1
2 + 1

4x
2 + 1

8x
4 + 1

16x
6 + · · · . Thus,

fa(x) =

∞∑

i=0

(
1

2

)i+1

x2i.

(b) Rewrite as fb(x) = (0.5)x = e− ln(2)x. Recall that a Taylor series of eu about zero is given by

eu =
∑∞

i=0
ui

i! . Substituting − ln(2)x for u yields

fb(x) =

∞∑

i=0

(− ln(2)x)
i

i!
.
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Solution B.1-24

(a) A Taylor series requires knowledge of a function and its derivatives as

f(x) =

∞∑

k=0

f (k)(a)

k!
(x− a)k.

In the present case,

f(x) = 1 + x+ x2 + x3

d
dxf(x) = 1 + 2x+ 3x2

d2

dx2 f(x) = 2 + 6x

d3

dx3 f(x) = 6

d4

dx4 f(x) =
d5

dx5
f(x) = · · · = 0

Evaluating the non-zero terms using the expansion point a = 1 yields

f(x)|x=1 = 4
d
dxf(x)

∣
∣
x=1

= 6

d2

dx2 f(x)
∣
∣
∣
x=1

= 8

d3

dx3 f(x)
∣
∣
∣
x=1

= 6

Thus, the desired Taylor series is

f(x) = 4 + 6(x− 1) + 4(x− 1)2 + (x − 1)3.

Not surprisingly, the Taylor series of a third-order polynomial is itself a third-order polynomial.
If each term in the Taylor series were expanded, the simplified result would match the original
expression f(x) = 1 + x+ x2 + x3.

(b) It may seem a little odd to represent a polynomial expression with another polynomial expres-
sion of the same order. However, there can be good reason to do so. If the system described
by the function f(x) operates near the expansion point x = a, the Taylor series about this
expansion point converges to a good result with fewer terms. For example, about x = 1,
the truncated Taylor series f(x) ≈ 4 + 6(x − 1) provides a good approximation to the cubic
f(x) = 1+ x+ x2 + x3. This linear approximation can be more efficiently computed on target
hardware, such as an embedded processor.

Solution B.1-25

A Maclaurin series is a Taylor series with the expansion point a set to zero,

f(x) =

∞∑

k=0

f (k)(a)

k!
(x− a)k

∣
∣
∣
∣
∣
a=0

=

∞∑

k=0

f (k)(0)

k!
xk.

(a) To begin, we notice that fa(x) = 2x = eln(2)x. The kth derivative of fa(x) is

dk

dxk
fa(x) = [ln(2)]

k
eln(2)x.
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Evaluated at the x = 0 expansion point yields

dk

dxk
fa(x)

∣
∣
∣
∣
x=0

= [ln(2)]
k
.

Substituting this result into the definition of the Maclaurin series yields

fa(x) = 2x ==

∞∑

k=0

[ln(2)]
k

k!
xk

(b) To begin, we notice that fb(x) =
(
1
3

)x
= eln(

1
3 )x. The kth derivative of fb(x) is

dk

dxk
fb(x) =

[

ln

(
1

3

)]k

eln(
1
3 )x.

Evaluated at the x = 0 expansion point yields

dk

dxk
fb(x)

∣
∣
∣
∣
x=0

=

[

ln

(
1

3

)]k

.

Substituting this result into the definition of the Maclaurin series yields

fb(x) =

(
1

3

)x

==

∞∑

k=0

[
ln
(
1
3

)]k

k!
xk

Solution B.2-1

(a) By inspection, signal cos(5πt+ 3) has

ω0 = 5π, f0 =
ω0

2π
=

5

2
, T0 =

1

f0
=

2

5
.

(b) By inspection, signal 7 sin
(
2t−π
3

)
has

ω0 =
2

3
, f0 =

ω0

2π
=

1

3π
, T0 =

1

f0
= 3π.

Solution B.2-2

The expression of a generalized sinusoid is x(t) = a cos(2πf0t+ b). To ensure x(t) oscillates 15 times
per second requires f0 = 15. To ensure x(t) has a peak amplitude of 3 requires a = 3. To ensure
x(0) = −1 requires that 3 cos(b) = −1 or b = cos−1(−1/3) = 1.9106. Thus, the desired signal x(t)
can be expressed as

x(t) = 3 cos
(
2π15t+ cos−1(−1/3)

)
= 3 cos (2π15t+ 1.9106) .

Figure SB.2-2 graphs x(t) over 0 ≤ t ≤ 1.

>> x = @(t) 3*cos(2*pi*15*t+acos(-1/3)); t = 0:.001:1;

>> plot(t,x(t),’k-’); xlabel(’t’); ylabel(’x(t)’); axis([0 1 -3.1 3.1]);
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Figure SB.2-2

Solution B.2-3

For this problem, x1(t) = 2 cos(3t+ 1) and x2(t) = −3 cos(3t− 2). Each part can be readily solved
using Euler’s formula and the real operator.

(a) In this part, we need to determine a1 and b1 so that x1(t) = a1 cos(3t) + b1 sin(3t).

x1(t) = Re
(

2ej(3t+1)
)

= Re
(
2ej3t [cos(1) + j sin(1)]

)

= 2 cos(1) cos(3t)− 2 sin(1) sin(3t).

Thus, we see that

a1 = 2 cos(1) = 1.0806 and b1 = −2 sin(1) = −1.6829.

(b) In this part, we need to determine a2 and b2 so that x2(t) = a2 cos(3t) + b2 sin(3t).

x2(t) = Re
(

−3ej(3t−2)
)

= Re
(
−3ej3t [cos(2)− j sin(2)]

)

= −3 cos(2) cos(3t)− 3 sin(2) sin(3t).

Thus, we see that

a2 = −3 cos(2) = 1.2484 and b2 = 3 sin(2) = 2.7279.

(c) In this part, we need to determine C and θ so that x1(t) + x2(t) = C cos(3t+ θ).

x1(t) + x2(t) = Re
(

2ej(3t+1) − 3ej(3t−2)
)

= Re
(
ej3t

[
2ej − 3e−2j

])

= Re
(
ej3t4.988ej1.0850

)

= 4.988 cos(3t+ 1.0850).

Thus, we see that
C = 4.988 and θ = 1.0850.
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Solution B.2-4

Solutions to this problem are based on Euler’s identity.

(a)

cosh(w) = cosh(x+ jy) =
ex+jy + e−x−jy

2
= 0.5

(
(cos(y) + j sin(y))ex + (cos(y)− j sin(y))e−x

)

= 0.5
(
cos(y)(ex + e−x) + j sin(y)(ex − e−x)

)

= cos(y) cosh(x) + j sin(y) sinh(x)

Thus,
cosh(w) = cosh(x+ jy) = cosh(x) cos(y) + j sinh(x) sin(y).

(b)

sinh(w) = sinh(x+ jy) =
ex+jy − e−x−jy

2

= 0.5
(
(cos(y) + j sin(y))ex − (cos(y)− j sin(y))e−x

)

= 0.5
(
cos(y)(ex − e−x) + j sin(y)(ex + e−x)

)

= cos(y) sinh(x) + j sin(y) cosh(x)

Thus,
sinh(w) = sinh(x+ jy) = sinh(x) cos(y) + j cosh(x) sin(y).

Solution B.2-5

(a) Note, we can rewrite 2.5 cos(3t) − 1.5 sin(3t + π/3) = c cos(3t + φ) as
Re
(
2.5ej3t + j1.5ej(3t+π/3)

)
= Re

(
cej(3t+φ)

)
. Working with the left-hand side,

Re
(
2.5ej3t + j1.5ej(3t+π/3)

)
= Re

(
ej3t(2.5 + 1.5ej(π/3+π/2))

)
. The unknown constants

c and φ are determined by comparing the left- and right-hand sides.

c = |2.5 + 1.5ej(π/3+π/2)| =
√

(2.5 + 1.5 cos(5π/6))2 + (1.5 sin(5π/6))2 = 1.416

and

φ = ∠

(

2.5 + 1.5ej(π/3+π/2)
)

= arctan

(
1.5 sin(5π/6)

2.5 + 1.5 cos(5π/6)

)

= 0.558.

(b) Note, cos(θ ± φ) = Re
(
ej(θ±φ)

)
= Re ((cos(θ) + j sin(θ))(cos(φ) ± j sin(φ))) =

Re ((cos(θ) cos(φ)∓ sin(θ) sin(φ)) + j(sin(θ) cos(φ)± cos(θ) sin(φ))) = (cos(θ) cos(φ) ∓
sin(θ) sin(φ)). Thus,

cos(θ ± φ) = cos(θ) cos(φ) ∓ sin(θ) sin(φ).

(c) Noting that sin(αx) = ejαx−e−jαx

2j , first solve the indefinite integral
∫
ewx sin(αx)dx =

∫
ewx ejαx−e−jαx

2j dx =
∫

ex(w+jα)−ex(w−jα)

2j = 1
2j(w+jα) e

x(w+jα)− 1
2j(w−jα)e

x(w−jα). Substituting

the limits of integration yields

∫ b

a

ewx sin(αx)dx =

1

2j(w + jα)

(

eb(w+jα) − ea(w+jα)
)

− 1

2j(w − jα)

(

eb(w−jα) − ea(w−jα)
)

.
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Solution B.2-6

A vehicle traveling at 70 mph travels 102.66 feet per second. To produce a sound with (fundamental)
frequency of 1 kHz therefore requires grooving the highway shoulder at a rate of 1000 grooves per
102.66 feet, or 9.74 grooves per foot. To produces quarter second bursts of 1 kHz sounds every
second therefore requires 1

4 (102.66) = 25.67 out of every 102.66 feet of shoulder with grooves spaced
at 9.74 grooves per foot. Put another way, 250 equally-spaced grooves should occupy 25.67 out of
every 102.66 feet of highway shoulder.

Solution B.3-1

In this problem, we sketch xa(t) = e−t, xb(t) = sin(2π5t), and xc(t) = e−t sin(2π5t) over (0 ≤ t ≤ 1).
Signal xa(t) is just an exponentially decaying waveform with amplitude 1 at t = 0 that decays to
e−1 = 0.3679 at t = 1. Signal xb(t) is a unit amplitude sine wave that oscillates 5 times per second.
Lastly, xc(t) is just the product of xa(t) and xb(t). Figure SB.3-1 shows all three waveforms.
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)
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t
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-0.5
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0.5

1

x b
(t

)

0 0.5 1

t

-1

-0.5

0

0.5

1

x c(t
)

Figure SB.3-1

Solution B.3-2

In this problem, we model population as p(t) = aebt, where t indicates year. We can determine
parameter b using the given 40-year doubling time. Since p(0) = a, p(40) = 2a = ae40b. Solving for
b yields

b = ln(2)/40 = 0.0173.

To determine parameter a, we use the known 1950 population: p(1950) = 2.5(10)9 = ae1950ln(2)/40.
Solving for a yields

a = 2.5(10)92−48.75 = 5.2811(10)−6.

Given this model and its 40-year doubling time, we can predict the year t15 that the world population
reaches 15 billion as

t15 = ln

(
15(10)9

a

)

/b = 2053.40.

Figure SB.3-2 shows p(t) over 1950 ≤ t ≤ 2100.

>> a = 2.5*10^9*2^(-48.75); b = log(2)/40; p = @(t) a*exp(b*t);

>> t = 1950:2100; t15 = log(15*10^9/a)/b;

>> plot(t,p(t),’k-’); xlabel(’year’); ylabel(’population’);

>> line([1950 t15 t15],[15e9 15e9 0],’linestyle’,’:’);

>> set(gca,’xtick’,[1950 2000 2053.4 2100]);
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Figure SB.3-2
Like most models, this population model has strengths and limitations. The doubling time is based

on twentieth century data, a time interval which includes the “initial” (1950) population of 2.5

billion. Not surprisingly, the model does pretty good over the interval 1950 ≤ t ≤ 2000. As long

as population trends do not significantly change, the 2053 estimate for a population of 15 billion

is reasonable. Look, however, what happens when we move further away in time. This model, for

example, estimates the population at year 0 as a, or 5 millionths of a single person! This number

is clearly nonsensical, and far less than estimates based on historical data that place the world’s

human population in year 0 in the hundreds of millions.Solution B.3-3
The general form is x(t) = e−at cos(ωt). At t = 0, e−at = 1. Thus, a fifty percent decrease in two

seconds requires 0.5 = e−a2, or a = 0.5 ln(2) = 0.3466. To oscillate three times per second requires

ω = 6π. Thus, one signal that meets design specifications is
x(t) = e−0.3466t cos(6πt).

>> w = 3*2*pi; a = 0.5*log(2); x = @(t) exp(-a*t).*cos(w*t);

>> t = [-2:.01:2]; plot(t,x(t),’k-’); xlabel(’t’); ylabel(’x(t)’);

Figure SB.3-3 plots the signal over −2 ≤ t ≤ 2.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
t

-2

-1

0

1

2

x(
t)

Figure SB.3-3
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Solution B.3-4

(a) xa(t) = Re(2e(−1+j2π)t) = 2e−t cos(2πt). This is 1 Hz cosine wave that exponentially decays
by a factor of 1− e−1 = 0.632 every second. A signal peak is near t = 0, where the signal has
an amplitude of 2. Figure SB.3-4a shows xa(t) over 0 ≤ t ≤ 3.
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Figure SB.3-4a

(b) xb(t) = Im(3 − e(1−j2π)t) = et sin(2πt). This is a 1 Hz sine wave that exponentially grows by
a factor of e1 = 2.718 every second. A signal peak is near t = 1/4, where the signal has an
amplitude of 1.284. Figure SB.3-4b shows xb(t) over 0 ≤ t ≤ 3.
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Figure SB.3-4b

(c) xc(t) = 3− Im(e(1−j2π)t) = 3 + et sin(2πt). This is a 1Hz sine wave that exponentially grows
by a factor of e1 = 2.718 every second and has an offset of 3. A signal peak is near t = 1/4,
where the signal has an amplitude of 4.284. Figure SB.3-4c shows xc(t) over 0 ≤ t ≤ 3.

T T
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Figure SB.3-4c

Solution B.4-1

In this problem, we are interested in using hand calculations and Cramer’s rule to solve the system
of equations

[
−1 2
3 −4

] [
x1

x2

]

=

[
3
−1

]

.

Solving for x1, we obtain

x1 =

∣
∣
∣
∣

3 2
−1 −4

∣
∣
∣
∣

∣
∣
∣
∣

−1 2
3 −4

∣
∣
∣
∣

=
3(−4)− 2(−1)

−1(−4)− 3(2)
=

−10

−2
= 5

Solving for x2, we obtain

x2 =

∣
∣
∣
∣

−1 3
3 −1

∣
∣
∣
∣

∣
∣
∣
∣

−1 2
3 −4

∣
∣
∣
∣

=
−1(−1)− 3(3)

−1(−4)− 3(2)
=

−8

−2
= 4

These hand-calculated results are readily confirmed using MATLAB.

>> x = inv([-1 2;3 -4])*[3;-1]

x = 5.0000

4.0000

Solution B.4-2

In this problem, we are interested in using hand calculations and Cramer’s rule to solve the system
of equations





1 2 0
0 3 4
5 0 6









x1

x2

x3



 =





7
8
9
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Solving for x1, we obtain

x1 =

∣
∣
∣
∣
∣
∣

7 2 0
8 3 4
9 0 6

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

1 2 0
0 3 4
5 0 6

∣
∣
∣
∣
∣
∣

=
7(18− 0)− 2(48− 36) + 0(0− 27)

1(18− 0)− 2(0− 20) + 0(0− 15)
=

126− 24 + 0

18 + 40 + 0
=

51

29

Solving for x2, we obtain

x2 =

∣
∣
∣
∣
∣
∣

1 7 0
0 8 4
5 9 6

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

1 2 0
0 3 4
5 0 6

∣
∣
∣
∣
∣
∣

=
1(48− 36)− 7(0− 20) + 0(0− 40)

1(18− 0)− 2(0− 20) + 0(0− 15)
=

12 + 140 + 0

18 + 40 + 0
=

76

29

Solving for x3, we obtain

x3 =

∣
∣
∣
∣
∣
∣

1 2 7
0 3 8
5 0 9

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

1 2 0
0 3 4
5 0 6

∣
∣
∣
∣
∣
∣

=
1(27− 0)− 2(0− 40) + 7(0− 15)

1(18− 0)− 2(0− 20) + 0(0− 15)
=

27 + 80− 105

18 + 40 + 0
=

1

29

These hand-calculated results are readily confirmed using MATLAB.

>> format rat; x = inv([1 2 0;0 3 4;5 0 6])*[7;8;9]

x = 51/29

76/29

1/29

Solution B.4-3

First, the system of equations is written in matrix form.





1 1 1
1 2 3
1 −1 0









x1

x2

x3



 = Ax =





1
3
−3



 .

|A| = 0 + 3− 1− (2− 3− 0) = 3.

(a)

∣
∣
∣
∣
∣
∣

1 1 1
3 2 3
−3 −1 0

∣
∣
∣
∣
∣
∣

= 0− 9− 3− (−6− 3− 0) = −3. Thus,

x1 =
−3

|A|
=

−3

3
= −1.

The same result is obtained in MATLAB by

>> A = [1 1 1;1 2 3;1 -1 0];

>> x_1 = det([[1;3;-3],A(:,2:3)])/det(A)

x_1 = -1
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(b)

∣
∣
∣
∣
∣
∣

1 1 1
1 3 3
1 −3 0

∣
∣
∣
∣
∣
∣

= 0 + 3− 3− (3− 9− 0) = 6. Thus,

x2 =
6

|A|
=

6

3
= 2.

The same result is obtained in MATLAB by

>> A = [1 1 1;1 2 3;1 -1 0];

>> x_2 = det([A(:,1),[1;3;-3],A(:,3)])/det(A)

x_2 = 2

(c)

∣
∣
∣
∣
∣
∣

1 1 1
1 2 3
1 −1 −3

∣
∣
∣
∣
∣
∣

= −6− 1 + 3− (2− 3− 3) = 0. Thus,

x3 =
0

|A|
=

0

3
= 0.

The same result is obtained in MATLAB by

>> A = [1 1 1;1 2 3;1 -1 0];

>> x_3 = det([A(:,1:2),[1;3;-3]])/det(A)

x_3 = 0

Solution B.5-1

In this problem, we determine the constants a0, a1, and a2 of the partial fraction expansion

F (s) =
s

(s+ 1)3

=
a0

(s+ 1)3
+

a1
(s+ 1)2

+
a2

(s+ 1)

First, express both sides of the expression with a common denominator F (s) = s
(s+1)3 = a0

(s+1)3 +

a1

(s+1)2 + a2

(s+1) = a0+a1(s+1)+a2(s+1)2

(s+1)3 = a2s
2+(a1+2a2)s+(a0+a1+a2)

(s+1)3 . Equating the coefficients of s2

yields a2 = 0. Thus (a1+2a2) = a1 = 1. Finally a0+a1+a2 = a0+1+0 = 0 implies that a0 = −1.

a0 = −1, a1 = 1, and a2 = 0.

Solution B.5-2

(a) Ha(s) = s2+5s+6
s3+s2+s+1 = s2+5s+6

(s−j)(s+j)(s+1) = k1

s−j + k2

s+j + k3

s+1 . Using the method of residues,

k1 = s2+5s+6
(s+j)(s+1)

∣
∣
∣
s=j

= 5(1+j)
2j(1+j) = −2.5j. Since the system is real, k2 = k∗1 = 2.5j. Lastly,

k3 = s2+5s+6
s2+1

∣
∣
∣
s=−1

= 1. Thus,

Ha(s) =
1

s+ 1
+

−2.5j

s− j
+

2.5j

s+ j
=

1

s+ 1
+

5

s2 + 1
.

(b) Hb(s) =
1

Ha(s)
= s3+s2+s+1

s2+5s+6 = s − 4 + 15s+25
(s+2)(s+3) = s − 4 + k1

s+2 + k2

s+3 . Using the method of

residues, k1 = 15s+25
s+3

∣
∣
∣
s=−2

= −5 and k2 = 15s+25
s+2

∣
∣
∣
s=−3

= 20. Thus,

Hb(s) = s− 4 +
−5

s+ 2
+

20

s+ 3
.
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(c) Hc(s) = 1
(s+1)2(s2+1) = 1

(s+1)2(s+j)(s−j) = k1

s−j + k2

s+j + ã0

(s+1)2 + ã1

(s+1) . Using the method

of residues, k1 = 1
(s+1)2(s+j)

∣
∣
∣
s=j

= 1
(1+j2−1)(j2) = −0.25. Since the corresponding roots are

complex conjugates, k2 = k∗1 = −0.25. ã0 = 1
s2+1

∣
∣
∣
s=−1

= 0.5 and ã1 = d
ds (s

2 + 1)−1
∣
∣
s=−1

=

−(s2 + 1)−2(2s)
∣
∣
s=−1

= −2
−4 = 0.5. Thus,

Hc(s) =
−0.25

s− j
+

−0.25

s+ j
+

0.5

(s+ 1)2
+

0.5

(s+ 1)
.

(d) Hd(s) =
s2+5s+6
3s2+2s+1 = 1

3+
13s/3+17/3
3s2+2s+1 = 13s/9+17/9

s2+2s/3+1/3 . In some cases, this form is sufficient. A com-

plete partial fraction expansion, however, requires the denominator roots s =
−2/3±

√
4/9−4/3

2 =
−1±j

√
2

3 = −0.3333 ± 0.4714j. Thus, Hd(s) = 1
3 + k1

s−(−1−j
√
2)/3

+ k2

s−(−1+j
√
2)/3

. Using the

method of residues, k1 = 13s/9+17/9

s−(−1+j
√
2)/3

∣
∣
∣
s=(−1−j

√
2)/3

= 0.7222 + 1.4928j. Since the system is

real, k2 = k∗1 = 0.7222− 1.4928j. Thus,

Hd(s) =
1

3
+

0.7222 + 1.4928j

s+ 0.3333 + 0.4714j
+

0.7222− 1.4928j

s+ 0.3333− 0.4714j
.

Solution B.5-3

(a) Since Fa(x) =
(x−1)(x−2)

(x−3)2 is not strictly proper, we long divide the numerator x2 − 3x+ 2 by

the denominator x2 − 6x+ 9 to yield

Fa(x) = 1 +
3x− 7

(x − 3)2
= 1 +

a0
(x− 3)2

+
a1

x− 3
.

To determine a0 and a1, we use Eq. (B.30).

a0 = 3x− 7|x=3 = 2 and a1 =
d

dx
(3x− 7)

∣
∣
∣
∣
x=3

= 3

Thus, the desired PFE is

Fa(x) = 1 +
2

(x − 3)2
+

3

x− 3
.

(b) Since Fb(x) =
(x−1)2

(3x−1)(2x−1) is not strictly proper, we long divide the numerator x2 − 2x+1 by

the denominator 6x2 − 5x+ 1 to yield

Fb(x) =
1

6
+

− 7
6x+ 5

6

(3x− 1)(2x− 1)
=

1

6
+

k1
3x− 1

+
k2

2x− 1
.

Using the Heaviside cover-up method, we find that

k1 =
− 7

6x+ 5
6

2x− 1

∣
∣
∣
∣
x= 1

3

=
− 7

18 + 15
18

− 1
3

= −4

3

and

k2 =
− 7

6x+ 5
6

3x− 1

∣
∣
∣
∣
x= 1

2

=
− 7

12 + 10
12

1
2

=
1

2
.

Thus, the desired PFE is

Fb(x) =
1

6
+

− 4
3

3x− 1
+

1
2

2x− 1
=

1

6
+

− 4
9

x− 1
3

+
1
4

x− 1
2

.
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(c)

Fc(x) =
(x − 1)2

(3x− 1)2(2x− 1)
=

a0
(3x− 1)2

+
a1

3x− 1
+

k1
2x− 1

.

Using the Heaviside cover-up method, we find that

a0 =
(x− 1)2

2x− 1

∣
∣
∣
∣
x= 1

3

=
(− 2

3 )
2

− 1
3

= −4

3

and

k1 =
(x− 1)2

(3x− 1)2

∣
∣
∣
∣
x= 1

2

=
(− 1

2 )
2

(12 )
2

= 1.

Combining the fraction to have a common denominator, the numerator is

a0(2x− 1) + a1(3x− 1)(2x− 1) + k1(3x− 1)2 = x2 − 2x+ 1.

Using the constant (non-x) terms in this expression, we see that

−a0 + a1 + k1 =
4

3
+ a1 + 1 = 1 ⇒ a1 = −4

3
.

Thus, the desired PFE is

Fc(x) =
− 4

3

(3x− 1)2
+

− 4
3

3x− 1
+

1

2x− 1
=

− 4
27

(x − 1
3 )

2
+

− 4
9

x− 1
3

+
1
2

x− 1
2

.

(d) By inspection (or using the quadratic equation, the denominator roots of Fd(x) are -3 and

-1. Since Fd(x) = x2−5x+6
2x2+8x+6 is not strictly proper, we long divide the numerator by the

denominator to yield

Fd(x) =
1

2
+

− 9
2x+ 3

2

(x+ 3)(x+ 1)
=

1

2
+

k1
x+ 3

+
k2

x+ 1
.

Using the Heaviside cover-up method, we find that

k1 =
− 9

2x+ 3
2

x+ 1

∣
∣
∣
∣
x=−3

=
27
2 + 3

2

−2
= −15

2

and

k2 =
− 9

2x+ 3
2

x+ 3

∣
∣
∣
∣
x=−1

=
9
2 + 3

2

2
= 3.

Thus, the desired PFE is

Fd(x) =
1

2
+

− 15
2

x+ 3
+

3

x+ 1
.

(e) By inspection (or using the quadratic equation, the denominator roots of Fe(x) are 2 and

-1. Since Fe(x) = 2x2−3x−11
x2−x−2 is not strictly proper, we long divide the numerator by the

denominator to yield

Fe(x) = 2 +
−x− 7

(x− 2)(x+ 1)
= 2 +

k1
x− 2

+
k2

x+ 1
.

Using the Heaviside cover-up method, we find that

k1 =
−x− 7

x+ 1

∣
∣
∣
∣
x=2

=
−9

3
= −3
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and

k2 =
−x− 7

x− 2

∣
∣
∣
∣
x=−1

=
−6

−3
= 2.

Thus, the desired PFE is

Fe(x) = 2 +
−3

x− 2
+

2

x+ 1
.

(f) By inspection (or using the quadratic equation, the denominator roots of Ff(x) are -3 and 1.

Since Ff(x) =
3+2x2

−3+2x+x2 is not strictly proper, we long divide the numerator by the denomi-
nator to yield

Ff(x) = 2 +
−4x+ 9

(x+ 3)
(x− 1) = 2 +

k1
x+ 3

+
k2

x− 1
.

Using the Heaviside cover-up method, we find that

k1 =
−4x+ 9

x− 1

∣
∣
∣
∣
x=−3

=
12 + 9

−4
= −21

4

and

k2 =
−4x+ 9

x+ 3

∣
∣
∣
∣
x=1

=
−4 + 9

4
=

5

4
.

Thus, the desired PFE is

Ff(x) = 2 +
− 21

4

x+ 3
+

5
4

x− 1
.

(g) By inspection (or using the quadratic equation, the denominator roots of Fg(x) are ±j. Since

Fg(x) =
x3+2x2+3x+4

x2+1 is not strictly proper, we long divide the numerator by the denominator
to yield

Fg(x) = x+ 2 +
2x+ 2

(x+ j)(x − j)
= x+ 2+

k1
x+ j

+
k2

x− j
.

Using the Heaviside cover-up method, we find that

k1 =
2x+ 2

x− j

∣
∣
∣
∣
x=−j

=
−2j + 2

−2j
= 1 + j

and

k2 =
2x+ 2

x+ j

∣
∣
∣
∣
x=j

=
2j + 2

2j
= 1− j.

Thus, the desired PFE is

Fg(x) = x+ 2 +
1 + j

x+ j
+

1− j

x− j
.

For those who prefer to combine conjugate roots, we can also express the PFE as

Fg(x) = x+ 2 +
2x+ 2

x2 + 1
.

(h) By inspection (or using the quadratic equation, the denominator roots of Fh(x) are -3 and

-2. Since Fh(x) = 1+2x+3x2

x2+5x+6 is not strictly proper, we long divide the numerator by the
denominator to yield

Fh(x) = 3 +
−13x− 17

(x+ 3)(x+ 2)
= 3 +

k1
x+ 3

+
k2

x+ 2
.
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Using the Heaviside cover-up method, we find that

k1 =
−13x− 17

x+ 2

∣
∣
∣
∣
x=−3

=
39− 17

−3 + 2
= −22

and

k2 =
−13x− 17

x+ 3

∣
∣
∣
∣
x=−2

=
26− 17

−2 + 3
= 9.

Thus, the desired PFE is

Fh(x) = 3 +
−22

x+ 3
+

9

x+ 2
.

(i) By inspection (or using the quadratic equation, the denominator roots of Fi(x) are ±2j. Since

Fi(x) =
3x3−x2+14x+4

x2+4 is not strictly proper, we long divide the numerator by the denominator
to yield

Fi(x) = 3x− 1 +
2x+ 8

(x + 2j)(x− 2j)
= 3x− 1 +

k1
x+ 2j

+
k2

x− 2j
.

Using the Heaviside cover-up method, we find that

k1 =
2x+ 8

x− 2j

∣
∣
∣
∣
x=−2j

=
−4j + 8

−2j − 2j
= 1 + 2j.

Since Fi(x) has real coefficients, the residues of conjugate roots are themselves conjugates,

k2 = k∗1 = 1− 2j.

Thus, the desired PFE is

Fi(x) = 3x− 1 +
1 + 2j

x+ 2j
+

1− 2j

x− 2j
.

For those who prefer to combine conjugate roots, we can also express the PFE as

Fi(x) = 3x− 1 +
2x+ 8

x2 + 4
.

(j) Converted to standard form, we see that

Fj(x) =
2x−1 − 1 + 2x

x− 5 + 6x−1
=

2x2 − x+ 2

x2 − 5x+ 6
.

By inspection (or using the quadratic equation, the denominator roots of Fh(x) are 3 and 2.

Since Fj(x) =
2x2−x+2
x2−5x+6 is not strictly proper, we long divide the numerator by the denominator

to yield

Fj(x) = 2 +
9x− 10

(x− 3)(x− 2)
= 2 +

k1
x− 3

+
k2

x− 2
.

Using the Heaviside cover-up method, we find that

k1 =
9x− 10

x− 2

∣
∣
∣
∣
x=3

=
27− 10

3− 2
= 17

and

k2 =
9x− 10

x− 3

∣
∣
∣
∣
x=2

=
18− 10

2− 3
= −8.

Thus, the desired PFE is

Fj(x) = 2 +
17

x− 3
+

−8

x− 2
.
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(k) By inspection (or using the quadratic equation, the denominator roots of Fk(x) are -2 and

1. Since Fk(x) = 3−5x2−9x+23
x2+x−2 is not strictly proper, we long divide the numerator by the

denominator to yield

Fk(x) = −15 +
−12x+ 39

(x + 2)(x− 1)
= −15 +

k1
x+ 2

+
k2

x− 1
.

Using the Heaviside cover-up method, we find that

k1 =
−12x+ 39

x− 1

∣
∣
∣
∣
x=−2

=
24 + 39

−2− 1
= −21

and

k2 =
−12x+ 39

x+ 2

∣
∣
∣
∣
x=1

=
−12 + 39

1 + 2
= 9.

Thus, the desired PFE is

Fk(x) = −15 +
−21

x+ 2
+

9

x− 1
.

Solution B.6-1

(a) A matrix representation is

[
a b
d e

] [
x1

x2

]

= Ax = y =

[
c
f

]

.

(b) By inspection, x1 = 3 and x2 = −2 can be obtained by

[
1 0
0 1

] [
x1

x2

]

=

[
3
−2

]

.

Thus, a = 1, b = 0, c = 3, d = 0, e = 1, and f = −2 is one possible set of constants. These
constants are not unique. Any linear combination of the rows yields the same solution set. For
example, a = 2, b = 0, c = 6, d = 1, e = 1, and f = 1 also works.

To ensure unique values of x1 and x2, the matrix A must be full rank.

(c) For no solutions to exist, the matrix A must be rank deficient, and [A, y] must increase the
rank of A by one. For example,

[
1 1
2 2

] [
x1

x2

]

=

[
1
1

]

.

The rank of A is one and the rank of [A, y] is two. Thus, there are no solutions. MATLAB
verifies the desired ranks are obtained.

>> A = [1 1;2 2]; y = [1;1]; [rank(A), rank([A,y])]

ans = 1 2

(d) For an infinite number of solutions to exist, the matrix A must be rank deficient, and [A, y]
must not increase the rank of A. For example,

[
1 1
2 2

] [
x1

x2

]

=

[
1
2

]

.

The rank of A is one and the rank of [A, y] is also one. Thus, there are an infinite number of
solutions. MATLAB verifies the desired ranks are obtained.
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>> A = [1 1;2 2]; y = [1;2]; [rank(A), rank([A,y])]

ans = 1 1

Solution B.6-2

The system of equations is first written in matrix form.






1 1 1 1
1 1 1 −1
1 1 −1 −1
1 −1 −1 −1













x1

x2

x3

x4






= Ax =







4
2
0
−2






.

Next, the result is obtained using MATLAB.

>> A = [1 1 1 1;1 1 1 -1;1 1 -1 -1;1 -1 -1 -1]; x = A\[4;2;0;-2]

x = 1

1

1

1

That is, x1 = 1, x2 = 1, x3 = 1, and x4 = 1.

Solution B.6-3

First, the system of equations is written in matrix form.






1 1 1 1
1 −2 3 0
1 0 −1 7
0 −2 3 −4













x1

x2

x3

x4






= Ax =







1
2
3
4






.

The result is obtained using MATLAB.

>> A = [1 1 1 1;1 -2 3 0;1 0 -1 7;0 -2 3 -4]; x = A\[1;2;3;4]

x = -30.0000

8.0000

16.0000

7.0000

That is, x1 = −30, x2 = 8, x3 = 16, and x4 = 7.

Solution B.6-4

We are given that a signal f(t) = a cos(3t) + b sin(3t) reaches a peak amplitude of 5 at t = 1.8799
and has a zero crossing at t = 0.3091. These facts can be coded matrix style as

[
cos(5.6397) sin(5.6397)
cos(0.9273) sin(0.9273)

] [
a
b

]

=

[
5
0

]

.

Next, we use MATLAB to solve for the unknowns a and b.

>> inv([cos(5.6397) sin(5.6397);cos(0.9273) sin(0.9273)])*[5;0]

ans = 4.0000

-3.0000

Thus, we see that a = 4 and b = −3.

Solution B.6-5

Define

x =

[
1 3
−2 4

]

, y =

[
−5
2

]

,
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and z =

[
0 1
−1 0

]

(a)

fa = yTy =
[
−5 2

]
[

−5
2

]

= −5(−5) + 2(2) = 25 + 4 = 29.

This result is readily confirmed using MATLAB.

>> x = [1 3;-2 4]; y = [-5;2]; z = [0 1;-1 0]; fa = y.’*y

fa = 29

(b)

fb = yyT =

[
−5
2

]
[
−5 2

]
=

[
−5(−5) −5(2)
2(−5) 2(2)

]

=

[
25 −10
−10 4

]

.

This result is readily confirmed using MATLAB.

>> x = [1 3;-2 4]; y = [-5;2]; z = [0 1;-1 0]; fb = y*y.’

fb = 25 -10

-10 4

(c)

fc = xy =

[
1 3
−2 4

] [
−5
2

]

=

[
1(−5) + 3(2)
−2(−5) + 4(2)

]

=

[
1
18

]

.

This result is readily confirmed using MATLAB.

>> x = [1 3;-2 4]; y = [-5;2]; z = [0 1;-1 0]; fc = x*y

fc = 1

18

(d)

fd = xTy =

[
1 −2
3 4

] [
−5
2

]

=

[
1(−5)− 2(2)
3(−5) + 4(2)

]

=

[
−9
−7

]

.

This result is readily confirmed using MATLAB.

>> x = [1 3;-2 4]; y = [-5;2]; z = [0 1;-1 0]; fd = x.’*y

fd = -9

-7

(e)

fe = yTx =
[
−5 2

]
[

1 3
−2 4

]

=
[
−5(1) + 2(−2) −5(3) + 2(4)

]
=
[
−9 −7

]

This result is readily confirmed using MATLAB.

>> x = [1 3;-2 4]; y = [-5;2]; z = [0 1;-1 0]; fe = y.’*x

fe = -9 -7

(f)

ff = xz =

[
1 3
−2 4

] [
0 1
−1 0

] [
1(0) + 3(−1) 1(1) + 3(0)
−2(0) + 4(−1) −2(1) + 4(0)

]

=

[
−3 1
−4 −2

]

.

This result is readily confirmed using MATLAB.
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>> x = [1 3;-2 4]; y = [-5;2]; z = [0 1;-1 0]; ff = x*z

ff = -3 1

-4 -2

(g)

fg = zxz = zff =

[
0 1
−1 0

] [
−3 1
−4 −2

]

=

[
0(−3) + 1(−4) 0(1) + 1(−2)
−1(−3) + 0(−4) −1(1) + 0(−2)

]

=

[
−4 −2
3 −1

]

.

This result is readily confirmed using MATLAB.

>> x = [1 3;-2 4]; y = [-5;2]; z = [0 1;-1 0]; fg = z*x*z

fg = -4 -2

3 -1

(h)

fh = xT − z =

[
1 −2
3 4

]

−
[

0 1
−1 0

]

=

[
1− 0 −2− 1

3− (−1) 4− 0

]

=

[
1 −3
4 4

]

.

This result is readily confirmed using MATLAB.

>> x = [1 3;-2 4]; y = [-5;2]; z = [0 1;-1 0]; fh = x.’-z

fh = 1 -3

4 4

Solution B.7-1

(a) Figure SB.7-1a shows xa(t) = Re
(
2e(−1+j2π)t

)
over 0 ≤ t ≤ 3.

>> t = 0:.001:3; xa = @(t) real(2*exp((-1+1j*2*pi)*t));

>> plot(t,xa(t),’k-’,t,2*exp(-t),’k:’,t,-2*exp(-t),’k:’);

>> xlabel(’t’); ylabel(’x_a(t)’);
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Figure SB.7-1a

(b) Figure SB.7-1b shows xb(t) = Im
(
3− e(1−j2π)t

)
over 0 ≤ t ≤ 3.

>> t = 0:.001:3; xb = @(t) imag(3-exp((1-1j*2*pi)*t));

>> plot(t,xb(t),’k-’,t,exp(t),’k:’,t,-exp(t),’k:’);

>> xlabel(’t’); ylabel(’x_b(t)’);
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(c) Figure SB.7-1c shows xc(t) = 3− Im
(
e(1−j2π)t

)
over 0 ≤ t ≤ 3.

>> t = 0:.001:3; xc = @(t) 3-imag(exp((1-1j*2*pi)*t));

>> plot(t,xc(t),’k-’,t,3+exp(t),’k:’,t,3-exp(t),’k:’);

>> xlabel(’t’); ylabel(’x_c(t)’);
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Figure SB.7-1c

Solution B.7-2

>> x = @(t) t.*sin(2*pi*t); t = linspace(0,10,501);

>> plot(t,x(t),’k-’); xlabel(’t’); ylabel(’x(t)’);

>> m = max(x(t))

m = 9.2417

>> set(gca,’ytick’,[-10,-5 0 5 m]); grid on

Figure SB.7-2 shows x(t) over 0 ≤ t ≤ 10. Over this time interval, x(t) has a maximum value of
9.2417.

T T
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Solution B.7-3

Since cos(t) oscillates at 1
2πHz, t should cover at least 2π seconds to span one period. Since sin(20t)

has a period of 2π
20 = 0.314 seconds, the step size of t should be less than 0.0314 to ensure at least

ten samples per period of this fastest component.

>> t = [0:.01:8]; x = cos(t).*sin(20*t);

>> plot(t,x,’k-’); xlabel(’t’); ylabel(’x(t)’);

Figure SB.7-3 shows x(t) = cos (t) sin (20t) over 0 ≤ t ≤ 8.

0 1 2 3 4 5 6 7 8

t

-1

-0.5

0

0.5

1

x(
t)

Figure SB.7-3

Solution B.7-4

The highest frequency is 10Hz, so the step size of t should be 0.01 or less to provide ten samples
per period of the fastest component. The lowest frequency is 1Hz, so t should span at least one
second to cover one period of the slowest component.

>> t = [0:.005:2]; kt = (1:10)’*t; x = sum(cos(2*pi*kt));

>> plot(t,x,’k’); xlabel(’t’); ylabel(’x(t)’);

Figure SB.7-4 shows x(t) =
∑10

k=1 cos(2πkt) over 0 ≤ t ≤ 2.

T T

1 1 1
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Solution B.7-5

There are many approximations possible for the sound of a bell. In the most simple case, we
can model a bell as a decaying exponential. A small, light bell will have a high pitch and not
sustain a sound for long. Thus, we might choose a base oscillation of 1kHz. A reasonably
quick decay rate is obtained if the envelop decreases by 90% every second, or eln(0.1)t. Thus,
our bell model is x(t) = eln(0.1)t cos(2π1000t). The result, however, is somewhat “flat”. Adding
harmonics, such as cos(2π2000t), adds richness to the sound. Furthermore, some low frequency
modulation, perhaps as a result of a hand initially ringing the bell, improves the sound. For
example, y(t) = eln(0.1)t cos(2π3t) (cos(2π1000t) + 0.1 cos(2π2000t)) sounds more natural than x(t).
The possibilities are endless.

>> t = [0:1/8000:3.5]; a = log(0.1); x = exp(a*t).*(cos(2*pi*1000*t));

>> y = exp(a*t).*(cos(2*pi*3*t).*(cos(2*pi*1000*t)+0.1*cos(2*pi*2000*t)));

>> sound([x,y],8000);

If a large, heavy bell is desired, the frequency and decay rates need to be reduced. For example,
z(t) = eln(0.5)t cos(2π3t) (cos(2π100t) + 0.1 cos(2π200t)).

>> t = [0:1/8000:5]; a = log(0.5);

>> z = exp(a*t).*(cos(2*pi*3*t).*(cos(2*pi*200*t)+0.1*cos(2*pi*400*t)));

>> sound(z,8000);

Solution B.7-6

(a) Begin by choosing a point on the unit circle, w = ejΩ. Multiplying w by itself yields ww =
w2 = ej2Ω. Taking this result and again multiplying by w yields ww2 = w3 = ej3Ω. At step
n, the result is wn = ejnΩ. From Euler’s identity, we know wn = ejnΩ = cos(nΩ) + j sin(nΩ).
The process does indeed provide the desired quadrature sinusoids: the real part provides the
cosine term and the imaginary part yields the sine term.

(b) To produce a periodic signal, Ω needs to be a rational multiple of 2π. Most simply, choose
Ω = 2π/N , where N is the number of points computed per oscillation of each sinusoid. For
reasonable quality sinusoids, N should be some moderately large integer, say 10 or 20. Al-
though the quality of the sinusoids increases as N is increased, the required processing speed
also increases with N . Thus, N represents a compromise between signal quality and processor
speed. Taking N = 20, for example, yields w = ejπ/10. In this case, only 1

100000N = 500e− 9
seconds (500ns) are available to process each sample. This is feasible with current processor
technologies.
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(c) Although not required by the procedure, a vector x[n] is maintained so that the signal outputs
can be plotted.

>> N = 20; w = exp(j*2*pi/N); w_n = w;

>> I = 40; x = zeros(1,I); x(1) = w_n;

>> for i = 1:I; x(i) = w_n; w_n = w_n*w; end

>> plot([1:I],real(x),’k-’,[1:I],imag(x),’k--’);

>> xlabel(’n’); ylabel(’Amplitude’);

Figure SB.7-6 shows the resulting quadrature sinusoids.
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(d) To work, this procedure requires several assumptions. First for periodicity, the frequency Ω
should be of the form Ω = 2π/N , where N is an integer. Second, we assume N is chosen large
enough to provide good-quality sinusoids yet provide ample time during each step to compute
the next value. Each of these assumptions can generally be met. However, there are at least
two limitations that may affect the suitability of this procedure:

• Since digital processors represent numbers with a finite number of bits, there is often an
error associated with representing w. Instead of w, the computer stores w + ∆. Due to
the iterative nature of the procedure, the error grows with time. Generally, if |w+∆| > 1
then the signals will exponentially grow and if |w + δ| < 1 the signals will exponentially
decay. This limitation can prevent the procedure from working correctly over an indefinite
time period.

• For the output signals to be truly periodic, the processor must take exactly the same
amount of time between steps. This is impossible; timing errors are always present.
Additionally, if the desired output frequency is not divisible by the processor clock speed,
the resulting signals with either not be truly periodic, have slight frequency errors, or
both.

Solution B.7-7

The MATLAB residue command computes the partial fraction expansion of a rational function
by providing three quantities: the residues, the poles, and the direct terms.

(a) >> [r,p,k] = residue([1 5 6],[1 1 1 1])

r = 1.0000

0.0000 - 2.5000i

0.0000 + 2.5000i
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p = -1.0000

-0.0000 + 1.0000i

-0.0000 - 1.0000i

k = []

Thus,

H1(s) =
1

s+ 1
+

−2.5j

s− j
+

2.5j

s+ j
=

1

s+ 1
+

5

s2 + 1
.

(b) >> [r,p,k] = residue([1 1 1 1],[1 5 6])

r = 20.0000

-5.0000

p = -3.0000

-2.0000

k = 1 -4

Thus,

H2(s) =
20

s+ 3
+

−5

s+ 2
+ s− 4.

(c) >> [r,p,k] = residue(1,poly([-1,-1,j,-j]))

r = 0.5000

0.5000

-0.2500 - 0.0000i

-0.2500 + 0.0000i

p = -1.0000

-1.0000

0.0000 + 1.0000i

0.0000 - 1.0000i

k = []

Thus,

H3(s) =
0.5

(s+ 1)
+

0.5

(s+ 1)2
+

−0.25

s− j
+

−0.25

s+ j
.

(d) >> [r,p,k] = residue([1 5 6],[3 2 1])

r = 0.7222 - 1.4928i

0.7222 + 1.4928i

p = -0.3333 + 0.4714i

-0.3333 - 0.4714i

k = 0.3333

Thus,

H4(s) =
1

3
+

0.7222− 1.4928j

s+ 0.3333− 0.4714j
+

0.7222 + 1.4928j

s+ 0.3333 + 0.4714j
.

Solution B.7-8

(a) >> format rat; [r,p,k] = residue([1 -3 2],[1 -6 9])

r = 3

2

p = 3

3

k = 1

Thus,

Fa(x) = 1 +
2

(x − 3)2
+

3

x− 3
.
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(b) >> format rat; [r,p,k] = residue([1 -2 1],[6 -5 1])

r = 1/4

-4/9

p = 1/2

1/3

k = 1/6

Thus,

Fb(x) =
1

6
+

− 4
9

x− 1
3

+
1
4

x− 1
2

.

(c) >> format rat; [r,p,k] = residue([1 -2 1],[18 -21 8 -1])

r = 1/2

-4/9

-4/27

p = 1/2

1/3

1/3

k = []

Thus,

Fc(x) =
− 4

27

(x− 1
3 )

2
+

− 4
9

x− 1
3

+
1
2

x− 1
2

.

(d) >> format rat; [r,p,k] = residue([1 -5 6],[2 8 6])

r -15/2

3

p = -3

-1

k = 1/2

Thus,

Fd(x) =
1

2
+

− 15
2

x+ 3
+

3

x+ 1
.

(e) >> format rat; [r,p,k] = residue([2 -3 -11],[1 -1 -2])

r = -3

2

p = 2

-1

k = 2

Thus,

Fe(x) = 2 +
−3

x− 2
+

2

x+ 1
.

(f) >> format rat; [r,p,k] = residue([2 0 3],[1 2 -3])

r = -21/4

5/4

p = -3

1

k = 2

Thus,

Ff(x) = 2 +
− 21

4

x+ 3
+

5
4

x− 1
.
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(g) >> format rat; [r,p,k] = residue([1 2 3 4],[1 0 1])

r = 1-1i

1+1i

p = 0+1i

0-1i

k = 1 2

Thus,

Fg(x) = x+ 2 +
1 + j

x+ j
+

1− j

x− j
.

(h) >> format rat; [r,p,k] = residue([3 2 1],[1 5 6])

r = -22

9

p = -3

-2

k = 3

Thus,

Fh(x) = 3 +
−22

x+ 3
+

9

x+ 2
.

(i) >> format rat; [r,p,k] = residue([3 -1 14 4],[1 0 4])

r = 1-2i

1+2i

p = 0+2i

0-2i

k = 3 -1

Thus,

Fi(x) = 3x− 1 +
1 + 2j

x+ 2j
+

1− 2j

x− 2j
.

(j) >> format rat; [r,p,k] = residue([2 -1 2],[1 -5 6])

r = 17

-8

p = 3

2

k = 2

Thus,

Fj(x) = 2 +
17

x− 3
+

−8

x− 2
.

(k) >> format rat; [r,p,k] = residue([-15 -27 69],[1 1 -2])

r = -21

9

p = -2

1

k = -15

Thus,

Fk(x) = −15 +
−21

x+ 2
+

9

x− 1
.
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Solution B.7-9

The MATLAB residue output for some rational function F (x) = B(x)
A(x) is

>> [r,p,k] = residue(b,a)

r = 0 + 2.0000i

0 - 2.0000i

p = 3

-3

k = 0 + 1.0000i

Thus,

F (x) = j +
2j

x− 3
+

−2j

x+ 3
.

Next, we recombine the terms.

F (x) = j
(x + 3)(x− 3)

(x + 3)(x− 3)
+

2j(x+ 3)

(x− 3)(x+ 3)
+

−2j(x− 3)

(x− 3)(x+ 3)
.

Simplifying, we obtain

F (x) =
jx2 + 3j

x2 − 9
.

Thus, the length-3 vectors a and b are

a = [1 0 -9] and b = [1j 0 3j].

It is a simple matter to check the solution.

>> a = [1 0 -9]; b = [1j 0 3j];

>> [r,p,k] = residue(b,a)

r = 0 + 2.0000i

0 - 2.0000i

p = 3

-3

k = 0 + 1.0000i

Solution B.7-10

Many solutions are possible to this problem, but the procedure is the same in each case. Consider

a fictitious phone number 555-5555. Then, HN (s) = 5s2+5s+5+5s−1

5s2+5s+5
s
s = 5s3+5s2+5s+5

5s3+5s2+5s+0 . The partial

fraction expansion of HN (s) is obtained using the MATLAB residue command.

>> [r,p,k] = residue([5 5 5 5],[5 5 5 0])

r = -0.5000 + 0.2887i

-0.5000 - 0.2887i

1.0000

p = -0.5000 + 0.8660i

-0.5000 - 0.8660i

0

k = 1

Thus,

HN (s) = 1 +
−0.5000+ 0.2887j

s+ 0.5000− 0.8660j
+

−0.5000− 0.2887j

s+ 0.5000 + 0.8660j
+

1

s
.
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Solution B.7-11

(a) >> omega = linspace(-pi,pi,201);

>> fr = cos(omega); fi = 0.1*sin(2*omega);

>> plot(fr,fi,’k-’); xlabel(’Re(f)’); ylabel(’Im(f)’);

>> axis([-1.1 1.1 -1.1 1.1]); axis equal;

Figure SB.7-11a shows the resulting Lissajous figure which resembles a horizontal propeller.
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Figure SB.7-11a

(b) Multiplying w by ejθ adds θ to the angle of w and thereby rotates w by θ. Also, wejθ =
(x+ jy)(cos(θ) + j sin(θ)) = (x cos(θ)− y sin(θ)) + j(x sin(θ) + y cos(θ)). Furthermore, Rw =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x
y

]

=

[
x cos(θ)− y sin(θ)
x sin(θ) + y cos(θ)

]

. Thus, Rw and wejθ are equivalent, and

Rw rotates w by θ.

(c) >> theta = 10*pi/180; R = [cos(theta) -sin(theta);sin(theta) cos(theta)];

>> f = [fr;fi]; f = R*f;

>> plot(f(1,:),f(2,:),’k-’); xlabel(’Re(Rf)’); ylabel(’Im(Rf)’);

>> axis([-1.1 1.1 -1.1 1.1]); axis equal;

Figure SB.7-11b shows the resulting Lissajous figure that has rotated 10 degrees CCW.
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(d) If Rf rotates f by θ, then RRf = R(Rf) rotates f by 2θ. Similarly, RRRf rotates f by 3θ.
In general, (RN )f rotates f by Nθ.

(e) As suggested in part (b), multiplying f(ω) by the function ejθ simply rotates f by θ. For
example, the previous plot is also obtained by

>> f = fr + j*fi; f = f*exp(j*theta);

>> plot(real(f),imag(f),’k-’);

>> xlabel(’Re(fe^{j\theta})’); ylabel(’Im(fe^{j\theta})’);

>> axis([-1.1 1.1 -1.1 1.1]); axis equal;

Figure SB.7-11c shows the resulting Lissajous figure that has rotated 10 degrees CCW by this
alternate method.
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